
Tracommender – Exploiting Continuous

Background Tracking Information
on Smartphones for Location-Based

Recommendations

Yang Wang, Abdulbaki Uzun, Ulrich Bareth, and Axel Küpper

Telekom Innovation Laboratories, TU Berlin, Service-centric Networking
wangyang.tub@gmail.com, abdulbaki.uzun@telekom.de,

ulrich.bareth|axel.kuepper@tu-berlin.de

http://www.snet.tu-berlin.de/

Abstract. In this paper, we propose Tracommender, a context-aware
recommender system, which uses background tracking information from
smartphones to generate location-based recommendations. Based on the
automatically collected data that consist of locations with timestamps,
the dwell time at certain locations can be derived in order to use it as
an implicit rating for a location-based collaborative filtering. We further
introduce two alternative path matching algorithms that utilize continu-
ous location sequences (paths) to compute path patterns between similar
users. In addition, in order to overcome the cold-start problem of rec-
ommender systems, clustering algorithms are used to calculate so-called
Activity Zones - locations taken from an existing database of catego-
rized points of interest. Synthesized movement data has been applied
to perform evaluations on performance, scalability and precision of an
implemented prototype of the proposed recommendation algorithms.

Keywords: location-based services, background tracking, recommenda-
tions, path matching.

1 Introduction

With the increasing number of location-based services, context-aware recom-
mender systems become more and more relevant when recommending content
items, such as products, restaurants or shops. Contextual data (e.g., location,
time of day or weather) is a promising information source to exploit in order
to generate more precise recommendations that do not only fit to a user’s pro-
file and ratings given to those content items by a community, but also on the
contextual situation the user is in.

However, not all kinds of content items are suitable for context-based recom-
mendations. Moreover, the automatic detection of some context parameters (e.g.,
the mood of a user or companions) turns out to be very difficult (or sometimes
impossible) and can only be integrated in the form of manual input, such as a

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 250–263, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

http://www.snet.tu-berlin.de/

Tracommender – Location-Based Recommendations 251

scrollbar where users can adjust the ”mood” of a song [1]. Due to the possibility
of users providing false information, these types of manual input are no reliable
information sources and the scenarios in which those context data is used, seem
not very applicable in real business services. Another aspect is that context is
often treated as a single and static piece of information, it is not considered as
a continuous sequence. However, the former and latter pieces of information in
a context sequence may also be useful in order to determine a user’s intention.

The location information, on the other hand, is the most important context
that fulfills the requirements mentioned above and is therefore very suitable when
creating context-aware location-based recommendations. It can be determined in
an accurate manner utilizing smartphones and positioning methods like Cell ID,
WiFi and GPS [2] making it trustworthy and automatically detectable. Using
background tracking data generated by mobile devices as a reliable, relevant and
constant information source, a history of user paths (location sequences) can be
calculated and used in the recommendation process, which might give a hint on
which locations a user might be interested when taking a certain path. Each
location on a path can also be enriched by context information that is directly
derived by the location information like the location dwell time or weather, in
order to provide much more precise recommendations.

In this paper, we propose Tracommender, a novel context-aware location-
based recommender system that utilizes background tracking information col-
lected by mobile devices via a crowd-sourcing approach in order to provide
location recommendations. The system incorporates a hybrid approach including
a location-based collaborative filtering algorithm, two alternative path matching
methods and an innovative concept of Activity Zones to overcome the cold-start
problem [3].

The remainder of the paper is organized as follows: First, an overview about
related work in the area of context-aware and location-based recommender sys-
tems is presented. Section 3 describes the concept of Tracommender, including
the location-based collaborative filtering method based on location dwell time
frequencies, the two alternative path matching approaches, the innovative con-
cept of Activity Zones for tackling the cold-start problem and the system archi-
tecture. A performance evaluation is done in Section 4, whereas the last section
concludes the paper.

2 Related Work

In a world of information overload, recommender systems filter relevant informa-
tion and provide personalized content item recommendations to users based on
their personal background, preferences and interests. Numerous recommendation
methods were designed over the years to enhance the preciseness of recommen-
dations. Besides the content-based algorithm, collaborative filtering is one of the
most well-known and established recommendation methods [4].

Collaborative filtering uses the previously rated items of a user community as
a basis in order to predict content items to the active user. The user-based col-
laborative filtering approach utilizes the ratings of the active user and the ratings

252 Y. Wang et al.

of other users in order to compute similarities between them. The items of the
similar users are then recommended to the active user. In order to increase the
performance and quality of user-based collaborative recommendations, Sarwar
et al. [5] introduced an item-based collaborative filtering approach. The main
idea of this method is that instead of detecting similar users, the similarity of
items is calculated based on the ratings given by different users. Two items are
considered more similar the more users have rated both of them. After identi-
fying the most similar items, the weighted average of the active user’s ratings
on these items is used to calculate predictions. Similarities between users or
items are measured by using two alternative equations, the Pearson Correlation
Coefficient and the Cosine Similarity measure, which are adopted in Section 3.1.

Traditional recommendation approaches solely focus on recommending items
to users without considering the context the user is in. However, thinking of mo-
bile applications and especially location-based services, the contextual situation
of a user is an essential factor for providing relevant recommendations. Con-
textual information can support recommender systems in three possible phases:
During the preparation phase, the contextual situation serves as conditions for
information filtering, such as in the works of Baltrunas et al., who propose a
context-aware item splitting approach for collaborative filtering [6] and the ”best
context” for music recommendations [1]. In the second phase, context is regarded
as a special item processed and filtered by recommendation approaches, such as
in the paper of Domingues et al., who use contextual information as virtual items
on recommender systems [7]. Finally, during the phase of presenting results, con-
text works as a post-filter to correct inappropriate recommendation results, as
proposed by De Carolis et al. [8].

The location information as the most important context is utilized in many
previous works like CityVoyager [9], TouristGuide [10], Shopper’s Eye [11] or
foursquare.com in order to provide location-based recommendations. But lo-
cation is only regarded as a static piece of information independent from other
context. None of these approaches recognize the spatial and chronological conti-
nuity of the whole context or uses the whole sequence of historical location and
other contextual information to derive habits and dependencies. Here, back-
ground tracking could be of immense use by continuously recording location
information and other context data over time to improve the overall quality of
recommendations.

3 Concept of the Tracommender

In this section, we propose our concept called Tracommender, which is a port-
manteau out of the two words tracker and recommender. The first word tracker
describes that background information, such as location and context data is
continuously being collected and used for recommendations, which is the second
word with a rather obvious meaning.

foursquare.com

Tracommender – Location-Based Recommendations 253

Tracommender uses a hybrid recommendation process including a location-
based collaborative filtering algorithm that determines the similarity of users in
terms of the locations they have visited. In addition, the system provides two
alternative path matching approaches, the adjacency matrix and minimum dis-
tance matching algorithms, which identify path patterns out of historical paths
of the nearest neighbours computed by the location-based collaborative filtering
method and the current path of the user in order to predict future locations
on his current path. The third component of the hybrid approach comprises
the concept of Activity Zones that define areas clustered by geographic regions
offering similar places in high density. The Activity Zones tackle the cold-start
problem of Tracommender when lacking a critical number of path information in
the initial phase in order to be able to generate precise recommendations. Last
but not least, the system architecture used for the implementation is presented.

3.1 Location-Based Collaborative Filtering

Tracommender uses path similarities calculated out of historical paths in order
to predict locations that might be of interest for a user on his current path. Those
historical paths can either be generated by the user himself or by other people.
Taking only the paths of the active user as a basis for recommendations might
produce results that fit to the user’s personal movement patterns. However, the
amount of candidate paths considered in the recommendation process will be
limited. Extending the data basis for recommendation calculation by all paths
of all users available will provide more paths, but will weaken the correlation
between the user’s current path and the historical paths of others.

In order to combine both approaches and determine only paths of those users
relevant to the active user, collaborative filtering is utilized as a preperation for
the path matching algorithms. Generally, in collaborative filtering, users who
rate items similarly are considered as being nearest neighbours. We adopted
this paradigm, so that we can collect all users in a set of neareast neighbours
that share the same location preferences as the active user. The paths of those
neighbours are then used when generating path patterns via the path matching
algorithms.

Collaborative filtering usually works with numerical rating values when cal-
culating recommendations. A high numerical rating value represents a user’s
strong interest towards a certain content item. Locations can also be seen as
content items that can be rated. Therefore, we exploited the users’ dwell time
on specific locations (being a context parameter that is directly derived by the
location information) as implicit and automatic feedback to indicate their per-
sonal interests and preferences for certain locations. If we consider a user’s dwell
time on a single location as an implicit rating given by this user to this location,
we can construct a user-location-dwell-time-frequency matrix similar to a user-
item-rating matrix, which is used within the collaborative filtering algorithm.

Based on the definition of term frequency (TF) [4], which is defined as the
result of dividing the occurrence count of a term in a document by the total
number of terms in the document, we can define the dwell time frequency fu,l of

254 Y. Wang et al.

user u on location l as the result of dividing the sum of dwell times on location l
by the sum of dwell times on all locations belonging to the location set L(l ∈ L),
i.e.,

fu,l =
Sl∑

k∈L Sk
=

∑T2

t=T1
nt,l

∑
k∈L

∑T2

t=T1
nt,k

(1)

where Sk is the sum of dwell times on location k. T1 and T2 denote the starting
and ending time of a given time period; t = {T1, . . . , T2}, on the other hand,
denotes a specified point of time during the given time period. The interval and
unit of the time period can range from seconds to minutes, which depends on
the accuracy of the tracking unit of the system. nt,l is a binary value: nt,l = 1
if and only if user u was at location l at moment t, otherwise nt,l = 0. Equation
(1) indicates that the longer a user has accumulatively stayed at a location
than other locations during a time period, the higher rating the user gives to the
location. Assume a set of users U = {1, . . . ,m} and a location set L = {1, . . . , n}
existing in the database, the user-location-dwell-time-frequency matrix M can
be expressed as:

M =
{
fu,l|u = {1, . . . ,m} and l = {1, . . . , n}} (2)

The similarity of two users a and b can be calculated with the Pearson Correla-
tion Coefficient Similarity or Cosine Similarity measure [4]. In the case of dwell
time frequency, the two similarity equations are adapted and expressed as

sim(a, b) =

∑
l∈L(fa,l − fa)(fb,l − fb)

√∑
l∈L(fa,l − fa)2

√∑
l∈L(fb,l − fb)2

(3)

sim(a, b) = cos(a, b) =
a · b

‖a‖ × ‖b‖ =

∑
l∈L fa,lfb,l

√∑
l∈L f2

a,l

√∑
l∈L f2

b,l

(4)

where fa and fb denote the average dwell time frequency of users a and b on
all locations. Having the similarities computed between each user, the historical
paths of the nearest neighbours can be used in the path matching process.

In comparison to explicit ratings given by users, the dwell time frequency has
several advantages in terms of credibility and density. First, the dwell time fre-
quency is automatically derived from background tracking information making
it a very reliable information source. Secondly, users are not required to rate
locations manually. This also ensures reliability due to the fact that it is not
guaranteed that users will provide true rating values. Furthermore, it supports
the user experience, because users are not asked to give ratings all the time at
each location on their path. In addition, it tackles the sparsity problem [4] of
collaborative filtering, since the automatically calculated dwell time frequency
guarantees a high number of ratings (in comparison to the number of manually
given ratings), which is essential for a recommendation algorithm to work accu-
rately. Finally, the implicitly given feedback reflects factual interests of the users

Tracommender – Location-Based Recommendations 255

rather than a subjective opinion in the form of explicit feedback (user a and b
may like a location equally, but rate it differently). Depending on the time spent
on a location, the frequency of favourite places will have a higher rating than
places temporarily visited by them. However, one drawback of this approach
is that it is not distinguished between places that are really favoured by users
and places where they are ”forced” to spend much time like workplaces. This
problem will be addressed in the near future by integrating semantic information
(e.g., ontologies about location classification) and a mixture of explicit/implicit
feedback into the recommendation process.

The location-based collaborative filtering algorithm enables Tracommender to
provide location recommendations to a user based on the opinions of like-minded
users in the community. Theoretically, this recommendation method can work as
a stand-alone service in the system. Having a database with users, locations and
the ratings given to those locations computed by the dwell time frequency, the
system can provide location recommendations to a user independent from the
current path he is on. However, since Tracommender does not only care about
single locations, but also about sequences of locations, the results provided by the
collaborative filtering algorithm are integrated into the path matching process,
which is described in Subsection 3.2.

3.2 Path Matching Algorithms

The nearest neighbours computed using the location-based collaborative filter-
ing algorithm build the basis for the path matching approaches described in
this section. The adjacency matrix matching and minimum distance matching
algorithms are utilized to find path patterns between the paths of the nearest
neighbours and the current path of the active user. These path patterns help to
predict the movement of the user in order to recommend him locations that he
might like to visit on his path.

Depending on the data model, two different methods can be used. If the loca-
tion sequences are modeled in a list fashion, their similarity can be expressed as
the distance between those two, which is calculated with our minumum distance
implementation. Another way to compute the similarity of location sequences is
by expressing them as paths in adjacency matrices as explained below.

Adjacency Matrix Matching. Given a finite directed graph, an adjacency
matrix is a boolean square matrix that represents the directed edges between
vertices of the graph. The edges Ei,j of a path P can be expressed as 1 when
there is an existing (directed) connection between the vertix i and vertix j and
0 otherwise.

Ei,j =

{
1, (Vi, Vj)

0, (Vi, Vj)
(5)

The directed graphs of the two paths P = {p1, . . . , pm} and Q = {q1, . . . , qn}
are modeled as Gp and Gq. The adjacency matrix of graph Gp can be expressed
as:

256 Y. Wang et al.

A = {ai,j |i, j ∈ P ; ai,j = Ei,j} (6)

where ai,j = 1 when a directed edge (i, j) exists in graph Gp, which is the case
when location i can be reached from location j within path P ; and ai,j = 0
if the directed edge (i, j) does not exist. The adjacency matrix of graph Gq is
defined the same way. If the two paths contain different locations, they have to
be modeled and matched in a collective set of locations S = P ∪Q. Equation 6
can be rewritten as follows:

A = {ai,j |i, j ∈ S; ai,j = Ei,j} (7)

where A is a square matrix of dimension k-by-k and k = |S| is the cardinality
of set S. The exclusive-or matrix D out of adjacency matrix A of path P and
adjacency matrix B of path Q is generated with the logical operation exclusive
disjunction on each pair of counterpart entries of the two adjacency matrices,
i.e.,

D = A⊕B = {di,j |di,j = ai,j ⊕ bi,j} (8)

which represents how many exclusive-or relations the two matrices have in com-
mon. Thus, the similarity between the two paths through adjacency matrix
matching is defined as:

sim(P,Q) = sim(A,B) = 1−
∑

d∈D d
∑

a∈A a+
∑

b∈B b
(9)

The two paths share all their path segments with each other if the similarity
equals one, thus they are said to be structurally the same. The two paths are
independent if the similarity equals zero.

Example: Two paths P : a → b → c → b and Q : b → a → c → b are
shown in Figure 1a, where a, b, c describe locations or vertices on the path with
the grey node as starting point. The adjacency matrices of P and Q and their
exclusive-or matrix are expressed as:

A =

⎛

⎝
0 1 0
0 0 1
0 1 0

⎞

⎠ B =

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ D = A⊕B =

⎛

⎝
0 1 1
1 0 1
0 0 0

⎞

⎠ (10)

Acoording to equation 9, the similarity of the adjacency matrices is

sim(A,B) = 1− 4/6 = 1/3 (11)

Since an adjacency matrix can represent the relations of vertices, it also holds
for a mathematical expression of directed graphs. By comparing two adjacency
matrices, their similarity can be calculated, which expresses how many numbers
of locations two paths have in common in relation to the total number of their
locations. Although sometimes, even if two paths do not have any location in
common, their locations might be geographically close to each other. An exam-
ple are the two paths in Figure 1b, which would have a similarity result of 0

Tracommender – Location-Based Recommendations 257

when computed with adjacency matrix matching, because they share no com-
mon location. But the two paths seem to be quite similar. Therefore, another
path matching method capable of measuring the geographical distance between
paths of different locations is presented in the following.

Minimum Distance Matching. To also express the similarity of nearby paths
that have no locations in common, minimum distance matching selects the near-
est paths from a set of known candidates for an object path by calculating the
sum of the minimum distances. The distance of a point to a candidate path is
defined as the minimal euclidean distance from the point to every point on the
path. In Figure 1b, for example, the points a, b, c, d, e on the object path have
the best similarity to f, g, h, i, j on the candidate path, when the sum of their
minimal euclidean distances is smaller than the sum of other candidate paths. If
the sum of these distances from each point on the object path to the candidate
path is shorter than to other paths, then the candidate path is regarded as the
nearest path to the object path.

(a) Adjacency Matrix (b) Minimum Distance

Fig. 1. Path Matching Algorithm Examples

Two locations p = (x1, y1) and q = (x2, y2), with x1 and x2 as longitude,
y1 and y2 as latitude, when neglecting height and the spherical equation of the
earth’s surface for simplicity and scalability reasons, the distance between the
two locations can be described by the Euclidean distance:

d(p, q) =
√
(x1 − x2)2 + (y1 − y2)2 (12)

Given an object path P = {p1, . . . , pm} and a candidate path Q = {q1, . . . , qn},
for each pi ∈ P there is a set {d(pi, q)| q ∈ Q} resembling the collection of dis-
tances from pi to every point on the path Q. The sum of the minimum distances
from P to Q is defined as

MD(P,Q) =

m∑

i=1

min{d(pi, q)| q ∈ Q}

=

m∑

i=1

min{d(pi, q1), . . . , d(pi, qn)} (13)

where pi ∈ P and min is a function returning the minimum value in a set.

258 Y. Wang et al.

The sum of the minimum distances is inverse to their similarity meaning that
the smaller the sum of minimum distances of two paths are, the more similar
they are. The algorithm can be repeated for several candidate paths to find the
nearest or most similar paths.

While adjacency matrix is stronger related to the structural similarity of two
location paths or sequences, the minimum distance expresses geographical sim-
ilarity or proximity of two graphs.

3.3 Activity Zones

Recommender systems inherently suffer from the cold-start problem [3], which
basically means that no recommendations can be calculated as long as no rele-
vant data exists yet. Therefore, Activity Zones can be created to overcome the
cold-start problem for location-based recommendations by clustering existing
locations for certain categories of interest.

Fig. 2. Shopping Activity Zones in Berlin

Activity Zones are created by applying clustering methods to databases of
locations with the same categories like restaurants, shops or theaters. For this
purpose, several clustering methods have been analyzed. Nonhierarchical meth-
ods are not effective due to the fact that the number of clusters is not known
beforehand. Furthermore, a maximum distance and cluster density has to be
specified to not generate clusters, which are too big or incoherent. Therefore,
the complete linkage or average linkage method has been chosen to create the
desired Activity Zones of Tracommender.

In this way, users’ locations are classified to certain categories and recommen-
dations for other locations of the same category can be made. Figure 2 shows
the resulting clusters of shopping locations in Berlin on Google Maps. Note that
not circles but ellipses are used to more accurately describe the clusters.

3.4 System Architecture

Tracommender’s system architecture contains several primary components as
described in the previous sections working in an offline and an online phase. The

Tracommender – Location-Based Recommendations 259

three different blocks (see Figure 3) reflect the major steps in the recommenda-
tion process. During the Crowd-Sourcing Phase, mainly location data is collected
continuously in a background process on the users’ mobile terminals. Based on a
certain time interval, it is aggregated and sent to the Tracking Sequence Database
where additional context like dwell time at certain locations are extracted during
the Offline Phase. The Location-based Collaborative Filtering algorithm detects
nearest neighbours based on the dwell time frequency of locations, which is then
used in the Path Matching process. In addition, clustering is being performed
in order to create Activity Zones. In the Online Phase, locations of an Activity
Zone are recommended if the system detects that the user is in or near to such
a cluster. Otherwise, locations are recommended based on the Path Matching
algorithms.

Fig. 3. Tracommender - System Architecture

4 Evaluation

The recommendation approach proposed in this paper is evaluated against pre-
cision and performance of the recommendation results computed by the path
matching algorithms based on a critical mass of user, location and path informa-
tion obtained by mobile devices and background tracking information. Since we
were currently not able to run a real field test with a big number of mobile devices
in a crowd-sourcing approach, we created a simulated crowd-sourcing database
including user, location and path information for evaluation and demonstration
of our proof-of-concept.

4.1 Simulated Crowd-Sourcing Data

The simulated crowd-sourcing database that is created in order to evaluate the
recommendation approaches and algorithms proposed in this paper, consists of
50 users, 240 factual locations obtained from Google Maps, and 3837 pieces of
background tracking information generated with our Crowd-sourced Path Simu-
lation Algorithm. This algorithm is designed to create personalized path records.

260 Y. Wang et al.

For this purpose, a number of locations are marked as publicly favourite places
of all users in the user community simulating common location preferences of
a group of users. In another step, other locations are appointed as privately
favourite places of each single user representing personal preferences. The sim-
ulated paths for each user are composed by selecting random locations where
the favourite places (private and public) have a higher probability to occur in
those paths. These randomly created paths are then rearranged according to
their distance to the former point in order to avoid having ”senseless” paths. By
doing so, each point is followed by a relatively close point on the path, which
refers to the nearest destination first scheduling policy.

Using the simulated personalized path patterns created by the Crowd-sourced
Path Simulation Algorithm, the quantity and quality of the nearest neighbours
computed by the location-based collaborative filtering algorithm is increased. A
high number of similar users are measured due to the fact that a lot of users share
publicly favourite places on their path and also several privately favourite places.
Furthermore, through the nearest destination first scheduling policy, paths are
formed regularly, which minimizes the probability of the case that two paths
including similar locations have dissimilar sequences.

There are approximately 1000 paths in the database with different lengths
and with users having different number of paths. These paths build the basis
for the evaluation, which is done by a server-side script computing the precision
and running time of the path matching algorithms.

4.2 Methodology

The following methodology is applied for the evaluation:

1. Perform location-based collaborative filtering, build a nearest neighbour list
for each user.

2. Select a user and let him be the current user.

3. Create a set of candidate paths from the historical paths of the user and his
neighbours.

4. Select one path from the user’s historical path records in the database.

5. Assume the length of this path is n. Take its first n − 1 points and build a
new path with these points. Appoint the new path as the object path.

6. Perform path matching approaches with the object path and the set of can-
didate paths.

7. Compare the recommendation result produced in step 6 with the nth point
on the path processed in step 5. If the result indicates the same functional
category of locations, the recommendation is correct, otherwise it is wrong.

8. Accumulate the number of correct recommendations and the total number.

9. Return to step 4 until all paths have been selected once.

10. Return to step 2 until all users have been selected once.

11. Report the final precision and running time.

Tracommender – Location-Based Recommendations 261

The precision is defined as the result of dividing the number of correct recom-
mendations by the total number of recommendations, i.e.,

precision =
|correct recommendations|

|recommendations| (14)

The hardware and software configuration used during the evaluation is: AMD
Phenom II X2 560 3.20 GHz CPU, 3GB RAM, Microsoft Windows XP Profes-
sional with Service Pack 3, Apache HTTP Server 2.2.17, PHP 5.3.6 and MySQL
5.5.10.

The evaluation function is performed with each path matching approach al-
ternately in five groups of work load including the quantity of 135, 288, 431, 581
and 696 recommendation tasks. The precision and running time of each group
of work load is recorded and illustrated in the form of line charts.

4.3 Results

Figure 4 illustrates the precision of the path matching approaches. AM denotes
adjacency matrix matching algorithm, whereasMD stands forminimum distance
matching. HA is the hybrid approach through which recommendations are the
logical conjunction of the results produced by the two path matching approaches.

Fig. 4. Path Matching Algorithms - Precision Comparison

The chart shows that AM exceeds MD in precision. The reason is that AM is
applied among the paths, which share a majority of path segments (connections
between locations) with each other, whereas MD is performed even among the
paths, which have no shared location. Therefore, the correlation between the
paths of AM is stronger than that of MD. Nevertheless, the performance of the
two approaches is not satisfactory enough when being applied individually. In
addition, it is also found that when the current path is too short, e.g., containing
one or two locations, the AM cannot work, because it needs at least two points

262 Y. Wang et al.

on a path to build matrices and an extra point to make a prediction. MD,
on the other hand, works as usual in that case. Combining both approaches
in one recommendation procedure in a hybrid approach, the precision can be
significantly enhanced and the drawbacks can be overcome, which indicates that
the two approaches complement each other very well. In other words, when AM
does not perform acceptably caused by lacking shared path segments between
two paths, MD could replace it for continuous services, and vice versa.

In Figure 5, the running time of the path matching approaches are presented.

Fig. 5. Path Matching Algorithms - Running Time Comparison

The AM approach also performs better than MD in efficiency, due to the
fact that the AM algorithm has lower time complexity of O(n), while the MD
algorithm with two nested loops has higher time complexity of O(n2), where n
denotes the length of paths. Furthermore, AM measures similarity with logical
operations, whereas MD computes geographical distance with latitudes, longi-
tudes, and trigonometric functions. The running time of the hybrid approach
appears to be lesser than the sum of the time of the two single approaches.
Considering its precision, the hybrid approach can be regarded as an efficient
solution.

The results of testing the recommendation approaches showed that the person-
alized path patterns produced by the Crowd-sourced Path Simulation Algorithm
have enhanced the performance of Tracommender. The precision of the recom-
mendation approaches computed with personalized path patterns expressed a
little superiority over the one computed with random path patterns. Even though
the personalized simulating algorithm can be more optimized, we will focus on
utilizing personal path information from real users in a future evaluation.

5 Conclusion

In this paper, we proposed a location-based recommender system called Trac-
ommender that exploits background tracking data in order to generate location

Tracommender – Location-Based Recommendations 263

recommendations. The evaluation shows the feasibility of the concept and very
promising results regarding precision and performance. However, more evalua-
tion needs to be performed, especially on real world background tracking data
from actual smartphones. In addition, more contextual information can be con-
sidered and classified in order to recognize more complex dependencies for im-
proved recommendations.

References

1. Baltrunas, L., Kaminskas, M., Ricci, F., Rokach, L., Shapira, B., Luke, K.-H.: Best
Usage Context Prediction for Music Tracks. In: Proceedings of the 2nd Workshop
on Context-Aware Recommender Systems, Barcelona, Spain (2010)

2. Bareth, U., Küpper, A.: Energy-Efficient Position Tracking in Proactive Location-
based Services for Smartphone Environments. In: Proceedings of the IEEE 35th
Annual Computer Software and Applications Conference, Munich, Germany, pp.
516–521. IEEE (2011)

3. Lam, X.N., Vu, T., Le, T.D., Duong, A.D.: Addressing Cold-Start Problem in
Recommendation Systems. In: Proceedings of the 2nd International Conference
on Ubiquitous Information Management and Communication, pp. 208–211. ACM,
New York (2008)

4. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems - An
Introduction. Cambridge University Press (2010)

5. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-Based Collaborative Filtering
Recommendation Algorithms. In: Proceedings of the 10th International Conference
on World Wide Web, pp. 285–295. ACM (2001)

6. Baltrunas, L., Ricci, F.: Context-Dependent Items Generation in Collaborative Fil-
tering. In: Proceedings of the Workshop on Context-Aware Recommender Systems,
New York, USA (2009)

7. Domingues, M.A., Jorge, A.M., Soares, C.: Using Contextual Information as Vir-
tual Items on Top-N Recommender Systems. In: Proceedings of the Workshop on
Context-Aware Recommender Systems, New York, USA (2009)

8. De Carolis, B., Mazzotta, I., Novielli, N., Silvestri, V.: Using Common Sense in
Providing Personalized Recommendations in the Tourism Domain. In: Proceedings
of the Workshop on Context-Aware Recommender Systems, New York, USA (2009)

9. Takeuchi, Y., Sugimoto, M.: CityVoyager: An Outdoor Recommendation System
Based on User Location History. In: Ma, J., Jin, H., Yang, L.T., Tsai, J.J.-P. (eds.)
UIC 2006. LNCS, vol. 4159, pp. 625–636. Springer, Heidelberg (2006)

10. Simcock, T., Hillenbrand, S.P., Thomas, B.H.: Developing a Location Based Tourist
Guide Application. In: Proceedings of the Australasian Information Security Work-
shop Conference on ACSW Frontiers 2003, Darlinghurst, Australia, vol. 21, pp.
177–183. Australian Computer Society, Inc. (2003)

11. Fano, A.E.: Shopper’s Eye: Using Location-based Filtering for a Shopping Agent
in the Physical World. In: Proceedings of the 2nd International Conference on
Autonomous Agents, pp. 416–421. ACM, New York (1998)

	Tracommender – Exploiting Continuous Background Tracking Information on Smartphones for Location-Based Recommendations
	Introduction
	Related Work
	Concept of the Tracommender
	Location-Based Collaborative Filtering
	Path Matching Algorithms
	Activity Zones
	System Architecture

	Evaluation
	Simulated Crowd-Sourcing Data
	Methodology
	Results

	Conclusion
	References

