
Adaptive Application Configuration

and Distribution in Mobile Cloudlet Middleware

Tim Verbelen1, Pieter Simoens1,2, Filip De Turck1, and Bart Dhoedt1

1 Ghent University - IBBT, Department of Information Technology
2 Ghent University College, Department INWE

Abstract. Despite recent advances in mobile device capabilities in
terms of CPU power, memory, connectivity, etc, these devices still fall
short to execute complex media rich and data analysis applications.
Therefore, the concept of cloudlets was introduced, where nearby in-
frastructure is used by the mobile user for code offloading. However, the
way this infrastructure is used is often left to the application developer,
leading to a best effort approach in utilizing remote resources. In this
paper we present a middleware approach for such cloudlet environments,
that manages mobile applications on a component level. The middleware
monitors application components in the cloudlet, and optimizes both the
configuration and the deployment of all components in the cloudlet for
the current execution context. We present a prototype implementation
of the middleware platform, and show the effectiveness of our adaptation
strategy using an augmented reality use case.

1 Introduction

Nowadays, mobile computing devices are becoming widespread given the increas-
ing popularity of smartphones. Gartner reports that although worldwide sales
of mobile phones declined by 2% during the first quarter of 2012, smartphone
sales increased by 44.7% [4]. People no longer only use their mobile device for
telephony, but also for a myriad of other mobile applications offered, such as
location based services, multimedia applications, games and many more.

Despite many advances in technology, mobile devices will always be resource
poor, as restrictions on weight, size, battery life, and heat dissipation impose
limitations on computational resources and make mobile devices more resource
constrained than their non-mobile counterparts [13]. Therefore, mobile devices
still fall short to execute many media rich and data analysis applications that
require heavy computation, and often also have (near) real-time constraints such
as augmented reality (AR).

To address the resource limitations of mobile devices, cloud computing can
be leveraged to offload tasks to the infrastructure of public cloud providers [5].
However, Hassan et al. [7] show that cloud computing is not a silver bullet, and
is outperformed by outsourcing to nearby residential computers. Depending on
the use case, outsourcing to the cloud can even be slower than local execution on
the mobile device due to limited bandwidth and high WAN latencies. Therefore,

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 178–191, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



Adaptive Distribution and Configuration for Cloudlets 179

Satyanarayanan [13] introduced the concept of VM based cloudlets: trusted,
resource rich computers in the near vicinity of the mobile user (e.g. near or co-
located with the wireless access point), on which virtual machines (VMs) are
instantiated for remote execution.

Instead of adopting virtual machines as the unit of deployment, we choose
a more fine grained approach where applications are managed on a component
level [16]. This approach offers a number of advantages. First, the component
management middleware allows for a more fine grained optimization than an “all
or nothing” approach using VMs. Second, starting and migrating a component is
an order of magnitude faster than starting and provisioning a virtual machine.
Third, resources are managed by the middleware, which allows for dynamic
discovery of resources in the network, that can join or leave the cloudlet at
runtime. Finally, the middleware can optimize the component distribution and
configuration for all users involved in the cloudlet, and optimally coordinate the
allocation of resources that should be shared by multiple end users.

Adopting a fine-grained, component level approach however poses a number
of issues. In addition to deciding on where to deploy, components should also be
configured to run optimally on the available resources. This typically involves
setting configuration parameters of components, such that the application is
perceived to run at good quality. To achieve this, components can be specified
to gracefully degrade when executed on low-end hardware and to perform better
when they can exploit additional resources. When aiming for optimal application
quality, constraints concerning total CPU- and network load should be satisfied,
as well as timing constraints defined by the application developer. The problem
at hand is therefore to solve the deployment and configuration problem, subject
to both infrastructure and application constraints.

In this paper we present a component based middleware architecture, that
configures and distributes application components at runtime. We propose a
model driven middleware decision algorithm that optimizes both the application
configuration and distribution, taking into account the network connectivity,
the available resources and application constraints imposed by the application
developer. To show the effectiveness of our approach, we use a mobile augmented
reality application.

The remainder of this paper is structured as follows. In the next section, we
discuss related work in the domain of code offloading. Section 3 describes in
detail our cloudlet middleware architecture. In Section 4 a mathematical model
is presented for the infrastructure, the application behavior and the application
constraints. A heuristic algorithm is proposed to search for the global optimum.
The algorithm is then evaluated in Section 5 using a mobile augmented reality
application. Finally we conclude this paper in Section 6 and discuss future work.

2 Related Work

Offloading computation from mobile devices to remote resources has been a
research topic for over a decade [1]. Several systems exist, offloading either at
class, method, component or virtual machine level.



180 T. Verbelen et al.

Ou et al. [12] present an adaptive offloading framework for offloading Java
classes, in combination with a (k+1) partitioning algorithm. The fine granularity
of class offloading however requires extensive monitoring and causes significant
overhead.

Other systems use methods as units to outsource, such as the Scavenger cyber
foraging system [10], which outsources Python methods. A dual-profile scheduler
is used, weighting tasks according to their parameter input sizes and run time.
MAUI [3] outsources method calls on the Microsoft .Net runtime environment.
This platform generates a program partitioning by formulating and solving an
integer linear programming problem to maximize energy savings.

A more coarse grained approach is to outsource software components. Zhang
et al. [17] offloads platform independent software components – called weblets –
to the cloud using a Bayesian learning scheduler. Giurgiu et al. [5] and Verbelen
et al. [15] use OSGi components as units to outsource. To distribute these com-
ponents, a graph model of the software is built and graph cutting algorithms are
used to calculate the most appropriate deployment.

Goyal et al. [6] propose the use of virtualization on the infrastructure for re-
mote execution. Here a client can request a virtual machine (VM) with specific
resource guarantees to offload services to. Su et al. present Slingshot [14], where
the VMs are co-located with the wireless access point to overcome the WAN
latency. Chun et al. present CloneCloud [2], where virtualized clones of the mo-
bile device are executed in the cloud. Different binaries of the application are
generated in an off-line profiling stage, with special VM instructions added at
migration points for selected methods. At runtime a clone VM is instantiated
at the server side, and the application transparently switches between execution
at the device or at the clone.

Satyanarayanan et al. [13] propose the concept a of cloudlet: a trusted,
resource-rich computer or a cluster of computers well connected to the Internet
and available for use by nearby mobile devices. Cloudlets offer their resources to
mobile devices by dynamic VM synthesis, where small VM overlays are sent to
the cloudlet from which a complete VM is created.

All these systems aim to optimize application execution solely by offloading.
In this paper we combine the offloading problem with dynamic configuration
adaptation, which allows the application to gracefully degrade when no or insuf-
ficient remote resources are available. All these systems also tackle the case of
one mobile device offloading to one or more remote devices. In this contribution,
we state a general optimization problem that also takes into account multiple
mobile users sharing the same network and CPU resources.

3 Cloudlet Middleware

We envision the cloudlet architecture as shown in Figure 1, with three layers:
the component level, the node level and the cloudlet level.

A component is the unit of deployment and is specified by its providing and re-
quired interfaces. Components are managed by an Execution Environment (EE),



Adaptive Distribution and Configuration for Cloudlets 181

Execution Environment

Operating System

Node
Agent

NA
Cloudlet
Agent

NA

EE

EE
OS

OS

C1 C2 C3

C4 C5

Fig. 1. The application components are distributed among nodes in the cloudlet, con-
sisting of a mobile phone, a laptop and a desktop computer. All components are man-
aged and monitored by an Execution Environment (EE). Different EEs on a node are
managed by a Node Agent (NA), that in turn communicate with the Cloudlet Agent
(CA).

that can start and stop components, resolve component dependencies, expose
provided interfaces etc. To support distributed execution, dependencies can be
resolved with other (remote) Execution Environments. In that case, proxies and
stubs are generated and the components can communicate by remote procedure
calls (RPCs). Components can also define performance constraints (e.g. the max-
imum execution time of a method), and expose configuration parameters to the
EE. By monitoring the resource usage of each component, the EE can assess
the behavior and the performance of the application, and detect violations of
the imposed performance constraints.

Multiple EEs can run on top of an operating system (OS), which in turn can
run on both virtualized or real hardware. The (possibly virtualized) hardware
together with the installed OS is called a node, and is managed by a Node
Agent (NA). The Node Agent manages all the EEs running on the OS, and
can also start or stop new Execution Environments, for example for sandboxing
components. The NA also monitors the resource usage of the node as a whole,
and has info about the (maybe virtualized) hardware it runs on (e.g. the number
of processing cores, processing speed, etc.).

Multiple nodes that are in the physical proximity of each other (i.e. low la-
tency) form a cloudlet. The cloudlet is managed by a Cloudlet Agent (CA), that
communicates with all underlying Node Agents. Nodes can dynamically join or
leave the cloudlet, and are discovered using a service discovery protocol. Within
one cloudlet, the node with the most resources is chosen to host the Cloudlet
Agent.

The Cloudlet Agent has a global overview of all application components run-
ning on the different EEs, and contains the decision algorithm to optimize the
deployment and configuration of all components in the cloudlet. This decision
algorithm is triggered when an event occurs in the cloudlet, e.g. when a new
device joins the cloudlet, when an EE detects a constraint violation, etc.



182 T. Verbelen et al.

4 Decision Algorithm

We first present mathematical application and infrastructure models that cap-
ture all monitor information and are used to define constraints and an objective
function to optimize. Because the solution space is too large to calculate the
absolute optimum in a timely manner, we also present a heuristic to calculate a
local optimum fast.

4.1 Application Model

An application consists of a number of components, that can offer a number of
methods as service interface. An example application consisting of five compo-
nents is shown in Figure 2. The arrows denote call dependencies, for example
component C1 calls method m1 from component C2, which on its turn calls
method m3 and method m4 of component C3. However, to take a decision on
how to deploy the components, more information is needed on the actual control
flow of the application.

m1

m2
m3

m4

m5m6

C1 C2 C3

C4C5

Fig. 2. An example component based application. Each component offers a number of
methods in a service interface. Components communicate with each other by calling
these service methods.

To capture the actual control flow of the application, we use sequence diagrams
for all the scenarios of the application. For example, the sequence diagrams of
the application presented in Figure 2 are shown on Figure 3.

C1 C2 C3
m2()

m4()

alt m3()[condition1]

[condition2]

(a)

C5 C2 C4
m2()

m6()

m5()

loop

(b)

Fig. 3. The actual behavior of the application is captured in UML sequence diagrams



Adaptive Distribution and Configuration for Cloudlets 183

However, the sequence diagrams depicted in Figure 3 still fall short to describe
the application behavior in sufficient detail. For example, in Figure 3(a) the total
execution time before the call of method m2 by component C5 returns, depends
on the number of times the loop is executed, and in Figure 3(b) the execution
depends on the conditional path taken.

C1 C2 C3
m2()

m3()

[condition1]

(a)

C1 C2 C3
m2()

m4()

[condition2]

(b)

C5 C2 C4
m2()

m6()

m5()
#calls = N

#calls = N

(c)

Fig. 4. The two UML sequence diagrams shown in Figure 3 are split up in 3 sequences.
The loop is replaced by an annotation how many times each method is called within
the sequence, and conditional sequences are split up in a separate sequence for each
condition.

Therefore, sequences are represented as shown in Figure 4. To model the loop,
the method calls in a sequence are annotated with the number of times they are
called within the sequence as shown in Figure 4(a). The conditional sequence
in Figure 3(b) is split up in multiple sequences (Fig. 4(b) and Fig. 4(c)), each
representing one conditional path. To capture the overall application behavior,
we also keep track of the number of times each sequence is called per time unit.

More formally, let C and M represent the set of application components and
the set of public methods offered by all components. A sequence s ∈ S(C,M)
represents a sequence of calls of methods m ∈ M between application compo-
nents ci, cj ∈ C. mscicj denotes a call to method m of component cj in sequence
s by component ci. To further define the application behavior #callss is the
number of times sequence s is executed per time unit, and #callsmscicj

is the

number of times method call mscicj is executed in sequence s.
Finally, for each call mscicj we also track the size of the arguments of the

method Amscicj
, as well as the size of the return value Rmscicj

and the relative

CPU load Loadmscicj
of the method call. The argument size, return size and CPU

load of a method callmscicj are to be expressed as a function of the configuration
parameters, which can be given by the developer, or can be estimated from
monitoring information.



184 T. Verbelen et al.

4.2 Infrastructure Model

The cloudlet consists of a number of interconnected devices d ∈ D. Each device
processor has a rate at which load can be processed CPUspeedd and a number
of cores #CPUcoresd.

The devices are connected by a (wireless) network, that is characterized by
its bandwidth BW and latency Lat. The bandwidth denotes both the capacity
(maximum number of bytes that can be sent per time unit) as the speed (the
rate at which bytes are sent) of the network. The latency is the round trip delay
of the network.

4.3 Constraints

A number of constraints are defined that restrict the number of allowed deploy-
ments and configurations. The network is limited in capacity by the maximum
number of bytes that can be sent per time unit, and also the devices have a max-
imum load that can be processed per time unit. In addition to the constraints
imposed by the infrastructure capabilities, the application developer can also
define constraints on the execution time of methods, for example restricting the
maximum execution time of a method.

Let Xid be defined as

Xid =

{
1 if component ci is deployed on device d
0 otherwise

and hij = 1 −∑
dXid ×Xjd, meaning that hij equals 1 when ci and cj are

deployed on a different device.
The bandwidth used (the number of bytes sent over the network per time

unit) should be less than BW or

bandwidth =
∑
s

∑
m

∑
i

∑
j

hij × (Amscicj
+Rmscicj

)×#callsmscicj
×#callss

≤ BW

We assume that all methods called in the same sequence run on the same
thread, and thus the load generated by a sequence on one device loadsd should
not exceed the maximum load that can be processed per time unit by one core
or thus ∀d :

loadsd =
∑
m

∑
i

∑
j

Xjd × Loadmscicj
×#callsmscicj

×#callss

≤ CPUspeedd



Adaptive Distribution and Configuration for Cloudlets 185

Also, for each device the maximum load should not exceed the maximum load
that can be processed per time unit on the whole device or ∀d :

loadd =
∑
s

loadsd

≤ CPUspeedd ×#CPUcoresd

Note that this is only an approximation of the maximum load of the device,
as this also depends on the internal thread scheduling. However, we employ this
constraint for simplicity, and because this already gives sufficient results.

Finally for each constrained method m the execution time of a method call
Tmscicj

should be lower than the imposed threshold or ∀s, ci :

Tmscicj
= (

∑
d

Xjd × Loadmscicj
× 1

CPUspeedd
)

+hij × ((Amscicj
+Rmscicj

)× 1

BW
+ Lat)

+
∑

m∈children(mscicj
)

Tmc

≤ thresholdm

4.4 Optimization Objective

The optimization objective is to maximize the utility of all components, where
the utility function denotes the quality of the end user as a function of the
configuration parameters:

max
∑
j

utilitycj(config params)

This utility function can be provided by the application developer. In this
paper, we use the load generated by all methods of the component as utility
measure, assuming that more work done by the component results in a better
quality or ∀cj :

utilitycj(config params) =
∑
s

∑
m

∑
i

Loadmscicj

However, also another utility function could be used, for example one could
define an utility function for minimizing the energy usage, when the devices
energy characteristics are known (i.e. energy usage per CPU load, energy usage
per byte received/sent, etc.).



186 T. Verbelen et al.

4.5 Optimization Algorithm

To find the optimal configuration and deployment, the goal is to find an assign-
ment of each component to a device, and a value for each configuration parameter
that optimizes the utility function, while adhering to all imposed constraints. In
the situation of d devices, c components, p parameters and vp possible values for
parameter p, the number of possible solutions is dc ×∏

p vp. Therefore, a brute
force search for the optimum is inappropriate for use at runtime due to the
long calculation time. To find a valid (although possibly suboptimal) solution in
acceptable time, we use the heuristic explained in pseudocode in algorithm 1.

The algorithm is inspired by the KL graph partitioning algorithm [8], and
consists of two loops. The outer loop continues until no better solution is found.
The inner loop calculates a number of possible “moves” in solution space. A
possible move is an increase or decrease of a configuration parameter value, or
a migration of a component to another device. For all possible moves, an objec-
tive function is evaluated, and the gain is calculated as the difference with the
objective of the current best solution. Subsequently, the move with the highest
gain is performed and a new solution is found. The performed move is kept in
an ExploredMoves list, that ensures that this move is not repeated later on in
the loop.

Algorithm 1. Configuration and deployment decision algorithm

CurrentSolution← StartSolution
BestSolution← StartSolution
repeat

ExploredMoves← InitialMoves
repeat

Calculate possible moves K such that ∀k ∈ K : k �∈ ExploredMoves
Calculate objective gain g, ∀k ∈ K
Perform move kbest with maximum gain g to get NewSolution
CurrentSolution← NewSolution
Add kbest to ExploredMoves
if objective(BestSolution) < objective(CurrentSolution) then

BestSolution← CurrentSolution
end if

until no more moves possible
until no better solution found
return BestSolution

The objective function to calculate the gain is the following:

objective = W1(
∑

j

utilitycj (config params)) +W2(
bandwidth−BW

BW
)

+W3(
∑

d

loadsd − CPUspeedd
CPUspeedd

) +
∑

constrainted m

W4(
Tmscicj

− thresholdm

thresholdm
)



Adaptive Distribution and Configuration for Cloudlets 187

where the functions Wi(x) are defined as:

Wi(x) =

{
wi × x if x < 0

0 otherwise

Thus, the objective function maximizes the utility, but adds in penalty factors
weighted by wi when the constraints are not met.

Note that also moves with a negative gain are performed when no better
moves are found. This enables the heuristic to escape from local maxima. At
the start of the inner loop, the ExploredMoves list is also initialized with all
moves that lead to the current solution (InitialMoves), in order to prevent the
algorithm to get stuck in the current solution when a local optimum is found.

5 Experimental Results

5.1 AR Use Case

As a use case, we present an augmented reality application featuring markerless
tracking as described by Klein et al. [9], combined with an object recognition
algorithm presented in [11]. The application is shown in Figure 5. In the middle
a greyscale video frame is shown with the tracked feature points, from which
the camera position is estimated. The left part shows the resulting overlay with
a 3D object, and a white border around the recognized book. On the right two
mobile devices running the application are shown, forming a cloudlet with a
laptop connected via WiFi.

Fig. 5. The augmented reality application tracks feature points in the video frames
(middle) to enable the overlay of 3D objects (left). Multiple mobile devices can run the
same application while offloading components to a laptop in the cloudlet (right).

A component based implementation of this application was realized, and the
three sequences shown in Figure 6 were identified. The first sequence (Fig. 6(a))
shows the tracking and rendering thread: the Video component periodically
fetches a camera frame from the hardware, which is processed by the Tracker
component. The tracker estimates the current camera position from tracked fea-
ture points, which is used by the Renderer to render the correct overlay. From



188 T. Verbelen et al.

time to time the Tracker sends a video frame to the Mapper for map generation
and refinement, which is shown in the second sequence (Fig. 6(b)) By match-
ing 2D features in a sparse set of so called keyframes, the Mapper can estimate
their 3D location in the scene and generate a 3D map of feature points. Finally,
the keyframes are also analyzed for SIFT features, which are more complex to
calculate, but can be used for object recognition by matching them against a
database of SIFT features of known objects. This way objects can be recognized
and localized in the map, which process is shown in third sequence (Fig. 6(c)).

Video Tracker Renderer
processFrame()

render()

(a)

Tracker Mapper
addKeyframe()

(b)

Mapper ObjectRec
Feature
Detector

searchObjects()
searchFeatures()

Feature
Matcher

matchFeatures()

(c)

Fig. 6. The augmented reality application consists of three sequences. In (a) the track-
ing and rendering sequence is shown, which processes the video frames. The map re-
finement sequence is shown in (b), and (c) depicts the object recognition sequence.

5.2 Results

We evaluated the AR use case on two mobile devices, forming a cloudlet together
with a laptop connected via WiFi. The laptop is equipped with an Intel Core 2
Duo CPU clocked at 2.26GHz. As mobile devices we use a HTC Desire, with a
single core Qualcomm 1 GHz Scorpion CPU, and an LG Optimus 2x powered
by a dual core Nvidia Tegra 2 CPU, also clocked at 1GHz.

Two crucial configuration parameters affecting the application quality were
identified: the camera resolution and the number of tracked features. Both de-
vices support two resolutions: 800x480 and 400x240. The number of features to
track affects the processing time of a frame by the Tracker (which is crucial to
achieve an acceptable frame rate). Typical values for this parameter are 1000,
950, ..., 200. The more features tracked, the more robust the tracking, but the
longer the processing time.

The monitored execution times of the tracker and object recognition sequences
for different configurations are shown in Figure 7. Figure 7(a) shows that the



Adaptive Distribution and Configuration for Cloudlets 189

time to process a frame increases linearly with the number of feature points
tracked. It also shows that the LG Optimus is 2 to 2.5 times faster than the
HTC Desire. Figure 7(b) shows the processing times for object recognition, and
again the Optimus is 2 to 3 times faster than the Desire, but the only acceptable
processing times are achieved with the laptop, which is about 10 times faster
than the Optimus. Therefore we set the relative CPUspeed parameter as 0.4, 1
and 10 for the Desire, Optimus and laptop respectively.

(a) (b)

Fig. 7. Monitored execution times of the tracker (a) and object recognition (b) se-
quences, for different configurations

From the monitoring information we can set values for Loadmscicj
, Amscicj

,

Rmscicj
for each method call. In this case each method call is executed only once

in the sequence (#callsmscicj
= 1). Every five seconds one frame is added to

the map and searched for objects (#callss = 0.2). For the tracker sequence, the
developer wants a minimal frame rate of 15 frames per second (#callss = 15),
meaning that a frame should be processed within 60ms, and objects should be
recognized within 3 seconds. The devices are connected using a WiFi network of
10 Mbps and a latency of 1 ms.

Using this information, we can now calculate the optimal deployment and
configuration. The Mapper, ObjectRecognizer, FeatureDetector and Feature-
Matcher components are offloaded to the laptop. The Tracker components run
on the mobile device, because of the limited bandwidth. Depending on the CPU
capacity, the configuration is adapted to achieve the required frame rate. For
the HTC Desire images are captured in 400x240 resolution and only 250 fea-
ture points are tracked, the Optimus captures frames in 800x480 resolution and
tracks 500 points, as could be expected from Figure 7(a). The heuristic finds
this result in 400ms, while a brute force implementation takes 16 minutes on the
same hardware.

Figure 8 shows how the maximum achieved utility of the best solution varies
as a function of the relative CPUspeed of the device. The sudden increase around



190 T. Verbelen et al.

Fig. 8. The utility of the best possible configuration and deployment as a function of
the devices CPUspeed

0.5 indicates the minimal CPUspeed needed to process higher resolution frames.
The small increments represent increases in the number of feature points tracked.

6 Conclusion

In this paper we present a cloudlet middleware architecture, that manages ap-
plication on a component level. The middleware can both adapt the deployment
and the configuration of the components at runtime, in order to optimize the of-
fered quality of experience to the end user. We propose a decision algorithm that
optimizes the application configuration and distribution, taking into account the
network connectivity, the available resources and application constraints imposed
by the application developer. Experimental results for a mobile augmented re-
ality application show that the algorithm is indeed able to calculate the optimal
solution, at a fraction of the time of a brute force implementation. Future work
consists of further evaluating the quality of the heuristic, as well as integrating
the algorithm in a full implementation of the cloudlet middleware.

Acknowledgment. Tim Verbelen is funded by Ph.D grant of the Fund for
Scientific Research, Flanders (FWO-V).

References

1. Balan, R., Flinn, J., Satyanarayanan, M., Sinnamohideen, S., Yang, H.: The case
for cyber foraging. In: EW 10: Proc. of the 10th Workshop on ACM SIGOPS
European Workshop, pp. 87–92 (2002)

2. Chun, B., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execution
between mobile device and cloud. In: Proc. of the Sixth Conference on Computer
Systems, EuroSys 2011, pp. 301–314 (2011)

3. Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Chandra, R.,
Bahl, P.: Maui: making smartphones last longer with code offload. In: Proc. of
the 8th International Conference on Mobile Systems, Applications, and Services,
MobiSys 2010, pp. 49–62 (2010)



Adaptive Distribution and Configuration for Cloudlets 191

4. Gartner Group. 2012 press releases,
http://www.gartner.com/it/page.jsp?id=2017015

5. Giurgiu, I., Riva, O., Juric, D., Krivulev, I., Alonso, G.: Calling the Cloud: Enabling
Mobile Phones as Interfaces to Cloud Applications. In: Bacon, J.M., Cooper, B.F.
(eds.) Middleware 2009. LNCS, vol. 5896, pp. 83–102. Springer, Heidelberg (2009)

6. Goyal, S., Carter, J.: A lightweight secure cyber foraging infrastructure for
resource-constrained devices. In: WMCSA 2004: Proc. of the Sixth IEEE Workshop
on Mobile Computing Systems and Applications, pp. 186–195 (2004)

7. Hassan, M.A., Chen, S.: An Investigation of Different Computing Sources for Mo-
bile Application Outsourcing on the Road. In: Venkatasubramanian, N., Getov,
V., Steglich, S. (eds.) Mobilware 2011. LNICST, vol. 93, pp. 153–166. Springer,
Heidelberg (2012)

8. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal 49(2), 291–307 (1970)

9. Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In:
Proc. of the 6th IEEE and ACM International Symposium on Mixed and Aug-
mented Reality, ISMAR 2007, pp. 1–10 (2007)

10. Kristensen, M.D.: Scavenger: Transparent development of efficient cyber foraging
applications. In: 2010 IEEE International Conference on Pervasive Computing and
Communications (PerCom), pp. 217–226 (2010)

11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vision 60(2), 91–110 (2004)

12. Ou, S., Yang, K., Zhang, J.: An effective offloading middleware for pervasive ser-
vices on mobile devices. Pervasive and Mobile Computing 3(4), 362–385 (2007)

13. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for vm-based
cloudlets in mobile computing. IEEE Pervasive Computing 8(4), 14–23 (2009)

14. Su, Y., Flinn, J.: Slingshot: deploying stateful services in wireless hotspots. In:
MobiSys 2005: Proc. of the 3rd International Conference on Mobile Systems, Ap-
plications, and Services, pp. 79–92 (2005)

15. Verbelen, T., Hens, R., Stevens, T., De Turck, F., Dhoedt, B.: Adaptive Online De-
ployment for Resource Constrained Mobile Smart Clients. In: Cai, Y., Magedanz,
T., Li, M., Xia, J., Giannelli, C. (eds.) Mobilware 2010. LNICST, vol. 48, pp.
115–128. Springer, Heidelberg (2010)

16. Verbelen, T., Simoens, P., De Turck, F., Dhoedt, B.: Cloudlets: Bringing the cloud
to the mobile user. In: Proc. of the 3rd ACM Workshop on Mobile Cloud Comput-
ing & Services, MCS 2012 (2012)

17. Zhang, X., Jeong, S., Kunjithapatham, A., Gibbs, S.: Towards an Elastic Applica-
tion Model for Augmenting Computing Capabilities of Mobile Platforms. In: Cai,
Y., Magedanz, T., Li, M., Xia, J., Giannelli, C. (eds.) Mobilware 2010. LNICST,
vol. 48, pp. 161–174. Springer, Heidelberg (2010)

http://www.gartner.com/it/page.jsp?id=2017015

	Adaptive Application Configuration and Distribution in Mobile Cloudlet Middleware
	Introduction
	Related Work
	Cloudlet Middleware
	Decision Algorithm
	Application Model
	Infrastructure Model
	Constraints
	Optimization Objective
	Optimization Algorithm

	Experimental Results
	AR Use Case
	Results

	Conclusion
	References




