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Abstract. Unlike most cryptosystems which rely on number theoretic
problems, cryptosystems based on the invertibility of finite automata are
lightweight in nature and can be implemented easily using simple log-
ical operations, thus affording fast encryption and decryption. In this
paper, we propose and implement a new variant of finite automaton
cryptosystem, which we call DES-Augmented Finite Automaton (DAFA)
cryptosystem. DAFA uses the key generation algorithm of the Data En-
cryption Standard (DES) to dynamically generate linear and non-linear
finite automata on the fly using a 128-bit key. Compared to existing fi-
nite automaton cryptosystems, DAFA provides stronger security yet has
similar encryption/decryption speeds. DAFA is also faster than popular
single key cryptosystems such as Advanced Encryption Standard (AES).
The test results on desktop and mobile phones with respect to the run-
ning speed and security properties are very promising.

Keywords: Cryptography, Finite Automata, Symmetric key, Proba-
bilistic encryption.

1 Introduction

Smartphones and other portable devices are rapidly changing people’s daily lives.
More and more sensitive information such as bank accounts, birthdays and health
care details are now carried over these devices, which still lag behind desktop
PC’s in terms of computational capability. Cryptosystems to protect the sensitive
information on these devices must be computationally lightweight, or otherwise
normal applications would be severely crippled when the main horsepower of the
devices is spent on executing security-related primitives.

Most cryptosystems used today rely on problems based on number theory.
In this paper, we explore a new type of single key cryptosystem based on the
invertibility of finite automata (FA) [15,18]. These cryptosystems have relatively
small key sizes and are lightweight in nature. They can be implemented easily in
hardware or software using simple logical operations, thus affording fast encryp-
tion and decryption [15]. The difficulty in inverting non-linear finite automata
and factoring matrix polynomials accounts for the security of these systems.

A.D. Keromytis and R. Di Pietro (Eds.): SecureComm 2012, LNICST 106, pp. 1–18, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



2 S. Abubaker and K. Wu

An FA cryptosystem can be implemented as either a public-key system or
a single-key system [15]. In the public-key cryptosystem domain, various FA
cryptosystems, termed as FAPKC0, FAPKC1, FAPKC2, FAPKC93, FAPKC3
and FAPKC4 [18,15], have been proposed. Some successful attacks have been
reported on certain types of FA public-key cryptosystems [2,3,5,6]. However, in
the single-key cryptosystem domain, we have not seen any successful attacks on
the FA cryptosystems [15].

In this paper, we focus on the single-key FA cryptosystem and further enhance
its security while maintaining its fast running speed. We make the following
contributions:

1. We design a DES-Augmented Finite Automaton (DAFA) cryptosystem, us-
ing DES to dynamically generate linear and non-linear finite automata on
the fly. While the core encryption and decryption operations are similar to
those used in FAPKC3 [11], DAFA is based on a 128-bit key and the finite
automata are generated using a special modification of the key generation
algorithm used in DES [12].

2. We implement DAFA over smart phones and thoroughly test its performance.
Test results indicate that the statistical properties measured on the cipher-
text using DAFA are satisfactory and in the same range as the properties of
Advanced Encryption Standard (AES) [9]. We also demonstrate that DAFA
is very competitive in terms of speed of operation.

The paper is organized as follows. We begin with a very brief introduction of the
basic concepts of FA cryptosystems in Section 2. We present details of the DAFA
cryptosystem in Section 3 and test its statistical features and running speed in
Sections 4 and 5. We discuss some related work in Section 6 and conclude the
paper in Section 7.

2 Background in FA Cryptosystems

We start with the basic definitions [15].

Definition 1. We define an FA as a five tuple M = 〈X,Y, S, δ, λ〉, where X
denotes the set of all input alphabets, Y denotes the set of all output alphabets,
S denotes the set of all states of the finite automaton, δ is the state transition
function δ : S ×X → S, and λ is the output function λ : S ×X → Y .

In the context of FA cryptosystems, if we use an FA, M , to encrypt plaintext
to ciphertext, we need another FA, M ′, to recover the plaintext. M ′ is called
the inverse FA of M and its construction is based on the invertibility theory of
FA [15].

Definition 2. FA M = 〈X,Y, S, δ, λ〉 is said to be (weakly) invertible with delay
τ if for any input string x0, xi, . . . , xτ and s ∈ S, x0 can be uniquely determined
by the state s and the output string λ(s, x0.......xτ ).
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Definition 3. Given two FA M = 〈X,Y, S, δ, λ〉 and M ′ = 〈Y,X, S′, δ′, λ′〉,
states s ∈ S and s′ ∈ S′ are called a matching pair with delay τ if:

∀α ∈ Xω, ∃α0 ∈ Xn : λ′(s′, λ(s, α)) = α0α,

where |α0| = τ , Xω denotes the set of all infinite words of alphabet X, and Xn

denotes the set of all finite words of alphabet X. In other words, s′ matches s
with delay τ .

Definition 4. M ′ is said to be a weak inverse with delay τ of M if for any
s ∈ S, there exists s′ in S′ such that (s′, s) is a matching pair with delay τ .

As a special case of FA, we can define its state space S = (Yk ×Xh), where Yk

and Xh are sets of strings of length k and h, respectively. This type of FA is
called (h, k)-order memory FA:

Definition 5. M = 〈X,Y, (Yk ×Xh), δ, λ〉 is said to be an (h, k)-order memory
FA, if there is a single-valued mapping φ from Yk ×Xh+1 to Y , such that

y(i) = φ(yi−1, . . . yi−k, xi, . . . xi−h), i = 0, 1, . . .

δ(〈y−1, . . . , y−k, x−1, . . . , x−h〉, x0) = 〈y0, . . . , y−k+1, x0, . . . , x−h+1〉
λ(〈y−1, . . . , y−k, x−1, . . . , x−h〉, x0) = y0

y0 = φ(y−1, . . . , y−k, x0, x−1, . . . , x−h)

What this means is that M needs k previous outputs and h previous inputs to
generate the current output. As a special case, if the mapping φ is from Xh+1

to Y , M is said to be an h-order input memory finite automaton.

Example 1. Assume that X and Y are input and output sets of 8-bit characters,
respectively. An example (linear) (1, 2)-order FA, M , is represented as follows:

y(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0 0 0 1
0 1 1 0 0 1 1 1
0 0 0 0 1 0 1 1
1 1 0 1 1 1 1 0
0 0 0 0 1 0 1 0
0 1 0 1 0 1 0 0
1 1 1 0 1 0 0 1
0 0 1 1 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(i− 1) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 1 1
0 0 0 1 1 1 1 0
0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1
0 1 1 0 0 0 0 1
0 1 1 0 0 1 1 1
1 0 1 1 1 1 0 1
0 1 0 1 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(i− 2)

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(i) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 1 1 0 1
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 1 0 1 1 0 0 1
0 0 1 1 1 1 1 0
0 1 0 0 0 1 1 1
0 0 0 1 0 1 0 0
0 0 0 1 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(i − 1), i = 0, 1, 2, . . . .
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The inverse FA of M with delay 1, M ′, is represented as:

x(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(i− 1) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 1
1 1 0 1 0 0 1 0
0 1 0 1 1 1 0 0
0 1 1 1 1 1 0 0
1 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0
0 1 1 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(i+ 1) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
0 0 1 0 0 1 1 0
0 0 1 0 0 0 0 1
1 1 1 0 0 1 1 1
1 1 1 0 1 1 0 0
1 0 1 0 1 1 1 1
0 0 1 0 1 1 1 0
0 1 0 1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(i)

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 1 1 1
1 0 1 1 1 1 1 1
1 0 0 1 0 1 0 1
0 0 1 0 1 0 0 1
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 1 0 1 1 0 0
0 0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(i− 1) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(i− 2), i = 0, 1, . . . .

Assume that the input string isx(0)x(1) =“AB”, i.e.,x(0) = 0X41 = (01000001)T

and x(1) = 0X42 = (01000010)T . Assume that the values in the initial state are
set as x(−1) = y(−2) = y(−1) = (00000000)T . Since M ′ is the inverse ofM with
delay 1, we append an arbitrary character, say x(2) = 0X0 = (00000000)T , to
the input string. We can then use M to generate output string (i.e., ciphertext)
y(0) = 0X00, y(1) = 0X01, y(2) = 0X7B, and we can useM ′ to recover the input
string x(0)x(1) =“AB”.

The above example is for illustration purpose only. Obviously, in practice, an FA
is much more complex and could be linear or non-linear depending on how it is
constructed. In a non-linear finite automaton, the degree of the polynomial that
constitutes the FA is greater than one. Due to space limit, please refer to [15]
for the details on the construction of linear/non-linear FA and the combination
of several FA.

3 DES-Augmented Finite Automaton (DAFA)
Cryptosystem

3.1 Basic Idea

In the section we present a new version of the single-key FA cryptosystems. Our
idea is to apply the key generation algorithm of the popular and widely-used
Data Encryption Standard (DES) [12] to the key generation process of FA cryp-
tosystems. The high-level block diagram of DAFA cryptosystem is illustrated
in Fig 1. In particular, DAFA operates on 64-byte plaintext blocks, and uses
μ pairs of linear and nonlinear FA for encryption and decryption, where μ is a
system parameter given by users. It includes three main functional components,
namely (a) key processing, (b) generation of automata and starting states, and
(c) encryption and decryption, which we will introduce in the sequel.
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Fig. 1. High level block diagram of DAFA cryptosystem

3.2 Key Processing

We first need to describe the special treatment of the shift and permutation
tables. DAFA uses various permutation tables for its operation, similar to the
original DES cryptosystem. The permutation tables are randomly chosen. How-
ever, we test the tables to ensure that the permuted output is evenly spread
across the entire input, and no two bits of the output are derived from the same
bit of the input. Care has also been taken to ensure that there are no similar or
repeating patterns among any two permutation tables. For the shift table SH-1,
the sum total of all left shifts for the sixteen subkeys is 56 to ensure that at the
end of the shifting process, the subkeys represent all bits of the main key and
that changing even one bit of the main key will significantly affect all sixteen
subkeys. An example PC-1 permutation table and an example SH-1 shift table
are shown in Table 1 and Table 2, respectively.

Table 1. The PC-1 Permutation Table

57 49 41 33 25 17 9 71 105 108 72 93 78 120
1 58 50 42 34 26 18 75 86 92 104 107 83 111
10 2 59 51 43 35 27 65 102 87 99 69 95 3
19 11 127 60 52 44 36 77 116 94 118 122 74 124
63 55 47 39 31 23 15 89 98 66 112 88 81 126
7 62 54 46 38 30 22 106 113 110 119 115 79 6
14 128 61 53 45 37 29 73 90 84 97 101 114 123
21 13 5 28 20 12 4 85 67 100 80 125 70 91

DAFA is based on a 128-bit (main) key. This key is processed using a key gener-
ation algorithm similar to DES. This algorithm creates 16 subkeys, each of which
are 96 bits in length and are created using the 128-bit (main) key. These subkeys



6 S. Abubaker and K. Wu

Table 2. The SH-1 Shift Table

Key Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Left Shifts 2 2 4 4 4 4 4 4 2 4 4 4 4 4 4 2

are then used to create the finite automata during encryption/decryption. The
required starting states are also derived from the subkeys. The steps for creating
the 16 subkeys are as follows:

– Step 1: The 128-bit key is initially permuted and shortened to 112 bits,
according to the PC-1 permutation table. For example, using Table 1, the
first bit of the new 112-bit key is the 57th-bit in the 128-bit key, and the
second bit of the new 112-bit key is the 49th-bit in the 128-bit key, and so
on till the 91st bit of the original key becomes the 112th bit of the permuted
key.

– Step 2: The 112-bit key so formed is now split up into left and right halves,
each 56 bits long. We denote these halves as L0 and R0 respectively. We now
form 16 blocks Ln and Rn for n = 1, 2, 3, . . . , 16. More specifically, Li and Ri

are obtained by left shifting Li−1 and Ri−1, i = 1, 2, 3, . . . , 16, respectively,
according to the shift table SH-1. By left shift, we mean that we move each
bit one place to the left, and the first bit is cycled to the end of the block.
For instance, according to the first row of the example shift table (SH-1)
shown in Table 2, L1 and R1 are obtained by left shifting twice of L0 and
R0, respectively. In this way, we get 16 pairs of subkeys each 56 bits long.

– Step 3: We now concatenate the Li and Ri pairs (i = 1, 2, . . . , 16) to form
16 subkeys which are each 112 bits long. This 112-bit key is now permuted
according to another permutation table PC-2 (e.g., as shown in Table 3). The
example in Table 3 permutes each key to a 96-bit key. The bit numbers 9, 18,
22, 25, 35, 38, 43, 54, 64, 72, 80, 83, 96, 99, 102 and 108 are discarded in this
process for each of the 112-bit keys. The choice of discarded bits is random,
and given that the shift table performs a complete rotation through all 56
bits of each half of the key, this choice does not expose any vulnerability
which may aid in cryptanalysis of the cipher. Thus we now have sixteen
96-bit keys generated in a fashion similar to that in the DES cipher.

Table 3. The PC-2 Permutation Table

14 17 11 24 1 5 60 87 82 105 63 70
3 28 15 6 21 10 77 73 98 86 76 57
23 19 12 4 26 8 65 94 106 111 92 81
16 7 27 20 13 2 88 85 57 109 71 66
41 52 31 37 47 55 69 93 110 104 112 78
30 40 51 45 33 48 75 79 103 67 101 91
44 49 39 56 34 53 90 100 62 107 97 68
46 42 50 36 29 32 58 95 74 84 89 61
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3.3 Generation of Automata and Starting State

Once the subkeys have been derived, we need to generate the automata which will
be used for encryption and decryption. The starting states for these automata
will also need to be generated from the subkeys. The steps involved in this
process include:

– Step 1: First we need to generate μ pairs of linear and non-linear finite au-
tomata for the cryptosystem. These finite automata will be derived using the
generated subkeys described above. The linear automaton is (h0, k0)-order
memory invertible linear FA with delay τ0, and the non-linear automaton is
h1-order input memory FA invertible with delay τ1, where all h0, k0, τ0, h1, τ1
are system parameters.

– Step 2: For the linear automaton, we need to generate h0 + k0 matrices as
the component matrices for generating the finite automaton. We also need
to generate τ0 full rank matrices. The specifics of how this can be generated
using the subkeys is as follows. For the first h0 + k0 component matrices, we
use alternate subkeys K1, K3, K5 and so on in a circular manner, rolling
over to the beginning when we reach K16. Since we need only 64 bits in order
to construct an 8X8 bit matrix, we use three permutation tables M-1, M-2
and M-3 (e.g., as shown in Tables 4, 5, 6) to derive 64 random bits from the
96-bit keys, using the similar operations as those in the PC-1 table (refer to
Step 1 in Section 3.2). These three permutation tables are used in sequence
in a cyclical manner. As each 64-bit represents an 8X8 matrix, we therefore
have the h0 + k0 component matrices.

Table 4. The M-1 Permutation Table

8 34 76 13 28 2 56 7
74 20 58 40 73 31 46 79
16 59 1 47 80 91 14 22
4 32 26 55 17 77 82 83
23 65 49 68 35 61 88 95
44 29 19 62 85 5 50 37
71 11 53 38 89 52 94 92
43 64 70 86 25 67 41 10

Table 5. The M-2 Permutation Table

86 65 82 90 49 72 87 13
69 14 89 85 92 4 66 95
27 64 38 80 71 26 91 83
70 3 81 68 63 50 84 94
40 48 10 1 39 78 5 75
28 19 24 25 60 51 61 67
6 46 34 44 52 33 8 59
12 32 18 58 43 7 29 17
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Table 6. The M-3 Permutation Table

2 83 88 92 94 48 93 89
74 87 26 35 85 75 16 84
17 47 71 8 29 11 80 25
39 12 30 44 78 53 21 66
56 65 34 76 3 70 43 67
31 22 62 49 52 7 69 79
4 40 15 61 24 42 13 58
38 51 6 20 57 96 33 60

In order to create the τ0 full rank matrices, a slightly different approach is
adopted. The τ0 matrices are generated using the same method as for the
first h0 + k0 matrices. However, to guarantee that these matrices to be full
rank, we need extra processing as follows:

– First we derive the decimal representations of the 8 component bytes
that make up each of the matrices so derived and raise them mod 8.
If two successive values (mod 8) are the same, then the second value is
incremented by 1.

– Next we make the matrices lower triangular (for linear automaton ma-
trices) or upper triangular (for nonlinear automaton matrices) by setting
all values in the diagonal to 1 and all values below or above the diagonal
to 0. This ensures that our resultant matrices are full rank.

– Finally we use the decimal values derived earlier to carry out two rounds
of four row swaps and additions. For example, assume that the 8 decimal
values derived are 1,7,3,6,2,0,5 and 4. For round one, we first swap rows
1 and 7 and then add row 6 to row 3. Then we carry out the inverse of
this operation, i.e. we now swap the rows 3 and 6 and then add row 7 to
row 1 for a total of four row adds and swaps. In round two, we perform
an identical operation with the last four decimal values. We first swap
rows 2 and 0 and then add row 4 to row 5. Then we carry out the inverse
of this operation, i.e. we now swap the rows 5 and 4 and then add row
0 to row 2. Since only basic row swaps and additions are performed,
the resultant matrix will be full rank. Using this process, we can create
random, full rank matrices for use in construction of the finite automata
as normal (refer to [15] for the construction of finite automata using
given matrices).

– Step 3: For the nonlinear automaton, we need h1 + 1 component matrices.
These are generated as in Step 2, except that they use the even set of subkeys
K2, K4 and so on in a circular manner, rolling over to the beginning when
we reach K16. Also, as before, we use the permutation tables (e.g., M-1, M-2
and M-3) to derive the 64 random bits from the 96-bit keys. We also need τ1
full rank matrices which are derived in a manner similar to that for the linear
automaton. These component matrices, once derived, are used to create the
nonlinear finite automaton as normal [15].
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– Step 4: After generation of each linear/nonlinear automaton, we derive the
starting state for that particular automaton before proceeding to generate
the next one. The starting state is derived from alternate subkeys imme-
diately following the last key that was used to generate a particular finite
automaton. For instance, if the first linear automaton was generated, (say)
using subkeys K1, K3 and K5, then the three 8 bit vectors that will be
required as the starting state of this automaton are generated from the se-
quential keys K7, K9 and K11. For this purpose, we use random look up
tables (e.g., tables SS-1, SS-2 and SS-3 shown in Table 7). These tables are
used alternately in order to provide confusion as to the selection of the 8 bits
from the 96-bit subkeys. That is, if SS-1 is used on K7 to generate the first
vector, then SS-2 will be used on K9, and SS-3 on K11. This cyclical process
will continue for each of the starting states required for all μ pairs of linear
and nonlinear automata.

Table 7. The Starting State Permutation Tables

SS-1 1 5 9 13 95 91 87 83

SS-2 40 56 9 16 11 91 34 61

SS-3 17 29 32 46 54 65 77 85

Note that the automaton and starting state creation process is designed in a
manner to increase confusion and prevent cryptanalysis. This also provides
for greater diffusion in the final ciphertext once encryption is performed.
Based on our implementation, it has been observed that since they are based
on simple bit operations, the generation of automata and starting states takes
very little time even for large values of h0, k0, τ0, h1, τ1 and μ.

3.4 Encryption and Decryption

As shown in Fig. 1, for encryption and decryption, the plaintext is split up into
64-byte blocks. Each block is encrypted with a linear and nonlinear automata
pair in succession. Since there are μ different linear/nonlinear automata pairs,
these are alternately cycled by the algorithm for each successive block.

As illustrated in Section 2, each FA needs to set an initial state (e.g., the
values of x(−1), y(−1), y(−2) in Example 1). Clearly, the number of bytes in the
initial state depends on the parameters of the FA (i.e., the values of h0, k0, τ0, h1

and τ1 in our DAFA cryptosystem). To enhance security, when we use alternative
linear/nonlinear FA pairs, we create dynamic initial states by allowing each block
(except the first one) to use the last portion of the ciphertext in the previous
block as the starting state. In this way, if a single bit of the plaintext is altered,
the ciphertext undergoes a drastic change.

Example 2. Assume that μ has a value of 2. Then two linear/nonlinear automata
pairs are generated by the algorithm, denoted by (L1, NL1) and (L2, NL2),
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respectively. Assume that we split the plaintext into 64-byte blocks. For every
eight blocks, denoted by B1, B2, . . . , B8, we can create the ciphertext c as:

c = BL1,NL1

1 BL2,NL2

2 . . . BL1,NL1

7 BL2,NL2

8

where BL1,NL1

i (i = 1, 3, 5, 7) returns the ciphertext of Bi encrypted using L1

and NL1 in sequence, and BL2,NL2

j (j = 2, 4, 6, 8) returns the ciphertext of Bj

encrypted using L2 and NL2 in sequence (refer to Example 1 for the operation).
Note that the initial states of L1 and NL1 when encrypting B1 is randomly
selected, but the initial states of FA when encrypting other blocks use the output
of ciphertext from the previous block, i.e.,

BL1,NL1

1 −→ BL2,NL2

2 −→ BL1,NL1

3 . . . −→ BL2,NL2

8 ,

where −→ means setting up the initial state.
Decryption is carried out in the reverse order. Assume that the ciphertext is

split up into eight 64-byte blocks C1, C2, ....., C8. The plaintext p will be gener-
ated as follows:

p = C
NL′

1,L
′
1

1 C
NL′

2,L
′
2

2 . . . C
NL′

1,L
′
1

7 C
NL′

2,L
′
2

8

where NL′
i and L′

i are the inverse FA of NLi and Li(i = 1, 2, . . . , 8), respectively,

C
NL′

1,L
′
1

i (i = 1, 3, 5, 7) returns the plaintext of Ci decrypted using NL′
1 and L′

1

in sequence, and C
NL′

2,L
′
2

j (j = 2, 4, 6, 8) returns the plaintext of Cj decrypted
using NL′

2 and L′
2 in sequence (refer to Example 1 for the operation).

3.5 Features of the DAFA Cryptosystem

The DAFA cryptosystem has some nice features, including:

– It uses a 128-bit key. Unlike the traditional finite automaton cryptosystems,
the key consists of a 128-bit string - not a collection of finite automata
and starting states. The underlying finite automata and starting states are
dynamically generated on the fly using a special modification of the key
generation algorithm used in DES.

– The key space is 2112 bits long. Though a 128-bit key is used, 16 bits are
discarded by the initial permutation, similar to DES. This security level is
equivalent to that provided by triple DES, which is commonly regarded as
sufficient for most applications.

– A new parameter, μ, is introduced to determine how many linear/nonlinear
automaton pairs are to be generated and used for encryption/decryption
purposes.

– The plaintext is split up into 64-byte blocks. Each block is encrypted by
a linear and nonlinear automaton pair in succession. Further, there are μ
different linear/nonlinear automaton pairs and these are alternately cycled
by the algorithm for each new block. The size of each block may be user
defined if required.
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– Since μ can take any positive integer values, cryptanalysis on the resultant
cipher is difficult since firstly, each automaton uses the encrypted values of
the previous block as part of its starting state and secondly τ0 + τ1 random
characters are added at the end of each block for encryption. This leads to
probabilistic encryption results [8], as discussed in our later security analysis.
The addition of two random characters to each 64-byte block of plaintext
results in roughly a 3% increase in the size of the ciphertext. However, this
can be reduced, if required, by increasing the size of the plaintext blocks to
either 128 or 256 bytes.

– Though DAFA’s key generation time is slightly larger (depending on μ)
than that of the existing FA cryptosystems, the speed for encryption and
decryption remains essentially the same. The security of DAFA, however, is
vastly increased due to the introduction of extra randomness via the random
characters appended in each block.

4 Security Analysis

The security of the FA cryptosystem has been discussed in [15]. Since DAFA
consists of the same core components (i.e., the linear and nonlinear FA) used in
these cryptosystems, the security of DAFA is at least as much as that afforded
by these cryptosystems. Currently, there is no known attacks successful to break
the single-key FA cryptosystems. In addition, the use of different automata pairs
and keys along with the block-based encryption scheme introduces further ran-
domness in the algorithm and enhances the security. We conduct extensive tests
to illustrate its strong statistical properties.

4.1 Probabilistic Encryption

To be semantically secure and to avoid chosen plaintext attacks, an encryption
algorithm must be probabilistic [8]. Nevertheless, most of the commonly-used
single key cryptosystems such as DES and AES are deterministic in nature, i.e.,
given a particular plaintext and a particular key, they always encrypt to the same
ciphertext. In order to achieve probabilistic encryption, DES and AES need to
use other mechanisms, e.g., working with Cipher Block Chaining (CBC) [7]. In
contrast, our DAFA cryptosystem integrates random padding into every block of
text encrypted, resulting in a truly probabilistic symmetric encryption scheme
that produces a different ciphertext each time encryption is done - even if the
plaintext and the keys remain unchanged!

Two main reasons contribute to this nice feature. First, for every 64-byte block
of plaintext encrypted, τ0 + τ1 random characters are appended at the end for
encryption with the linear/nonlinear automaton pair. This is significant because
it produces a cascading effect which alters the entire block depending on the
random bytes added at the end. Second, h0 + k0 bytes need to be derived from
the 128-bit key as the starting state for the first linear automaton used and h1
bytes need to be derived as the starting state for the first nonlinear automaton
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used. For the first block of data, these starting states remain constant depending
on the key used. However, for all subsequent blocks, part of the encrypted values
of the random characters added at the end of the current block are used as the
starting state for encrypting the next block of plaintext. Thus, the starting state
for the next block is random, resulting in a significant change in the ciphertext
even when the same plaintext is encrypted with the same key multiple times.

In general, τ0+τ1 random bytes are added to each block of plaintext processed
which also affects the subsequent blocks since their encrypted values are used
as the starting states for encrypting the next block of ciphertext. This results
in a completely probabilistic encryption scheme, rendering our cryptosystem
semantically secure and indistinguishable under a chosen plaintext attach (IND-
CPA) [8]. This means that the ciphertext hides even partial information about
the plaintext. This is evident from the statistical tests carried out on the cryp-
tosystem. It adds an element of randomness to every encryption procedure and
prevents partial decryption of ciphertext by ensuring that an adversary cannot
recover any portion of the plaintext without knowing the decryption key.

4.2 Multiple Keys and Alternating Automaton Types

As we have seen, the 128-bit key is processed by a sophisticated key generation
algorithm in order to produce sixteen 96-bit subkeys. These subkeys are used
to generate the finite automata used by the algorithm. The keys are used cycli-
cally, and the encryption algorithm uses 2μ different keys to construct different
automata, among which half of the constructed automata are linear and the
other half are nonlinear. Security is considerably enhanced as a result of these
alternating linear/nonlinear automaton pairs. Each pair is applied alternately
on successive blocks of text with the encrypted values of one block being used
as the starting state of the automaton in the next block. This introduces a high
degree of complexity making cryptanalysis difficult.

4.3 Statistical Analysis

We use ENT- a pseudo random number sequence test program [20] to test DAFA
cryptosystem. The statistical tests are similar to those in [14]. In order to ana-
lyze if some statistical features in the plaintext carry over into the ciphertext,
it is advantageous to start with plaintext which consists of highly patterned
bytes and which uses a uniform key (an example of a uniform key would be
PPPPPPPPPPPPPPPP). All tests have been conducted using a mix of multi-
ple randomly generated as well as uniform 128-bit keys.

All plaintext files are 4KB in size. Four different types of plaintext have been
tested. The first type, labeled as pt1, consists only of repetitions of the 32-
byte sequence AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH. The second
type, pt2, consists of all zeros. The third type, pt3, consists of all ones, and the
fourth type, pt4, consists of random English text.

A total of 1000 test runs were conducted on the ciphertexts created with
different random and uniform keys as explained earlier. The tests were conducted
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separately for two levels of security. In the first case, we use h0 = 1, k0 = 2, τ0 =
1, h1 = 2, τ1 = 2 and μ=7. We will refer to this security level as DAFA-121227.
The second case uses a security level of h0 = 2, k0 = 3, τ0 = 2, h1 = 3, τ1 = 3
and μ=7, which we will refer to as DAFA-232337. Generally speaking, higher
values result in a higher security level but a slower system, because more finite
automata are used in the key generation and encryption/decryption processes.
We also present the statistical results of the same tests on plaintexts encrypted
using AES with a 128-bit key, under CBC mode for ready reference. We will refer
to this as AES-128 in the remainder of this section. We conducted five types of
test as follows.

Tests for Entropy. Entropy was first introduced by Claude Shannon [13] and
is a measure of the uncertainty associated with a random variable. It refers to
the expected value of the information contained in a byte of data. In other words,
entropy refers to the density of the content or information contained in a file,
expressed as a number of bits per character. Files which are extremely dense
in information (close to 8 bits/byte) can be considered to be random. Our tests
show that files encrypted with the DAFA cryptosystem, even with a lower level of
security (DAFA-121227), demonstrate high average entropy (equivalent to that
of AES with a 128-bit key under CBC mode) with very low levels of standard
deviation. Table 8 shows the results of our entropy tests.

Table 8. Results for entropy tests using AES-128, DAFA-121227 and DAFA-232337

Plaintext Type Plaintext AES-128 DAFA-121227 DAFA-232337
(Size 4 KB) (bits/byte) (bits/byte) (bits/byte) (bits/byte)

Avg S.D. Avg S.D. Avg S.D.
pt1 (AAA. . . HHH) 3.00200 7.95488 0.00407 7.95578 0.00915 7.95793 0.00373

pt2 (00000000. . . ) 0 7.95479 0.00402 7.94977 0.03572 7.95770 0.00381

pt3 (11111111. . . ) 0 7.95485 0.00414 7.94943 0.03465 7.95793 0.00358

pt4 (English Text) 4.87487 7.95477 0.00405 7.95653 0.00394 7.95818 0.00368

Chi Square (χ2) Tests. The χ2 test [1] with 255 degrees of freedom is a
common test for measuring the randomness of data. The chi-square distribution
in our tests is calculated for a stream of bytes and is expressed as an absolute
number and a percentage which indicates how frequently a truly random number
sequence would exceed the calculated value [1,20]. In our test, we use χ2

0.01,255

to test whether a given data sequence is random. We consider the test successful
if the calculated χ2 value [1] is smaller than the value of χ2

0.01,255.
As mentioned earlier, multiple tests were conducted with different uniform

and random keys. Note that the results for the first three types of plaintext are
for worst case scenarios where the plaintext is well patterned. The test result
for the fourth type of plaintext is what would be the normal case scenario.
As before, test results for AES-128 are also presented with DAFA-121227 and
DAFA-232337 for ready reference. As is evident from Table 9, the test results
for DAFA, even at the lower level of security, are comparable to AES-128.
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Table 9. Results for χ2 tests using DAFA-121227, DAFA-232337 and AES-128

Plaintext Type Test Runs AES-128 DAFA-121227 DAFA-232337
(Size 4 KB) (Unique Keys) % Tests Passed % Tests Passed % Tests Passed

pt1 (AAA. . . HHH) 1000 97.9 96.5 97.9

pt2 (00000000. . . ) 1000 98.0 84.1 98.0

pt3 (11111111. . . ) 1000 97.3 85.1 97.4

pt4 (English Text) 1000 97.2 97.2 98.6

Arithmetic Mean Tests. For the Arithmetic Mean (AM) test [20], we add the
values of all the bytes in the file and divide it by the file length. If the data is ran-
dom, this should be about 127.5 since there are 256 possible ASCII values that
each byte of data can represent. Almost all results for our cryptosystem show val-
ues very close to 127.5. Table 10 shows the average arithmetic mean calculated
from 1000 tests conducted on each type of plaintext with different keys.

Table 10. Results for AM tests using DAFA-121227, DAFA-232337 and AES-128

Plaintext Type Plaintext AES-128 DAFA-121227 DAFA-232337
(Size 4 KB) A.M Avg. A.M. Avg. A.M. Avg. A.M.

pt1 (AAA. . . HHH) 68.48000 127.52812 127.52098 127.51560

pt2 (00000000. . . ) 47.99000 127.44284 127.46245 127.44099

pt3 (11111111. . . ) 48.99000 127.49717 127.445632 127.433334

pt4 (English Text) 70.64840 127.49981 127.48059 127.57606

Tests for Monte Carlo Value for Pi (π). In the test for the Monte Carlo
Value for Pi [10], successive 6-byte blocks of data are used as the source for
plotting the X and Y coordinates within a square, using 24-bits for each axis.
The number of points which fall within a circle inscribed in the square is used
to approximate the value of Pi. As the number of points increases, the value
will approach the correct value of Pi if the sequence is random [20]. Our tests
in Table 11 show high accuracy in the Monte Carlo tests with a very low error
percentage in the estimated value of Pi.

Table 11. Results for Monte Carlo tests for value of Pi

Plaintext Type Plaintext AES-128 DAFA-121227 DAFA-232337
(Size 4 KB) Pi Error% Avg. Pi Error% Avg. Pi Error% Avg. Pi Error%

pt1 (AAA. . . HHH) 4.00 27.32 3.14010 0.0474 3.14077 0.0261 3.14064 0.0302

pt2 (00000000. . . ) 4.00 27.32 3.13981 0.0566 3.13996 0.0518 3.14270 0.0353

pt3 (11111111. . . ) 4.00 27.32 3.13977 0.0579 3.14192 0.0105 3.14153 0.0019

pt4 (English Text) 4.00 27.32 3.14125 0.0108 3.14188 0.0092 3.13651 0.1617

The Serial Correlation Coefficient. The degree to which neighboring bytes
are related to each other are measured by the Serial Correlation Coefficient
(SCC). The lower the relation, the lower the value of this measure. If the bytes
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are totally uncorrelated, the SCC would be close to zero [20]. Table 12 shows the
results of the SCC tests. We can see that in our results this value almost always
converges close to zero for both levels of DAFA security tested. Note that the
SCC for pt2 and pt3 is undefined since all values are equal [20].

Table 12. Results for SCC tests using DAFA-121227, DAFA-232337 and AES-128

Plaintext Type Plaintext AES-128 DAFA-121227 DAFA-232337
(Size 4 KB) S.C.C. Avg. S.C.C. Avg. S.C.C. Avg. S.C.C.

pt1 (AAA. . . HHH) 0.71926 -0.00031 -0.00015 -0.00019

pt2 (00000000. . . ) undefined 0.00023 0.00009 -0.00068

pt3 (11111111. . . ) undefined -0.00020 0.00012 -0.00044

pt4 (English Text) 0.46831 -0.00026 -0.00074 -0.00005

In addition to the tests over text files, we also conducted the five types of
tests of DAFA on a classic image, Lena. The test results are shown in Figure 2.

To summarize, all tests conducted with DAFA are satisfactory regarding the
randomness in the ciphertext. As is evident from both the encrypted text and
image files, there are no statistical patterns relating the original plaintext or
image with the encrypted version.

Before Encryption After Encryption
Entropy 4.488642 7.999389
χ² Dist & Random % 3032081 0.01% 222.95 92.70%
Mean (Random: 127.5) 21.4564 127.6129
Monte Carlo Pi & Error % 3.999726 27.32% 3.147025 0.17%
SCC (Random: 0) 0.219906 -0.0008

Fig. 2. Results after encryption of a bitmap image
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5 Encryption/Decryption Speed

We implemented DAFA in Java as a proof of concept in order to demonstrate its
robust statistical properties and lightweight nature. We tested the performance
of DAFA, as well as the AES cryptosystem with a 128-bit key using Cipher
Block Chaining(CBC) for reference, on both an Intel Core 2 Duo 2.16 GHz
desktop with 3GB RAM and the Nokia N900 Internet Tablet which has an ARM
Cortex A8 600MHz processor with 256MB RAM. As shown in Table 13, DAFA
greatly outperforms AES in terms of average encryption/decryption speed. The
results shown in Table 13 are the average of 50 tests conducted on each file size
with each test reflecting the average throughput for one complete encryption
and decryption cycle. Note that since the DAFA encryption and decryption
algorithms have similar operations on finite automata, the throughput for both
are nearly identical.

Table 13. Average encryption and decryption throughput

Platform Filesize AES-128 DAFA-121227 DAFA-232337
(KB) (Kbit/sec) (Kbit/sec) (Kbit/sec)

Intel Core 2 Duo 4 516.13 2909.09 2133.33
2.16Ghz, 3GB RAM 100 7476.64 12500.86 11940.30

1024 47080.46 49652.76 47851.74

Nokia N900 4 57.45 592.59 542.37
600MHz, 256MB RAM 100 1219.51 1523.81 1338.35

1024 3955.63 4264.45 4016.32

Performance in Java is largely dependent on the JVM (Java Virtual Ma-
chine) implementation. The code is initially interpreted but parts are compiled
at runtime using JIT (Just in Time) compilation [4] to boost performance for
computationally intensive code. This is the main reason why generally we find
that a Java program starts off slower when it is being interpreted and then
rapidly picks up speed as the JIT compilatio n occurs. This can be seen in the
performance results for both the AES as well as DAFA programs, where the
throughput achieved is lower for the smaller files as compared to the larger ones.

The AES implementation in our test uses the Java JCE (Java Cryptographic
Extension) library which is highly efficient and has been carefully optimized.
Standard libraries in Java are largely programmed using native code which is
much faster in terms of performance. In our profiling tests using the -Xprof
option in Java, we found that roughly 25.58% of the computation time for AES
encryption/decryption were handled by native method calls as compared to only
3.14% in our DAFA implementation. This is why with files of larger sizes, the
relative performance of AES with respect to DAFA improves. Despite these facts,
DAFA is very competitive in terms of speed even without speed and memory
optimization, on both test platforms.
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6 Related Work

Finite automata based public key cryptography termed FAPKC0 was introduced
in [16] in 1985. Since then various public key cryptosystems based on finite
automata have been proposed like FAPKC1, FAPKC2, FAPKC93, FAPKC3 and
FAPKC4 [17,18,19]. In contrast to this, fewer single key cryptosystems based on
finite automata have been proposed though the underlying theory behind both
are similar. An excellent source for comprehensive information about both single
and public key cryptosystems based on finite automata is [15]. A few attacks and
suggestions on how to avoid them have been proposed in [2,3,5,6] for public key
cryptosystems. However, in the single-key cryptosystem domain, we have not
seen any successful attacks so far [15]. For a detailed and clear discussion about
construction of finite automata required for public key cryptosystems, on which
DAFA is based, readers are referred to [11]. DAFA presents an improvement
on these schemes by firstly utilizing a compact key to generate finite automata
on the fly and secondly by utilizing μ pairs of different linear and non-linear
finite automata for encrypting successive blocks in order to increase the security
afforded by the overall system.

7 Conclusion

In this paper we proposed and implemented a new variant of finite automaton
cryptosystem, termed as DAFA, which uses DES to dynamically generate linear
and non-linear finite automata on the fly using a 128-bit key. We conducted
comprehensive statistical as well as running speed tests of DAFA on a desktop
computer and on a smartphone. DAFA demonstrates strong security properties
comparable to 128-bit AES, and it runs faster than AES. While our current
DAFA implementation is based on Java as a proof of concept, we believe that
there is large room to further improve its running speed if memory and code
optimization were conducted or if implemented in assembly or C language. We
expect that FA based cryptosystems, particularly the augmented variants such
as DAFA, will earn credibility in the applied cryptographic world as a viable
alternative to current cryptosystems and stand the tests of further cryptanalysis.
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