Making P-Space Smart: Integrating IoT
Technologies in a Multi-office Environment

Orestis Akribopoulos, Dimitrios Amaxilatis, Vasileios Georgitzikis,
Marios Logaras, Vasileios Keramidas, Konstantinos Kontodimas,
Evangelos Lagoudianakis, Nikolaos Nikoloutsakos, Vasileios Papoutsakis,
Toannis Prevezanos, Georgios Pyrgeris, Stylianos Tsampas,
Vasileios Voutsas, and Ioannis Chatzigiannakis

Computer Technology Institute & Press, and
Computer Engineering and Informatics Department, University of Patras
{akribopo,amaxilatis,tzikis,logaras,ichatz}@cti.gr,
{keramidas ,kontodimas,lagoudiana,nikoloutsa,papoutsaki,prevezan,
pyrgeris,tsampas,voutsas}@ceid.upatras.gr

Abstract. Internet of Things technologies are considered the next big
step in Smart Building installations. Although such technologies have
been widely studied in simulation and experimental scenarios it is not so
obvious how problems of real world installations should be dealt with. In
this work we deploy IoT devices for sensing and control in a multi-office
space and employ technologies such as CoAP, RESTful interfaces and
Semantic Descriptions to integrate them with the Web. We report our
research goals, the challenges we faced, the decisions we made and the
experience gained from the design, deployment and operation of all the
hardware and software components that compose our system.

Keywords: Internet of Things, Wireless Sensor Networks, Smart Build-
ings, Building Automation, CoAP.

1 Introduction

Internet of Things (ToT) refers to the integration of uniquely identifiable Smart
Objects and web-based semantic entities and services via the Internet. Ulti-
mately, IoT will offer abstractions for the sensor and actuator hardware and
wireless networking technologies that will allow application developers to oper-
ate freely without worries for low level restrictions or limitations. Although a lot
of research has been devoted towards this direction such abstractions for deploy-
ing and annotating sensor devices as smart objects is neither straightforward nor
fully standardized. Thus application development for the IoT is still tied up to
some negative characteristics of WSNs. Therefore it is still important to address
fundamental problems, as described in [5], like:

— hardware, software and networking heterogeneity,
— intermittent connectivity,

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 31-f4] 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

32 O. Akribopoulos et al.

application scaling issues,

— simplification of the development and deployment cycle,

— absence of standardized service and capability descriptions,
— big data management

Research dedicated to solving the issues and facilitate large scale installations
resulted in the design and development of some important software systems like
SenseWeb [1], GSN [2], sMAP [6] and Cosmll]. These systems focus on some of
the problems mentioned above and provide scalable solutions for management
of big data. Yet, further research and engineering work is required.

One major challenge that has not been addressed at adequate level is to pro-
vide bidirectional communication between IoT applications and smart objects
in an abstract way. In IoT applications issues like monitoring and controlling
devices and workplaces require the interaction of smart objects with data and
services residing on the web. The ability to trigger actions in response to special
events or situations is critical to achieve goals like minimizing energy require-
ments or adapting environmental conditions to user preferences.

In this work, we present how we employed IoT technologies and research
results to address common everyday issues in a prototype system installed in a
multi-office space located in Patras, Greece called P-Space. We deal with all the
levels of the system: (a) design and installation of low level hardware devices,
(b) wireless networking issues for interconnecting smart objects to the Web, (c)
storage of the data generated to provide historical comparisons, and (d) high
level interfaces to facilitate user interaction.

The smart objects deployed in P-Space are of our own design based on the
Arduino open-source electronics prototyping platfornﬂ Wireless networking is
achieved by attaching XBee 802.15.4 modulesd to the arduino boards. In par-
ticular we used the ATmega328 enabled Arduino Pro Mini to drive our control
and sensing boards on objects like desks, lamps, doors and faucets. The resulting
smart objects are wirelessly connected, have low cost and are compatible with a
broad range of sensor and actuator components.

Communication for querying smart objects for sensor data and sending com-
mands to actuate attached devices we used the CoAP protocol [12]. We incor-
porate in CoAP high level descriptions of the sensor and actuator devices and
utilize CoAP extensions for providing notifications for events or sensor readings
on the sensor devices.

We combine CoAP with Uberdusiﬁ[S], a brokerage web service for connecting
smart objects to the Internet of Things, providing storage, sharing and dis-
covery of real-time and historical data from smart objects, devices & build-
ing installations around the world via the Web. Uberdust provides high-level
language-independent APIs so IoT application developers may choose their fa-
vorite programming or scripting languages. Communication with Uberdust is

! https://cosm.com/

% nttp://arduino.cc/

3 http://www.digi.com/xbee/

4 https://github.com/Uberdust/webapp/wiki

Integrating IoT Technologies in a Multi-office Environment 33

achieved using the Uberdust RESTfull and Websocket APIs, offering an easy-
to-use, resource-oriented model to expose services. Publishing and consuming
functionalities are implemented using both the HTTP and CoAP Get and Put
methods to represent data exchange. Uberdust acts as our entry point to the
smart objects network, providing important IoT functionalities for the inter-
action of end users with the smart objects mentioned above, like CoAP [12] ,
RESTful interfaces and Semantic descriptions.

Finally, we also implemented a number of IoT applications to provide control
and browsing capabilities over the deployed platforms. The characteristics of
our system allowed us to experiment with multiple programming and scripting
languages based on the requirements of each application. We experimented and
developed applications with Python, Java, JavaScript, PHP and even Bash Shell
scripts to perform various tasks with the sensor and actuator capabilities of the
whole installation.

In order to organize the smart objects and provide interfaces and methods for
querying and controlling the devices in a natural way, we propose the abstraction
of Virtual Node. The idea is to group real devices that match specific semantic
description as unified semantic entities. Then the application developer as well
as the user can used them as a single entity. Our experience indicates that this
abstraction is very useful for improving the overall ability to maintain the system
and develop applications.

The next Section presents a high level architecture of the system we designed,
the targets set and the design choices we made. Section [3] presents the smart
objects we designed, the requirements for each device, the issues we faced and
the experience we gained. Section [] presents the CoAP protocol we used for
communication in all levels of our system. Next, in Sections [B&G] we present the
user interfaces we implemented to facilitate interaction with users and finally in
Section [7] we explain the experience we gained from this work, the major issues
still to be solved and our future targets.

2 High Level System Architecture

We designed our system in 3 separate layers that communicate with each other
by exchanging messages of commands or sensor readings. Figure [l shows the 3
independent layers and their communication via RESTful and Websocket APIs
offered by Uberdust.

The bottom layer comprises of the hardware sensor boards we designed and
attached to objects inside P-Space. This layer provides sensor readings over wire-
less communication to a central controller device that acts a translator between
802.11 frames and 802.15.4 packets.

Uberdust is the nerve center of our system as it is responsible for connecting
the low level hardware devices with the IoT applications and interfaces enabling
the rapid development of IoT applications. Uberdust is designed as a Machine-
to-Machine system and its functionality is provided through a semantic-based
approach to facilitate IoT application development. The most innovative feature

34

O. Akribopoulos et al.

Web Interface

Maobile Apph(atlnn Building Mumtorlng

User Experiment

Application2 Application3
Applicationl PP |(a o PP |ca 1on Applicationd
-get readings ‘getreadings -get readings -put commands
€ - -put commands =put mmmands
T I

1

[RE'STfuI interfaces WebSockei:)
o nput-Outpu
t
= sworsze | Uberdust || ‘Tuoue
Controllers

Q —= I ,{”f?

Fig. 1. High level architecture

of Uberdust, is that it focuses not only on collecting data but also on allow-
ing bidirectional communication between IoT applications and smart objects.
Uberdust offers a centralized control mechanism for all devices together with the
storage of historical data that due to space limitations cannot be stored on the
devices themselves. All messages to and from the devices pass through Uberd ust,
which in general terms provides the functionality of an entry point so that any
application can communicate with IoT devices and vice-versa.

On top of Uberdust, the highest level of our system is the IoT application
layer for monitoring sensor readings and controlling actuators. Most users do not
actually need or have to interact directly with the sensor devices but with the
abstraction provided at this level. This abstraction is one of the most interesting
features of Uberdust, as smart object devices can be grouped based on their
semantic descriptions. We call this abstraction a Virtual Node, that is, a grouping
of real devices as a common semantic entity. Usually in Multi-office or Smart
building scenarios such semantic entities cover small areas like workspaces and
offices, rooms, building floors or equipment groups like the heating or plumbing.
We believe that Semantic entities (i.e., Virtual Nodes) are more suitable for user
interfaces than the smart objects themselves as they represent in a more natural
way the functions they support. Finally, this layer also includes a number of
applications that are not designed for direct user interaction, like the applications
that control lights based on the occupancy of the rooms or workplaces.

2.1 Integration of Applications

Uberdust offers RESTful (HTTP and CoAP) and Websocket APIs for applications
and smart objects. The RESTful API, based on the REpresentational State
Transfer web service model, offers an easy-to-use, resource-oriented model to

Integrating IoT Technologies in a Multi-office Environment 35

expose services. Publishing and consuming functionalities are implemented using
both the HTTP and CoAP, Get and Put methods to represent data exchange.
CoAP support is based on Californium [I0], a library for parsing and generating
CoAP messages, allowing direct top to bottom communication.

The WebSocket API offers the same functionalities using the IETF stan-
dardized WebSocket protocol [7]. WebSocket is a web technology providing bi-
directional, full-duplex communications channels over a single TCP connection
which can be used by any client or server application. Using a Websocket con-
nection applications can receive new and historical readings or issue commands
to actuators. Also, controller devices can use a Websocket connection to con-
tinuously stream new readings to the storage web service and receive actua-
tor requests to forward to the sensors. All data messages exchanged using the
WebSocket API are serialized using Google’s Protocol bufferdd a language and
platform independent, extensible mechanism for encoding structured data in an
efficient and extensible format.

2.2 User Interfaces

Uberdust itself offers a very basic interface with no user authentication mech-
anism for publishing, accessing and sending information to the system as it is
designed solely as a M2M system. So to provide all the above we designed appli-
cations on top of Uberdust. A Drupal Website was designed to provide web based
access to the system with specific drupal modules for operations, like switching
lights on, controlling the HVAC units and accessing information in using time
series diagrams, heat maps or pie charts. Also, as smartphones are always present
in our everyday life, we designed two mobile applications for the Android and
the Windows Phone platforms. The mobile phone applications offer the same
operations as the Web interface, adapted to the special characteristics of each
platform, focusing on the benefits of mobile devices. Both Drupal and Mobile
applications use an authentication mechanism to address issues like privacy and
security which are prerequisites in a Multi-office environment.

2.3 High Level Description of Available IoT Technologies

CoAP is another basic component of our architecture. All of the application and
the smart objects we designed are CoAP enabled. This means that they exchange
information in an standardized format, that all layers of our system can under-
stand. The CoAP messages exchanged also contain semantic descriptions for ob-
served events. Semantic descriptions offer access to some other IoT technologies
like RDF [9] descriptions and SPARQL [13] queries. RDF is a standard model for
data interchange on the Web that supports the evolution of schemas over time
without requiring any changes to data consumers. RDF describes properties
of devices with structured triples that can be exchanged between applications.
SPARQL is a query language used to express queries over RDF structured data.

® http://code.google.com/p/protobuf/

36 O. Akribopoulos et al.

SPARQL contains capabilities for querying required and optional graph patterns
along with their conjunctions and disjunctions. As a result all IoT applications
can eventually be described in a completely abstract model as a number of
SPARQL queries over the RDF data provided by the smart object network.

2.4 Automatic Configuration

All the applications and hardware platforms we designed to operate with mini-
mal human intervention. Smart objects are automatically registered on the web
application when they are turned on within the communication range of con-
troller, while updates on their metadata (e.g., location) are available only by
the administrator of the system. All interfaces or applications are configured
based on the information of the Uberdust web application. Users or administra-
tors simply need to provide the url of the Uberdust endpoint and then menus
and information or control pages are generated based on the metadata and the
semantic descriptions available. As a result installation of a similar system in a
different environment or building is simplified.

2.5 Use Case

The major problems we target with our work are energy conservation and intel-
ligent building configuration. Individual rooms, offices, or even entire buildings
should go into energy saving mode when unoccupied disabling any communi-
cation networks, light, climate control, warm water or standby appliances to
significantly reduce their power requirements. Implementing such behaviors in
low level, independent systems with no access to information about the general
situation in the building is extremely difficult and not at all adaptive to changes.
IoT technologies on the other side provide all the necessary tools, described
above, to deal with such problems with more adaptive and targeted solutions.
Also by using external information about user preferences and requirements we
can create a more personalized and pleasant experience.

3 Hardware

In order to integrate the main electric and electronic appliances with the Web we
developed a series of hardware boards. Our main design goals is to support wire-
less communication, remote programming, be inexpensive, and well supported
by the open source community to get feedback. We used an Arduino Pro Mini,
combined with a IEEE 802.15.4 XBee® RF module.

3.1 Smart Lamps

The Arduino boards we designed are attached to ceiling and desk lamps in every
room of P-Space. To control the 230V AC Lamps from the 5V I/O pins of the
Arduino we use relays. Each board is able to control up to two different lamps so

Integrating IoT Technologies in a Multi-office Environment 37

that we can provide users with multiple levels of lighting, e.g., low during a sunny
day or high during the night. This allows us to reduce the power requirements as
people tend to turn all the lights during the whole day. Furthermore we decided
to introduce a manual override in case of hardware failure.

On top of the above, boards are also equipped with sensors for measuring
luminosity, temperature and motion via Pyroelectric infrared sensors (Figure[2).

Fig. 2. Sensor Board for Smart Lamps

The Smart Lamps are operated by an application running at the top layer of
our architecture. The sensed values for luminosity are periodically reported to
Uberdust and motion events generated by the PIR sensor are reported on a per-
event basis. The application combines these values to decide when to turned on
and off the lamps to provide better working conditions. To achieve the require-
ment of an energy-saving application when no people are present in the room or
building (based on the readings provide by the PIR sensors), an energy saving
scheme is initialized. At this point only lamps are turned off to conserve energy,
but in the future the target is to extend the installation to control devices like
printers or monitors that operate in stand-by modes while not in use but still
conserve even small amounts on power.

3.2 Smart HVAC

The HVAC controller is a developed in order to substitute the 38 KHz IR con-
trollers used (Toyotomi brand) by an Arduino. For this purpose we developed
a software library which allows us to autonomously control a wide range of
HVAC devies, that are compatible with a specific IR protocol used widely in
this particular area. The library, provides an API which substitutes all functions
supported by a R51L1/BGE remote controller used principally by Toyotomi. Ad-
ditionally, the API provides us an extra function in order to send a raw input
signal, modulated in 38 KHz carrier frequency.

Our library is structured so that it supports scalability by adding new, more
complex functions, or functions compatible with a wider range of HVAC models
even modulated in different carrier frequencies. As an overview of the IR proto-
col, we see the following general characteristics in the majority of the supported
functions:

38 O. Akribopoulos et al.

0 1 2 3 4 5 6 7

Static Header
1’s Complement of Byte 1
Fremier TimerOff Fan Speed
1’s Complement of Byte 3
TimerOff Mode Temperature
1’s Complement of Byte 5

(a) Toyotomi Control payload (b) HVAC control board

Fig. 3. HVAC controller Payload and Arduino Board

1. The useful information consists of 6 bytes which are complementary in pairs
at the level of bits.

2. In most functions, the three non-inverted bytes (1st, 3rd and 5th) contain
coded the whole new state, represented in absolute values.

3. Every single bit of the above 48 ones, is encoded as follows: 1 — 1000 and
0 — 10.

4. A static head and tail piece of information is added to the above signal.

5. In the final input signal, every single bit take 21 cycles of 38 KHz frequency,
i.e. about 553 us.

6. The input signal is modulated with a 38 KHz carrier signal and the final one
drives an IR LED in order to be transmitted to the HVAC unit.

Figure|3(a)| shows how data are structured inside a control message and in Fig-
ure |3(b)| depicts the final version of the control board in its casing.

3.3 Security Sensors

Another important part of the system is the sensors that report the state of
the windows and doors (open/closed). Although the operation of these sensors
is pretty simple and straightforward their operation is important in many other
sub systems. To understand whether windows are open we used the very simple
and widely tested Hall effect sensors used in home alarm systems. This obvi-
ous benefit from this installation is that the infrastructure can be used as a
highly advanced low-cost alarm system, that can facilitate sophisticated notifi-
cation systems. The list of supported notification targets include mobile phones
via SMS, email, prerecorded telephone calls even using technologies like Skype,
desktop notification systems in addition to the common but always effective
sound and visual alarms. A second very important contribution of this applica-
tion is that based on the state of the windows we can disable the operation of

Integrating IoT Technologies in a Multi-office Environment 39

the HVAC units as it is completely environmentally unfriendly, e.g., to use Air
conditioning while windows are open.

3.4 Smart Faucet

This board provides control of a water valve in an integrated method to the
general system designed. It allows controlling the water supply to avoid flooding
or detect possible leakages that may result is loss of water. The board designed
operates in 3 levels. Locally it can control a vale in order to provide water by
a faucet in the bathroom. Also the initial target was to use two valves in order
to provide water in a predefined acceptable temperature but this proved to be
unrealistic due the operation restrictions of the valves, as it was not possible
to control the flow of the water accurately. A second part of the board detects
flooding with a simple circuit that short-circuits submerged in water. If this is
detected then the water supply is stopped to prevent problems with electrical
equipment and possible damage to furniture or the building.

A Sharp GP2YOAO2 infrared distance sensor was used to detect hands placed
under the faucet. The sensor measures the distance of any obstacle within a
range of 5-120cm. Distance is measured via the voltage change on the two ends
of the sensor as a resistor using the analog inputs of the Arduino. Voltage level
is polled using a time interval of some milliseconds and the measurements are
translated to distance values measured in cm.

Calculating the exact distance was not as important as detecting the any
obstructions (e.g., hands) under the faucet is the only case we examine, thus the
sensor’s precision was inadequate. When the distance measured by the sensor,
drops below 35cm, which is the distance between the sensor and the washbasin,
the water valve is activated, letting the user use the faucet.

4 CoAP

The Constrained Application Protocol (CoAP), is a draft by IETF CoRE working
group which deals with Constrained Restful Environments. It provides exactly
the subset of HTTP methods (GET, PUT, POST, DELETE) which is necessary to
offer RESTfull web services in WSNs. We work with the implementation of the
8th version [I2] of CoAP presented in [4]. Messages follow a specific message
format, which is simple enough to be processed and used by both IoT desktop
applications and smart objects.

4.1 Quality of Service

CoAP communication between endpoints is based on a lightweight re-
quest /response model. Message exchange is asynchronous and based on UDP
as reliable and unreliable CoAP. With the unreliable model, endpoints transmit
their messages and there is no way to confirm delivery of each individual mes-
sage. On the reliable model, acknowledgement messages are sent upon delivery,

40 O. Akribopoulos et al.

something similar to TCP, acknowledging the other endpoint for the receipt of
the message. Messages that are not acknowledged, either because of commu-
nication or hardware failure are retransmitted up to 4 times in exponentially
increased time intervals. Responses are by default piggybacked on the acknowl-
edgement messages so that the actual response is part of the acknowledgement.
Piggybacking is also enabled by default to reduce the messages exchanges in half
and thus reduce the traffic inside the network and the total power requirements.
Separate response messages if the applications request it explicitly.

4.2 Notification Mechanism

A common problem when dealing with active sensors is how often we need to
request an updated value for the sensor. We always want to know the latest
value available, but working on WSNs with many constrained devices, would be
catastrophic for the network’s efficiency and the power consumption to request
new values about multiple resources every a few seconds. To solve this problem
CoAP introduces the Observe [8] CoAP extension which defines a mechanism
for clients to register as observers and for servers to push updated resource
representations to interested clients, while still keeping the properties of the
RESTful interface. New values are automatically pushed to the registered clients
while clients can define threshold values in order to be notified only when the
updated values fit their interests. In order to get a fresh value even if it’s below
the threshold, CoAP Observe, periodically pushes the latest values to clients, like
a notification that the device is still functional.

4.3 Discovery of Resources

The discovery of resources offered by a CoAP endpoint is extremely important
in machine-to-machine applications where no humans intervene in the loop and
static interfaces result in fragility. Our CoAP endpoints support the CoRE Link
Format [11] and offer the .well-known/core resource which responds with all
the available resources on the server. This defines how a CoAP endpoint can
inform a Client of its resources, in a format that is recognized from both ends.
Together with the resource URIs several attributes can be included (like Se-
mantic descriptions), offering information about the resource type, the interface
description, the expected size or even a text description. Explicit request of avail-
able resources from one CoAP endpoint is avoided and mainly done during the
auto configuration phase. Client requests for available resources and nodes, are
directly answered by the gateway where all nodes register themselves.

4.4 Sensing and Actuation with CoAP

As mentioned before, we use CoAP to facilitate communication between IoT ap-
plications and smart objects. CoAP offers this functionality through the REST-
ful api available on the Endpoints. Like in the HTTP protocol, CoAP offers

Integrating IoT Technologies in a Multi-office Environment 41

GET,PUT,POST & DELETE methods for interaction with the resources of the end-
point. In our system we use only GET and PUT. GET resources describe sensing
capabilities. Applications can register on them to receive notification for all the
new values that become available. PUT resources, on the other hand are used
to describe the actuator of our system. When actuators receive a put request for
one of their resources the equivalent action is performed.

5 Drupal Web Interface

User interfaces are a key factor for every system. In order to make the au-
tomations of P-Space accessible to end users, we needed a friendly, easy-to-use
environment accessible from everyone everywhere. We developed a web site using
the open source Drupal CMS, because of it’s flexibility, reliability and security.
Using Drupal’s APl combined with our technologies, we developed a package
of modules to view the status and control the actuators of P-Space. The commu-
nication with Uberdust is done using the RESTful interface and JSON formatted
data. Sending commands is limited to certain authorized users only, utilizing the
easily configurable permission system of Drupal. The modules developed are :

Monitor Module: Users and guests can view the location and status of every
node in P-Space, over a bird’s eye view of the building. To print the image,
we used the Scalable Vector Graphics (SVG) format, which can be produced
dynamically from our code and create areas for each node which can then
be easily handled with JavaScript to produce effects on specific events or to
change styles based on the state reported by the sensors.

Control Interface: Users can view the status and control lights in each room
by clicking on switches. On click, via Javascript an HTTP request is sent to
Uberdust using the RESTful interface in order to trigger the suitable action
on the smart lights hardware. Instead of continuously polling the status of
all the lights in the building we use WebSockets to receive notifications of
the changes in the state of the smart lights in real time. Polling is a feature
that has adverse effects on both the utilization of the available bandwidth
as well as on the operation of the core web service.

HVAC Control: A user interface created on top of the actual image of the
remote control of the HVAC units is used to control it via the website.
Settings for the two fully controlled units in the two rooms change using
Drupal’s Form API and then the commands are sent once again to Uberdust
using the RESTful interface.

Finally, each smart object is available on its own page, where we can retrieve
all the associated information. This interface supports a special operation used
mainly for debugging in the first stages of the installation of the system where
users can send explicit binary messages to the smart object.

All modules can be easily configured and extended to include specific support
for any new devices added to Uberdust. All information for the devices like the
position and the capabilities is actually stored using Uberdust and configuration

42 O. Akribopoulos et al.

done via request to the RESTful interface resulting to a completely adaptable
system to all changes that may happen like device failures, repositioning of
devices or extension of the underlying network.

6 Mobile Phone Applications

We develop an alternative approach to monitoring and controling P-Space that
is available for Android®and Windows Phone®. Both implementations act as
clients for Uberdust web services and offer browsing of sensor readings and actu-
ator status based on the privileges of each user. Some of the features offered by
the Uberdust mobile applications are:

— the authentication mechanism where, after launching the application, users
needs to enter their credentials to get access to the functionality provided
by their role.

— Important information about a specific workplace or room, like temperature,
humidity, luminosity, the status of a lights, or the current consumption of
electrical devices (computers, a/c units), etc.

— A notification mechanism for special aspects like security security through
the notifications from motion sensors or sensors on windows and doors.

— Also we can simplify our life by having remote access to control electrical de-
vices such as boilers or a/c units without the need to search for the remotes,
or switches.

The Android application was developed for Android 2.2, API Level 8. Connec-
tion with the web server is accomplished through a RESTful interface by using
JSON formatted data. The application needs a minimal bandwidth to operate
on permanent basis as data for sensors are cached and not retrieved every time
the user launches the application. Also, the user interface uses the external an-
droid library ViewPagerIndicator which allows us to have smooth transitions
by sliding through different views. The GraphView library also added support
for graph of the historical data available on Uberdust to have better view of how
sensor readings change over time in order to identify special events (e.g., power
spikes or sudden temperature changes).

The Windows Phone application was developed for Windows Phone 7.1 using
“Microsoft®Visual Studio Express for Windows Phone” SDK. Its functional-
ity is similar to the Android application and operates using Uberdust RESTful
interface to retrieve data in JSON format.

Both applications offer support for multiple profiles where users can setup
different Uberdust servers to use (e.g., their home and office buildings). Retrieved
information is sorted based on the location of the devices. Users can also go
through a different list based on the functionality each device or room offers.
Especially for actuators authenticated users can send commands to nodes that
are controlling devices like setting the temperature of the a/c unit or switch on
lights or the boiler.

Integrating IoT Technologies in a Multi-office Environment 43

P-Space Overview Page

7 Conclusion

The Internet of Things is a technological revolution that represents the future
of computing and communications while its development depends on dynamic
technical innovation in a number of important fields, and especially in wireless
sensor networks. Connecting sensory networks to the Internet creates endless
opportunities for applications and services, new emerging models of operation.

Currently many researchers are working on designing, developing and eval-
uating new protocols, embedded TP stacks and operating systems for WSNs.
Many ongoing projects are aiming at interconnecting WSNs with the Internet
and establishing programming environments for developing applications.

In this work we presented our efforts in designing smart services for a multi-
office building, developing and deploying hardware extensions for electric and
electronic appliances and integrating their operation with the Web. Our work
shows how IoT devices can be applied to real world scenarios and installations
by using very recent technologies and open standards.

Indeed some methodologies and technologies such as CoAP, RESTful inter-
faces, WebSockets, JSON format are very usuful fo the integration of the soft-
ware systems across the IP-stack with the hardware devices. Furthermore the
Virtual Nodes abstraction offered by Uberdust was very helpful in reducing the
complexity of controlling multiple devices as a single logical device and aggre-
gating readings from multiple sensors and across different time windows. We re-
ported newly-developed Drupal modules that simply implement application logic
and provide human-computer-interaction using Web technologies. Similarly the
smartphone applications exploit the same RESTful interfaces and WebSocket
APIs in order to access the current state of the devices in JSON format. Both
environments offer all the necessary tools to establish communication and ma-
nipulate the data received with minimum programming effort.

However, we believe that our approach was complex and required a big team
for the development of applications exploiting the merged infrastructure. The
current methodologies & technologies available are not enough to have a tremen-
dous impact on the development of Future Internet applications. This is due to
the fact that despite the IP-based integration of the embedded world,

44 O. Akribopoulos et al.

application-level protocols, software and development environments, but also
design and evaluation methodologies in the Internet and in the embedded world
are vastly different and lack integration. An application developer currently still
has to bridge this gap manually; he has to be an expert in both worlds.

There is a lot of future work that needs to be done in this direction so that
devices can be self-configured using semantic descriptions and by minimizing
human intervention. It is important to work towards infrastructures that can
adapt to dynamic changes in the environment as new devices are introduced,
rellocated or removed from the space.

Acknowledgements. This work is partially supported by the European Union
under contract numbers ICT-258885 SPITFIRE.

References

1. Kansal, J.L.A., Nath, S., Zhao, F.: Senseweb: An infrastructure for shared sensing.
In: IEEE MultiMedia, pp. 8-13 (2007)

2. Aberer, K., Hauswirth, M., Salehi, A.: The Global Sensor Networks middleware for
efficient and flexible deployment and interconnection of sensor networks. In: 7th
Int. Middleware Conference (2006)

3. Akribopoulos, O., Amaxilatis, D., Chatzigiannakis, I.: Towards integrating iot de-
vices with the web. In: 7th IEEE Conference on Emerging Technologies & Factory
Automation, ETFA 2012 (2012)

4. Amaxilatis, D., Georgitzikis, V., Giannakopoulos, D., Chatzigiannakis, I.: Employ-
ing internet of things technologies for building automation. In: Conf. on Emerging
Technologies & Factory Automation, ETFA 2012 (2012)

5. Corcho, O., Garcia-Castro, R.: Five challenges for the semantic sensor web. Se-
mantic Web 1(1,2), 121-125 (2010)

6. Dawson-Haggerty, S., Jiang, X., Tolle, G., Ortiz, J., Culler, D.: Smap: a simple
measurement and actuation profile for physical information. In: 8h ACM Conf.
on Embedded Networked Sensor Systems, SenSys 2010, pp. 197-210 (2010)

7. Fette, 1., Melnikov, A.: The websocket protocol. Proposed statndard, IETF (2011)

8. Hartke, K.: Observing Resources in CoAP. Internet-Draft, IETF (2012) (work in
progress)

9. Hayes, P. (ed.): RDF Semantics. W3C Recommendation. World Wide Web Con-
sortium (2004)

10. Kovatsch, M., Mayer, S., Ostermaier, B.: Moving application logic from the
firmware to the cloud: Towards the thin server architecture for the internet of
things. In: 6th Int. Conf. on Innovative Mobile and Internet Services in Ubiquitous
Computing, IMIS 2012 (2012)

11. Shelby, Z.: CoRE Link Format. Internet-Draft, IETF (2011) (work in progress)

12. Shelby, Z., Hartke, K., Bormann, C., Frank, B.: Constrained Application Protocol
(CoAP). Internet-Draft, IETF (2011) (work in progress)

13. SPARQL query language for RDF. Technical report, World Wide Web Consortium
(2008)

	Making P-Space Smart: Integrating IoT Technologies in a Multi-office Environment
	Introduction
	High Level System Architecture
	Integration of Applications
	User Interfaces
	High Level Description of Available IoT Technologies
	Automatic Configuration
	Use Case

	Hardware
	Smart Lamps
	Smart HVAC
	Security Sensors
	Smart Faucet

	CoAP
	Quality of Service
	Notification Mechanism
	Discovery of Resources
	Sensing and Actuation with CoAP

	Drupal Web Interface
	Mobile Phone Applications
	Conclusion
	References

