
Automotive Proxy-Based Security Architecture

for CE Device Integration

Alexandre Bouard1, Johannes Schanda2, Daniel Herrscher1,
and Claudia Eckert3

1 BMW Forschung und Technik GmbH, D-80788 Munich, Germany
alexandre.bouard,daniel.herrscher@bmw.de
2 itestra GmbH, D-80796 Munich, Germany

schanda@itestra.de
3 Technische Universität München, D-85748 Garching, Germany

claudia.eckert@in.tum.de

Abstract. Increasing adoption of Consumer Electronic (CE) devices in
the automotive world encourages car makers to propose new CE-related
features each year. However, car complexity and security concerns slow
down this process. The ubiquitous and personal nature of such devices
represents a real threat for car IT systems. We believe that the arrival of
IP standards in car should solve most of these issues. In this paper, we
describe a proxy-based security architecture for an on-board IP-based
network allowing deep and total integration of external mobile wireless
services. The proposed architecture has been integrated in an automotive
IP-based communication middleware and supports security mechanisms
complying with the highly demanding automotive requirements.

Keywords: Security, Access Control, Middleware, Data Labelling, CE
Device, Mobile Device, Automotive Application, Car-to-X
Communication.

1 Introduction

Consumer electronics (CE) devices like smartphones or tablets have become
more and more powerful and ubiquitous. New use cases, unimaginable a decade
ago, appear everyday. A few years ago automotive manufacturers started to pro-
pose numerous on-board services directly accessible from the CE device. Music,
navigation, phone calls, car status. . . the applications are various and connected
through a plethora of interfaces such as USB, Bluetooth or GSM. But albeit
numerous, the applications stayed similar and are only developed by the auto-
motive manufacturers themselves or partner companies; security concerns and
high system complexity slow down the release of new CE device accessible func-
tions.

Originally conceived to develop IP-based solutions for automotive on-board
communications, the SEIS project [1] aims at reducing the complexity of the
network infrastructure and at designing a suitable security layer for both mid-
dleware and applications. We believe that the introduction of IP standards in

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 62–76, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



Automotive Security and CE Device Integration 63

cars will considerably simplify the integration of mobile CE devices and provide
the security level needed to make on-board functions available from any external
communication partner.

In this paper, we describe an automotive architecture for holistic CE device se-
curity while addressing shortcomings of traditional automotive security. We pro-
pose on-board distributed mechanisms for cooperative security evaluation and
enforcement complying with the highly demanding automotive requirements. In
addition, a first in-car implementation of the proposed security concepts is avail-
able for ETCH [2], an open-source middleware that we are currently extending
for automotive and mobile platform use.

The remainder of this paper is organized as follows. Section 2 provides some
background information on traditional and next generation automotive security
and threats related to the integration of CE devices. Afterwards, we present our
proxy-based security architecture in Section 3 and 4. In Section 5 we describe our
prototype implementation. Section 6 discusses the advantages and disadvantages
of this architecture and future work. Finally Section 7 provides a conclusion.

2 Scope and Related Work

In this section we provide background information on automotive networks and
security. We explain the threats related to the introduction of CE device appli-
cations in cars. Then, we present the security requirements and attacker model
considered by this work.

2.1 Automotive Network and Security

During the last decade, the car has become a very complex distributed system; a
premium vehicle can include up to 70 electronic control units (ECUs) interlinked
by at least 5 networking technologies using complex application gateways. We
believe that future use cases will involve more resources, more inter-ECU com-
munication and more external communication partners. As mentioned in the
introduction, the SEIS project proposes to alleviate the forthcoming functional
issues with the development of IP solutions for automotive middleware. But the
use of IP standards is not without risk. The underlying protocols and systems
are well-known standards and attacks could be potentially directly applicable to
the car.

Recently, work has highlighted numerous security issues of automotive in-
frastructure, such as the lack of encryption and authentication of controller area
network (CAN) protocols [3,4] or weaknesses at the ECU level [5]. Aware of these
problems, some projects aimed at providing long-term security solutions and pro-
posed security architecture [6,7], but didn’t consider the security requirements
of integrating external services. The SEIS project proposes security solutions for
application and IP-based communication. In Section 4 we outline their approach
and use it as basis for our CE device adapted security architecture.



64 A. Bouard et al.

Today, automotive CE integration is provided via three different technologies:

– Bluetooth: Standard methods allow communication encryption and PIN-
based authentication, but the features used in-car are generally limited and
not security critical, e.g. phone book, phone call functions, audio system,
etc.

– GSM/3G: Communications from the CE device are routed through a back-
end server acting like a firewall and delivering to the car only authorized and
valid function calls. Access to some critical functions is possible (e.g door
locking).

– Wired (USB) interface: authorized applications establish a secure communi-
cation channel and are equipped with a certificate from the car manufacturer
defining rights for a pre-defined set of infotainment and car status functions.

Industry projects about Car-to-X (C2X) security [8] already propose security
solutions for on-board C2X communication platforms and protocol standard-
isation. Academic works [9,10] have designed car-to-car security and privacy
communication protocols, but in each case the focus was on communication and
authentication at the edge of the on-board network. Few consider risk analy-
sis and authorization management. They generally propose access control list
(ACL) and firewall based systems at the network entry points, but these solu-
tions don’t provide the scalability and flexibility in a reliable and efficient way
that is required for new services from untrustworthy CE devices or developed
by a third-party.

2.2 CE Device Related Threats

The short life cycle of CE devices [11] and their increasing power might soon
allow automotive manufacturers to consider these mobile devices as virtual au-
tomotive software/hardware upgrades [12] for new applications running on the
CE device and potentially communicating with any internal automotive service.

User-installable applications allow customization of CE devices. This can gen-
erate substantial risks. Malicious applications can corrupt a valid automotive
application running on the CE device, directly send exploits, worms or viruses
to the car and leak sensitive information provided by the car. Weak security con-
figurations (e.g. weak password, no or misconfigured security software) can in-
crease the risk of corruption of a CE device. Attackers can take advantage of this
and, for example, steal secret authentication credentials directly from the device
(password, keys). Additionally, CE devices communicate over untrusted wired
or wireless channels, where messages can be listened to, intercepted, altered, in-
jected and replayed, facilitating attacks aimed at impersonating an authorized
CE device or at invoking a function with an illegal input.

In other terms, integrating CE devices is challenging; the car has to enforce
appropriate security mechanisms that are both adapted to the capabilities of
the CE device and its operating system (OS) and additionally provide safe and
secure access to in-car functions and data.



Automotive Security and CE Device Integration 65

To circumvent some of these problems, mobile OSes provide libraries im-
plementing secure communication protocols, strong authorization and isolation
mechanisms, which are reliable as long as the device is well-configured and not
rooted or jailbroken. For Android, academic work proposes additional solutions
such as taint tracking[13], virtualization [14], behavioral analysis[15], enforce-
ment of mandatory access control[16] or analysis of remote duplicates[17]. These
approaches mostly concern internal CE device security and are not applicable to
our automotive use cases. Promising work about remote attestation for mobile
devices has been published [18,19], but is based on trusted hardware which is
still far from reaching mass production.

Interesting approaches may reside in secure integration of mobile devices for
corporate networks [20,21]. But such solutions mostly include heavy security
protocols like IPSec, not suitable for mobile device purposes [22], and rely on
integrity measurements provided by hardware based security mechanisms. Ad-
ditionally these approaches only regulate network access and usually lack speci-
fications for internal function calls and data handling.

2.3 Attacker Model

As attack surface we define every communication channel present in current and
future vehicles that is potentially usable by CE devices for short (USB, Wi-Fi,
Bluetooth) and long range communication (GSM, UMTS, LTE) able to carry IP
packets. We consider as out of scope the systems for key-entry, radio-channels
and other addressable channels (emergency calls, remote diagnostics).

As attacker, we define a person having physical access to the car or being able
to contact any remote interface of the car and wanting to use an in-car function in
an unauthorized way. Regarding her technical capabilities, we consider that she
has good knowledge of the system (standard protocols, open-source technologies)
but that her computation capacities are limited (no possible brute force attack
of a large encryption key). However, she can compromise or steal an authorized
CE device. She has no time limit for her attack, but we assume that she has no
physical contact with the on-board network or ECUs (no addition or extraction
of in car components).

2.4 Automotive Security Requirements for CE Integration

With regard to the security risks and challenges described above, we define the
following security requirements for CE integration.

Functional Requirements: The system should provide scalability and perfor-
mance, essential goals when dealing with safety-relevant use cases. Additionally,
it should provide good usability and limit the system complexity both for system
development and for the end-user.

Communication Requirements: Considering the untrustworthiness of external
communication networks, the protocols used should enforce mutual authentica-
tion to provide proof of origin for both car and CE device, data confidentiality



66 A. Bouard et al.

due to encryption methods to not disclose sensitive information, and finally data
integrity to avoid unauthorized tampering with the messages during their travel.

Car Requirements: The introduction of external services should not disturb or
compromise the car runtime and its integrity, therefore strong isolation tech-
niques should be used. The car should be able to judge the health of the CE
device and enforce strong access control based on authentication mechanisms
and reliable authorization management based on available context information.
Finally, the car should assure the continuous operation of its internal services,
even while using strong security mechanisms or under attack.

3 SEIS and Car-to-CE (C2CE) Communication

As mentioned in the introduction, one of the goals of the SEIS project is to
develop an automotive middleware for IP-based communication in the car. The
middleware, by definition, provides abstracted interfaces and hides the network
complexity. In addition, it can automate the security management with an ap-
propriate security configuration.

3.1 SEIS Security Middleware for On-board Network

Figure 1 presents the modularization adopted by SEIS for a three-layer security
framework [23]. Such an architecture offers enough adaptivity to comply with
highly demanding requirements. The first layer provides security decisions by
means of static policies governing authorized on-board communications and ap-
plication access controls (Policy Management) and by monitoring the reaction
of the system both at the ECU and network level (Intrusion detection). The two
remaining layers are in charge of security enforcement (e.g. protocol implemen-
tation and filtering). The bottom layer, Key management and Cryptographic
service Management, may be included in the ECU hardware. Such a configura-
tion allows an additional hardware-based protection for cryptographic keys and
platform integrity.

Fig. 1. SEIS Security Framework for internal IP-based communication



Automotive Security and CE Device Integration 67

The automotive system is subject to drastic safety and performance require-
ments and generally can’t afford the latency and the risk of errors induced by
complex security mechanisms. Most of the configuration of the framework is
therefore set up statically during vehicle assembly or during periodic system up-
dates. This encompasses security policies and setup of security associations for
on-board IPSec communication channels between ECUs.

3.2 Towards Secure Automotive Proxy-Middleware

The static automotive configuration requires a new communication infrastruc-
ture when dealing with external partners. CE devices are heterogeneous and
their capabilities depend on several factors, e.g. their OS and hardware. Car
manufacturers cannot restrict the C2CE connectivity to a certain class of device;
therefore the architecture needs to be adaptive, as does the underlying security.
The car has to be able to integrate external CE-based services communicat-
ing over a wide range of media and communication protocols (e.g. automotive
middleware- or web services-based). At the same time the car has to limit its
system complexity. We propose the use of a communication proxy, an entity in
charge of managing access between on-board and external networks. The proxy
will realize a protocol decoupling, allowing flexibility for outside communication
and optimal security solutions on the inside. This approach is contrary to most
corporate network solutions, where mobile devices need to provide a strict se-
curity configuration in order to be considered as an internal entity and directly
access internal resources.

Security for the proxy is essential and requires a new dynamic policy engine,
authentication schemes and an intrusion detection system. The protocol decou-
pling makes internal ECUs context-unaware and forces the proxy to enforce
security for both inbound and outbound messages at the edge of the internal
network. On the other hand, the introduction of IP over Ethernet as internal
communication standard allowing bigger bandwidth than today’s networks will
raise the complexity of the software components and of the exchanged objects,
e.g. processing of object models for radar environment perception or download
of high resolution maps for micro navigation from different external sources. The
verification of both security requirements and packet validity for every message
of each external communication partner will be impossible at the proxy level
alone. We propose to share the security enforcement between proxy and ECU:
the proxy provides external security protocols and supports the ECU in enforc-
ing security for applications and resources. More details about our proposed
architecture are given in the next section.

4 Security for CE Adaptive Communication Proxy

In this section, we explain the concept of “Proxy-ECU Cooperation” previously
motivated and present our CE adaptive security architecture for Proxy and ECU.



68 A. Bouard et al.

4.1 Proxy-ECU Cooperation for C2CE Security

Security for CE device integration aims to prevent malicious disturbance of the
automotive systems and to control the release and propagation of data related
to CE devices. The “Cooperation” concept is about enforcing information flow
labeling between proxy and ECU in order to avoid system corruption. We define
“Security Level” (SL) as a formal security description of an information flow
coming from and to a CE device. It may include information about the CE
device, communication link and other security requirements that car and CE
device fulfill or have to fulfill. The SL is included like a tag in every CE device
related on-board message.

Information flow control is essential. ECUs internally exchange genuine mes-
sages and therefore only necessitate secure channels and simple access control
mechanisms. External messages can not be dealt with in the same manner, in-
bound and outbound messages need to be tracked because they can harm the
system and disclose private or secret information. A good SL definition should
provide appropriate expressiveness of the CE device communication situation
and be efficiently transmittable and interpretable. Figure 2 shows the life cycle
of SL tags. We differentiate two types of SL: the SLCE generated by the proxy
and the SLECU provided by applications on the ECU.

Fig. 2. Cooperative data tagging between proxy and ECU

The SLCE describes the contamination risk presented by the data and the
CE device security exposure, it includes information about the device, its state
of health and about the security present on the communication link. Derived
from a continuous reevaluation of the CE device security context, this tag is
transmitted from the proxy to the ECU middleware, which adapts the message
treatment and policy decision in consequence. The security mechanisms induced
after interpretation of the SL allow reducing the security risk to an acceptable
level in order to be passed to the application.

On the other hand, the SLECU or secrecy tag characterizes the risk of privacy
infringement or industrial secret disclosure and concerns outbound messages
only. Supplied by the ECU, this tag includes the user or class of user allowed
to receive this data, as well as the security requirements that the user and the
communication link have to fulfill. To release the message, the proxy verifies if
the tag matches the concerned CE device.



Automotive Security and CE Device Integration 69

The SL metric defines qualitative levels obtained from quantitative security
parameters. The metric maps abstract security concepts and requirements to
concrete protocols and mechanisms (cf. Section 5.2). The quantitative part of
the metric is easily updated, because it is located only in the proxy and follows
the evolution of the security techniques during the car’s lifetime. Our system
follows strict mandatory access control. The CE device adaption is supported
by use case adapted security engines providing the testing and non-harmfulness
verification of inbound and outbound messages.

4.2 CE Adaptive Security Architecture

Figure 3 presents a more concrete view of the proxy and ECU infrastructure.
They both rely on a secure middleware like the one mentioned in Section 3 to
establish secure communication channels. For more flexibility and independence,
the proxy has its own C2CE Authentication Manager, adapted to store and verify
security credentials of CE devices (password or certificates). Policy decisions
from the C2CE Policy Manager and protocol decoupling are enforced in the
Secure network access (SNA) module. Inbound messages are authorized based
on the accessed domain (e.g. for infotainment, driving assistance. . . ) grouping
several ECUs, whereas outbound messages are released after verification of the
SLECU . Secure Proxy Middleware and C2CE SL Evaluator are in charge of the
tag management.

Fig. 3. CE adaptive security architecture

After reception of an SLCE tagged message, the ECU middleware extracts
the tag and decides whether the security information contained by the tag is suf-
ficient to allow an appropriate access control or whether, based on the tag, the
incoming data requires specific security treatment in order to be processed. In
case of a complex function receiving a critical object as argument, like executable
code, from a CE device which does not qualify for complete trust, the middle-
ware can invoke specific CE Security Services for data “decontamination”. Like a



70 A. Bouard et al.

quarantine zone, the decontamination services perform some tests in an isolated
part of the system and allow avoiding or detecting potential application corrup-
tion by verifying the data’s non-harmfulness (e.g. syntax check, execution in a
virtualized environment). These tests are adapted for each use case depending
on its requirements. Additionally, the tag can help to prevent the waste of ECU
resources, for example by verifying before processing the data if the CE device
is authorized to get a response potentially containing sensitive information.

The SLECU are managed by the middleware, they are first statically defined
at compilation time and can later evolve according to authorization and intru-
sion detection based policies. We previously said that the SLCE can help to
enforce a control on the ECU output. However in certain cases where the ECU
isn’t aware of a “fresh” SLCE, the addition of a new tag, the SLECU may be
necessary, either because the ECU instantiates the communication or because
the packet might get forwarded outside without its knowledge e.g. in case of
publish/subscribe services where the ECU is a publisher. Additionally, like the
inbound message case, security engines adapted for outbound messages are sup-
ported by CE Security Services. They enforce data anonymization when possible
and may even exclude critical message sections in order to prevent unauthorized
disclosure of sensitive information.

5 Prototype Implementation

In order to evaluate our concepts, we set up two realistic scenarios for CE devices
integration. The first use case, called “Social Flight Mode”, provides a way to
release private information. An on-board application provides the CE device
with a video stream of the front camera and a real-time instrument cluster. The
second use case, called “Remote Window Control”, concerns controlling internal
automotive functions. The user opens and closes the four windows directly from
her CE device. Access to the driver windows is subject to credential verification
at the application level. Based on these use cases, we developed two applications
running on an Android 3.2 tablet.

5.1 ETCH Security Tagging Service

As prototype basis for an automotive IP-based middleware we use the remote
procedure call framework ETCH [2]. ETCH is an open-source software devel-
oped as an Apache Incubator project under the Apache 2.0 licence. It benefits
from a modular architecture, offering efficient message serialization and flexibil-
ity to develop new security features. The prototype is implemented in Java. The
proxy runs on a Windows PC and the ECU application/middleware on another
Windows PC connected to the car CAN bus.

Figure 4 shows the architecture of the ETCH middleware. We included in
the Transport Handler the capability to serialize and deserialize the SL tags
from the ETCH packet. Additionally we customized this layer with some other
features of the SEIS security framework presented in Section 3 for authorization



Automotive Security and CE Device Integration 71

Fig. 4. ETCH architecture and SL tag management

and establishment of secure communication channels. The SL Manager stores
SLECU and SLCE in a hash table and provides support to enforce policies
both at the application- and middleware-level, in the Filter Chain, a native
module of ETCH that we adapted for our tag management. The Messagizer is
in charge of dispatching the packet received from the Transport Handler to the
right application and vice versa.

The security interface “consult()” for SL support of both application and mid-
dleware is motivated by complex applications willing to enforce a more granular
access control. For example, the application controlling the four windows verifies
specific CE device accreditation included in the tag for the driver window.

Regarding the definition of the SLCE, we added the possibility to directly
declare a vector representing the minimum SL in the declaration of the interface
description language (IDL) before compilation of the service. This feature allows
the application developer to potentially remain security-unaware.

5.2 Mirroring Proxy Middleware

We developed a mirroring service for communication protocol decoupling in the
proxy. The Management Service in the proxy informs the CE device about which
interface of the Mirror Service to contact. The Mirror Service provides sockets
accessible from the CE device and a naming similar to the actual internal ser-
vice. The CE device application has the impression of directly communicating
with the internal service. For simplicity, the CE device supports the ETCH mid-
dleware and communicates over the ETCH protocol. The mirror service adds or
extracts SL tags and enforces access control rules as mentioned in Section 4.1.
The rules for SLCE evaluation are defined within the mirror service. The tag
consists of functional parameters describing the CE user (e.g. driver-, owner-
status, ID. . . ) and three security parameters, each of them evaluated with a
four-level scale, describing the strength of the protocol encryption, its integrity
and its authentication scheme.

5.3 Performance Overhead

In this section, we present an experimental evaluation of the performance impact
of our proxy for communications between CE device and automotive application.



72 A. Bouard et al.

Table 1. Performance overhead of the ETCH-proxy

Configuration 1)Throughput 2) Channel Establishment
Decoupling - SL Tag - TLS ([Call+Response]/s) Penalty Latency (ms)

no no no 351 - n/a
yes no no 336 4,3% 10
yes yes no 195 44,4% 15
yes yes yes 190 45,9% 45

We measure 1) the throughput of message processing for a simple service and 2)
the latency resulting from the communication establishment between CE device
and proxy in order to generate the mirroring services. For these experiments we
deploy a simple case: an application on a CE device sends a function call message
to an ECU service behind our ETCH proxy and receives a boolean as an answer.
Our experiments are conducted on an Intel Core i7 2Ghz machine with 6GB
RAM running Linux for the proxy and an Intel Core 2 Duo 2,4GHz with 4GB
RAM running Windows XP for the ECU. The CE device is a Motorola Xoom
with a Nvidia Tegra 2 chip. The CE device and the proxy are communicating
over a 54 Mbit WLAN network, proxy and automotive application over a Gigabit
Ethernet link. Function call and response messages are IP packets with a payload
of 30 and 50 bytes respectively. In order to compare the middleware throughput
and the communication establishment latency, we vary the following parameters:

– Communication Decoupling, the decoupling is enforced by the proxy, for the
case “no decoupling” the proxy is replaced by a simple packet forwarder.

– SL Tag Evaluation, on top of decoupling the communication the proxy eval-
uates the SL tag and enforces adapted filter rules.

– External network security, the link between CE device and proxy is secured
using the Transport Layer Security (TLS) protocol providing mutual au-
thentication and data encryption.

Table 1 shows the average throughput for message processing (1) and the latency
resulting from the communication establishment (2). This experiment does not
produce much application processing; it mostly stresses the middleware and net-
work mechanisms. In our set up the ETCH middleware and the communication
decoupling decrease the throughput by 4,3%, with the evaluation of the security
tag by 44,4%. The lower performance of the system is a consequence of the user
and kernel context switching due to the network inputs/outputs. The process
of encryption and decryption of the TLS protocol does not cause a visible per-
formance loss when added to the decoupling and SL evaluation. The channel
establishment latency results from the service discovery process and the genera-
tion of the mirroring services. Without any security feature enabled this process
lasts 10 ms, with the SL tag evaluation 15 ms and with the TLS feature 45
ms. The first latency increase is caused by the context evaluation and the tag
generation, the second one by the TLS authentication handshake. We believe



Automotive Security and CE Device Integration 73

that the overhead of our system becomes less significant for realistic and more
complex automotive applications requiring more application processing.

6 Discussion and Future Work

In this section, we offer a brief evaluation of the security architecture, based on
the requirements and threats defined in Section 2.

Functional requirements: Protocol decoupling offers several advantages. First
the CE device application developer can chose the communication protocol. As
long as the proxy provides an adapted translation plug-in, the car adapts its
security levels in consequence. Second, internal communications can be run over
a car-wide strong security solution like IPSec. However, due to potential heavy
traffic (still insignificant in comparison to the volume of exchanged messages be-
tween ECUs) caused by numerous external communication partners, the proxy
might become a bottleneck. Our prototype presents a throughput penalty of
44% with the security enabled, a value still allowing time demanding use cases
and the possibility to have several simultaneous communication partners while
maintaining quality of service. Though further investigations and tests need to
be done, for example concerning external communications over different appli-
cation or middleware protocols, e.g. HTTP, even if it would require a translation
layer and induce more delay. Additionally, our implementation and benchmark
were done in Java on powerful computers, more realistic scenarios would involve
smaller ECU with an implementation in C code, but should not suffer from a
considerable performance degradation [24].

Communication requirements: The difference in computing power between
ECUs and their inability to dynamically adapt their security configuration moti-
vated our choice of decoupling external communications. By trusting the security
proxy’s integrity and its CE device security evaluation, the ECU is able to make
an adapted security decision. Further investigation needs to be done to precisely
define the SL metric in order to provide a holistic security understanding of
CE devices. Several use cases, such as software download and firmware update
require end-to-end security solutions. For such cases, the proxy has to provide a
secure tunnel; external entity and capable ECUs (e.g. Head Unit) negotiate the
secure channel through this intermediary.

Car requirements: The ECUs rely on the proxy’s integrity for delivery of a
valid and accurate SLCE. A potential attack would be to corrupt the proxy and
tamper the tagging process. The malicious message would be handled with a
lower security treatment and would have access to more functions. Our proxy is
a single point of failure, therefore a security resistant architecture is necessary.
Weyl et al. [6] propose a secure hardware architecture, which offers several ad-
vantages such as physical protection of encryption keys and secure boot. The
second advantage, assuring proxy integrity, relies on hardware-based integrity
measurements that can be performed only during the ECU boot, e.g. when the
car starts. This solution couldn’t therefore detect a corruption happening after
boot. More promising approaches reside in isolation and monitoring techniques.



74 A. Bouard et al.

Technologies like hypervisor and microkernel allow a separation of the message
treatment and the tagging process: Each CE device communication is treated by
one isolation cell and can not interfere with its neighbor. Further investigations
need to be done in order to determine the suitability of these concepts.

7 Conclusion

The customizable and non-regulated nature of CE devices raises several auto-
motive security concerns. In this paper, we have presented a flexible security
architecture aimed at mitigating this risk. We have proposed a design for an
automotive security proxy enforcing the communication decoupling between in-
ternal and external networks. It allows the car to communicate over a wide range
of protocols with the outside while internally keeping an optimal security proto-
col and limiting the increase of complexity of the inside. Our approach proposes
CE adaptive security mechanisms relying on cooperation between a Security
Proxy and ECUs, enabled by an in-band signaling protocol managed by the
middleware. This architecture integrates various technologies to secure external
communication and evaluate trust between CE device and car. The prototype
of our architecture has been implemented and integrated in car and offers the
performance required for automotive use cases. We are not aware of other re-
search projects designing and implementing CE secure adaptive architecture for
distributed systems with high functional requirements like cars.

Acknowledgments. The authors would like to thank Benjamin Weyl for valu-
able discussions about future on-board automotive security and the anonymous
reviewers for their constructive comments.

Some of the research presented here, took place within the project SEIS -
Security in Embedded IP-based Systems. The research project explores the us-
age of the Internet Protocol as a common and secure communication basis for
electronic control units in vehicles. The project is partially funded by the Ger-
man Federal Ministry of Education and Research (support codes 01BV0900 -
01BV0917). We would like to thank all SEIS partners directly or indirectly in-
volved in our research.

References

1. Glass, M., Herrscher, D., Meier, H., Piastowski, M., Shoo, P.: SEIS - security in
embedded ip-based systems. ATZelektronik worldwide, 2010-01, 36–40 (2010)

2. Apache ETCH homepage, http://incubator.apache.org/etch/

3. Hoppe, T., Kiltz, S., Dittmann, J.: Security Threats to Automotive CAN Net-
works – Practical Examples and Selected Short-Term Countermeasures. In: Harri-
son, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 235–248.
Springer, Heidelberg (2008)

http://incubator.apache.org/etch/


Automotive Security and CE Device Integration 75

4. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,
D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental Security
Analysis of a Modern Automobile. In: 31st IEEE Symposium on Security and
Privacy, pp. 447–462. IEEE Computer Society, Washington, DC (2010)

5. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive Experimental
Analyses of Automotive Attack Surfaces. In: 20th USENIX Security Symposium,
p. 6. USENIX Association, Berkeley (2011)

6. Weyl, B., et al.: EVITA Project, D3.2 - Secure On-board Architecture Specification.
Technical Report (2010), http://evity-project.org/

7. Wolf, M., Weimerskirch, A., Paar, C.: Security in Automotive Bus Systems. In:
2nd Workshop on Embedded Security in Cars (ESCAR 2004) (2004)

8. Bißmeyer, N., et al.: simTD Security Architecture: Deployment of a Security and
Privacy Architecture in Field Operational Tests. In: 7th Workshop on Embedded
Security in Cars (ESCAR 2009) (2009)

9. Raya, M., Hubaux, J.-P.: Securing Vehicular Ad hoc Networks. J. Comput. Se-
cur. 15, 39–68 (2007)

10. Plö́ıl, K., Federrath, H.: A Privacy aware and Efficient Security Infrastructure for
Vehicular Ad hoc Networks. J. Comput. Stand. Interfaces 30, 390–397 (2008)

11. Ferreira, A.: Android OS changes smartphone life cycle (2011),
http://www.theusdvista.com/mobile/business/

android-os-changes-smartphone-life-cycle-1.2000033

12. Endt, H., Weckemann, K.: Remote Utilization of OpenCL for Flexible Computa-
tion Offloading Using Embedded ECUs, CE Devices and Cloud Servers. In: Inter-
national Conference on Parallel Computing. IOS Press, Amsterdam (2011)

13. Enck, W., Gilbert, P., Chun, B., Cox, L., Jung, J., McDaniel, P., Sheth, A.: Taint-
Droid: an Information-Flow Tracking System for Realtime Privacy Monitoring on
Smartphones. In: 9th USENIX Conference on Operating Systems Design and Im-
plementation, pp. 1–6. USENIX Association, Berkeley (2010)

14. Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A., Peter, M.: L4Android: A
Generic Operating System Framework for Secure Smartphones. In: 1st ACM Work-
shop on Security and Privacy in Smartphones and Mobile Devices (SPSM 2011),
pp. 39–50. ACM, New York (2011)

15. Xie, L., Zhang, X., Seifert, J.-P., Zhu, S.: pBMDS: a Behavior-based Malware
Detection System for Cellphone Devices. In: 3rd ACM Conference on Wireless
Network Security (WiSec 2010), pp. 37–48. ACM, New York (2010)

16. Muthukumaran, D., Sawani, A., Schiffman, J., Jung, B.M., Jaeger, T.: Measuring
Integrity on Mobile Phone Systems. In: 13th ACM Symposium on Access Control
Models and Technologies (SACMAT 2008), pp. 155–164. ACM, New York (2008)

17. Portokalidis, G., et al.: Paranoid Android: Versatile Protection for Smartphones.
In: 26th Annual Computer Security Applications Conference (ACSAC 2010), pp.
347–356. ACM, New York (2010)

18. Nauman, M., Khan, S., Zhang, X., Seifert, J.-P.: Beyond Kernel-Level Integrity
Measurement: Enabling Remote Attestation for the Android Platform. In: Acquisti,
A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 1–15.
Springer, Heidelberg (2010)

19. Bente, I., Dreo, G., Hellmann, B., Heuser, S., Vieweg, J., von Helden, J., Westhuis,
J.: Towards Permission-Based Attestation for the Android Platform. In: McCune,
J.M., Balacheff, B., Perrig, A., Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust
2011. LNCS, vol. 6740, pp. 108–115. Springer, Heidelberg (2011)

http://evity-project.org/
http://www.theusdvista.com/mobile/business/android-os-changes-smartphone-life-cycle-1.2000033
http://www.theusdvista.com/mobile/business/android-os-changes-smartphone-life-cycle-1.2000033


76 A. Bouard et al.

20. VOGUE Project homepage, http://www.vogue-project.de/
21. Cisco NAC appliance - Clean Access Manager Installation and Configuration

Guide, Release 4.9, http://www.cisco.com
22. Arjona, R.: An Introduction to IPsec VPNs on Mobile Phones (2009),

http://msdn.microsoft.com/en-us/magazine/ee412260.aspx

23. Bouard, A.: SEIS Projekt, AP4.3, Security der Middleware für IP-basierte Bord-
netzarchitekturen (2011),
http://www.strategiekreis-elektromobilitaet.de/public/projekte/seis/

das-sichere-ip-basierte-fahrzeugbordnetz/pdfs/TP4 Vortrag2.pdf

24. Weckemann, K., Satzger, F., Stolz, L., Herrscher, D., Linnhoff-Popien, C.: Lessons
from a Minimal Middleware for IP-based In-Car Communication. In: Proceedings
of the Intelligent Vehicles Symposium (IV), pp. 686–691. IEEE (2012)

http://www.vogue-project.de/
http://www.cisco.com
http://msdn.microsoft.com/en-us/magazine/ee412260.aspx
http://www.strategiekreis-elektromobilitaet.de/public/projekte/seis/das-sichere-ip-basierte-fahrzeugbordnetz/pdfs/TP4_Vortrag2.pdf
http://www.strategiekreis-elektromobilitaet.de/public/projekte/seis/das-sichere-ip-basierte-fahrzeugbordnetz/pdfs/TP4_Vortrag2.pdf

	Automotive Proxy-Based Security Architecture for CE Device Integration
	Introduction
	Scope and Related Work
	Automotive Network and Security
	CE Device Related Threats
	Attacker Model
	Automotive Security Requirements for CE Integration

	SEIS and Car-to-CE (C2CE) Communication
	SEIS Security Middleware for On-board Network
	Towards Secure Automotive Proxy-Middleware

	Security for CE Adaptive Communication Proxy
	Proxy-ECU Cooperation for C2CE Security
	CE Adaptive Security Architecture

	Prototype Implementation
	ETCH Security Tagging Service
	Mirroring Proxy Middleware
	Performance Overhead

	Discussion and Future Work
	Conclusion
	References




