
A Common Platform API for Android

Arno Puder

San Francisco State University
Computer Science Department

1600 Holloway Avenue
San Francisco, CA 94132

arno@sfsu.edu

Abstract. Cross-platform frameworks for mobile devices promise to fa-
cilitate the porting effort of applications between different smartphones.
Our approach is to cross-compile Android applications to other plat-
forms such as iOS or Windows Phone 7. Doing so requires to refactor
the Android source code base in a platform-dependent and platform-
independent part separated by a Common Platform API. This paper
discusses the cross-compiling of Java-based Android applications and
the design and implementation of the Common Platform API.

1 Introduction

Smartphones have become the major driving force in the mobile market. Cur-
rently iOS and Android dominate the scene with Microsoft’s Windows Phone
7 (WP7) and HTML5-based platforms such as Tizen or Firefox OS vying for
market share. From a developers perspective it is desirable to be present in as
many app stores as possible to increase dissemination and thereby revenue. How-
ever, making an application available on different platforms requires significant
efforts. This has to do with the fact that smartphone platforms have developed
into technology silos where cross-platform approaches are made difficult through
technical and legal means. Apple in particular has tried in the past to ban other
execution platforms other than its own on iOS. Making an application available
on different platforms necessitates to reimplement it in a different programming
languages. Android uses Java, iOS uses Objective-C while WP7 requires either
C# or VisualBasic [6,5,2] (see Figure 1).

To some extend Android is the most liberal smartphone platform, not only
because its core code base is released under an Open Source license [1]. Android
was designed to run on a variety of devices with different hardware capabilities.
An Android developer is expected to write applications in such a way that they
adapt to specific capabilities (such as different screen resolutions). For this rea-
son we have chosen Android as the canonical platform for our cross-platform
framework, called XMLVM [9]. Android applications can be cross-compiled to
other platforms with the help of our byte-code level cross-compiler. The cross-
compiled application should have the look-and-feel of the target platform. E.g.,
an Android button should be mapped to the native button of the respective
platform.

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 164–177, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



A Common Platform API for Android 165

Fig. 1. Technology silos

In previous work we have shown how to cross-compile from Android to iOS
[7]. However, the necessary changes to the Android code base were tightly linked
to iOS. Targeting another platform such as WP7 would have required to redo
this work leading to two independent variations of the Android library that
need to be maintained separately. Instead, we decided to refactor the Android
code base in such a way that platform-dependent parts are clearly separated
from the platform-independent parts by what we call the Common Platform
API (CP-API). Ultimately, the refactored code base increases reusability and
maintainability of our Android compatibility library.

This paper is organized as follows: Section 2 discusses the limits to cross-
platform approaches and Section 3 presents various cross-platform frameworks.
Section 4 introduces our cross-platform approach and more specifically the design
of the CP-API. In Section 5 we briefly discuss our prototype implementation
before providing conclusions and an outlook in Section 6.

2 Limits to Cross-Platform Frameworks

Cross-platform frameworks are hampered by legal and technical hurdles. Legal
limitations are often tied to UI style guidelines. E.g., Apple will reject applica-
tions that have an “Exit” button to terminate the application. In iOS the only
permitted way to exit an application is via the device’s home button. Apple also
permits the use of dynamic execution technology such as virtual machines for
the purpose of loading additional code from a server.

In this section we focus on the limits of cross-platform approaches from a
technical perspective. Table 1 gives an overview of some key differences between
Android, iOS, andWP7 both from the hardware and software perspective. Devel-
opers for Android and WP7 devices can expect the presence of certain hardware
buttons such as menu or search buttons. If the application is to be ported to a
platform without those buttons (e.g., iOS), the same functionality needs to be
incorporated into the UI in a different way. Likewise there exist differences in the
physical screen resolutions between the platforms. Android makes no assump-
tion on the screen resolution while iOS and WP7 being closed systems prescribe
a limited number of resolutions.



166 A. Puder

Table 1. Comparison between Android, iOS, and WP7

Android iOS WP7

Buttons Back, Menu None Back, Search

Screen Res Flexible Limited Limited

Language Java Objective-C C#, VisualBasic

Memory Mgt Garbage Collection Reference Counting Garbage Collection

Layout Declarative Absolute Declarative

Intents Yes No No

From the software side, each platform uses a different programming language.
Cross-compiling between Turing complete languages is possible, so this does not
present an obstacle [3]. However, iOS uses reference counting for memory man-
agement, so any cross-platform framework would need to address this. When it
comes to layouting a UI, Android and WP7 support declarative UI descriptions
while iOS expects the programmer to place every widget in terms of absolute
coordinates. Android introduced a powerful late binding mechanism called in-
tents that has even been adopted in other frameworks (e.g., W3C’s WebIntents
[10]). However, iOS and WP7 do not offer a comparable feature. Here again the
question arises how missing functionality of one platform can be compensated
on another.

The list presented in Table 1 is by no means exhaustive. There are numerous
other differences between platforms. E.g., in Android, the label inside a button
can be placed anywhere within the borders of the button. iOS and WP only allow
the label to centered. The implication of these differences is that cross-platform
frameworks will need to make compromises. Either an application will need to
settle for a lowest common denominator in terms of functionality, or extra efforts
must be made to overcome platform differences.

While it would be possible to provide a custom widget under iOS that looks
like a button and that can place its label in the top-right corner, doing so is not
advisable since it would break that platforms UI idioms. The challenge of cross-
platform frameworks is to provide some best practices that make it easier to port
an application. While certain features should not be used, as will be shown in a
subsequent section, it is possible to mimic other features without compromising
the UI idiom of a platform. The following section discusses various cross-platform
frameworks.

3 Related Work

Several frameworks promise to facilitate the development of cross-platform ap-
plications. In the following we briefly discuss the approach taken by Cordova,
Adobe AIR, and In-the-Box. Each framework will be classified with regards to
the mobile platforms it supports, the programming languages it offers, the API
it uses, the IDE it can be used with and finally the license under which it is
released.



A Common Platform API for Android 167

Apache Cordova (formally called PhoneGAP) is an Open Source project that
addresses web developers who wish to write mobile applications. It is available
for iOS, Android, WP7 and other platforms. Applications need to be written
in JavaScript/HTML/CSS. But instead of downloading the application from a
remote web server, the JavaScript is bundled inside a native application. E.g.,
for iOS devices a generic startup code written in Objective-C will instantiate
a full-screen web widget via class UIWebView. Next the JavaScript that is em-
bedded as data in the native application is injected into this web widget at
runtime. Special protocol handlers allow the communication between JavaScript
and the native layer. All iOS widgets are rendered using HTML/CSS mim-
icking the look-and-feel of their native counterparts. Cordova supports a com-
mon API for sensors such as the accelerometer. Platform-specific widgets have
their own API. Cordova is available under the MIT Open Source license at
http://incubator.apache.org/cordova/.

Table 2. Comparison of Cross-Platform Frameworks

Cordova In-the-Box Adobe AIR XMLVM

Platforms iOS, Android,
WP7, others

iOS iOS iOS, Android,
WP7

Language JavaScript Java ActionScript Java

API Common Sensor
API

Android Graphics-only Android API
mapped to iOS,
WP7

IDE Xcode Eclipse N/A Eclipse

License Open Source Open Source Commercial Open Source

Another cross-platform framework is the Adobe Integrated Runtime (AIR)
for iOS development. Adobe AIR includes an (Ahead of Time) AOT compiler
based on the LLVM compiler suite that translates ActionScript 3 to ARM in-
structions. This facilitates porting of existing Flash applications while not relying
on an installation of a Flash player on the iOS device. AIR offers API based on
ActionScript to the device’s sensors, but does not provide access to the native
iOS widgets which limits AIR applications to games. AIR is available under a
commercial license at http://www.adobe.com/products/air/.

A project called In-the-Box takes yet another approach: Android’s virtual
machine, called Dalvik [4], is ported to iOS to execute original Android appli-
cations under iOS. From iOS perspective, Dalvik and the class files comprising
the Android app are bundled into one native binary. Back in 2009 Apple relaxed
the terms and conditions of their SDK to allow such deployments. The benefit
of this approach is complete Android compatibility. However, one major down-
side is that In-the-Box creates iOS apps that have the look and feel of Android
applications. It can also not solve the problem of Android’s hardware button
that do not exist under iOS. In-the-Box is released under the Apache Software
License and is available at http://www.in-the-box.org/.



168 A. Puder

Table 2 summarizes the distinguishing factors of the various cross-platform
frameworks. Our framework XMLVM is similar in the respect that it offers one
programming language (Java) for different mobile devices. It also includes an
AOT compiler to translate Java to native applications in order to avoid the
installation of a Java virtual machine on the target platform. Similar to In-
the-Box, XMLVM also relies on the Android API for application development.
However, one major difference to In-the-Box is that the Android API is mapped
to the native API of the respective platform. E.g., an Android button is mapped
to a native UIButton when cross-compiled to iOS.

4 Cross-Compiling Android Applications

This section provides some details of our cross-compilation framework. First,
we discuss the its design principles. Next we describe how to expose non-Java
API of the target platform in Java followed by the introduction of the Common
Platform API.

4.1 Design Principles

Our approach is to cross-compile Android applications to other platforms such
as iOS or WP7. Considering the unique features of every platform, it is not
possible to cross-compile arbitrary applications. Certain best practices must be
followed such as not making use of the Android menu button. It is important
that the cross-compiled application uses the UI idioms of the target platform. It
is not acceptable to have and iOS or WP7 application that looks and feels like an
Android application as is the case of the aforementioned In-the-Box framework.
The implication is that certain features in Android will not be mimicked on the
target platform. E.g., if an Android application does not place the label in the
center of a button, the cross-compiled version would still do so.

In order to accomplish this, the Android code base needs to be refactored in
such a way that Android widgets can easily be mapped to their native coun-
terpart of the target platform. The goal of the refactoring is to distinguish
between platform-dependent and platform-independent parts of Android. Signif-
icant portions of Android are platform-independent and can be cross-compiled
as-is to the target platform. Most importantly, Android’s layout manager, ac-
tivity lifecycle and the intent system have little dependence to the native layer.
E.g., the layout manager reads declarative layout descriptions from the file sys-
tem to compute a layout. The implementation of the various layout managers
such as LinearLayout, RelativeLayout, or GridLayout have no other external
dependencies.

The refactoring yields a Common Platform API (CP-API) that isolates the
platform-dependent parts of Android. Adding a new platform will only require
to implement the CP-API. Designing the CP-API is the contribution of this
paper and will need to balance re-use of the existing Android code base vs. the
ability to do a deep integration to achieve the native look-and-feel of the target



A Common Platform API for Android 169

platform. The following section first discusses the adding of a Java layer over a
non-C platform followed by a description of the CP-API.

4.2 JNI for Non-C Platforms

The first step is to expose the native API of the target platform in Java. That is
to say, an API expressed in a language L needs to be accessible in Java. Given
a solution to this problem, it is possible to write apps for this platform in Java
using the native API of that platform. The challenge consists in the fact that the
native programming language may follow different paradigms than Java. E.g.,
Objective-C used for iOS development supports dynamic typing and the memory
management mechanism is based on reference counting. While creating a Java
API from a platform’s native API is mostly a mechanical process, one has to
decide how to generate strongly typed interfaces common to Java programming
based on an API that exploits dynamic typing. We have studied this problem in
earlier work [8].

Once a Java API has been generated, the question remains how an invocation
of a Java method results in a call to the corresponding native method. The
Java Native Interface (JNI) [6] specification introduced a mechanism by which a
Java application can break out from the VM sandbox to access the native layer.
JNI describes how data structures are passed between the VM and C-based
applications. Since the JNI is limited to the C programming language, it cannot
be used for platforms that do no provide access to the C layer.

For that reason we have extended the JNI model by keeping the Java interface
(via the nativemethod modifier) and allowing arbitrary programming languages
on the native side. In the following we give an example how the API of class
Button in WP7 can be exposed in Java. Class Button extends from base class
ButtonBase in WP7 and has amongst others a method setContent() to set the
label of the button. This method is marked as native and consequently has no
implementation:

Java: WP7 Button Wrapper
1 public class Button extends ButtonBase {

2 native public void setContent(String content);

3

4 //...

5 }

As can be seen in the listing above, the implementation of the class is left
empty since its only purpose is to provide a Java API against which the developer
can implement an application. Properties in C#, such as Button.Content, are
represented by appropriate getter/setter methods. Our cross-compiler translates
the wrapper class to the target language; C# in this case. For methods marked
as native the cross-compiler inserts special comment markers into the generated



170 A. Puder

code. The programmer can inject manually written code between these comment
markers. This code is tying the wrapper class together with the native class it
wraps. The following code excerpt demonstrates this concept for the Button

class.

C#: Cross-compiled WP7 Button Wrapper
1 public class Button : ButtonBase {

2

3 public virtual void setContent(java.lang.String n1) {

4 //XMLVM_BEGIN_WRAPPER

5 wrapped.Content = Util.toNative(n1);

6 //XMLVM_END_WRAPPER

7 }

8

9 //...

10 }

Note that the wrapper class above is not implementing the widget itself, but
only wraps the WP7 API Button class. Code between XMLVM BEGIN WRAPPER and
XMLVM END WRAPPER comments is manually written C# code which gets injected
on either method- or class-level during cross-compilation. The comment mark-
ers allow the manually written code to be automatically migrated if it should
become necessary to regenerate the wrappers. Method setContent() converts
a java.lang.String instance to a native C# string via a helper function and
sets the Content property of the wrapped button to the converted string. Once
the native API of the target platform has been exposed in Java, it is possible to
implement the platform-specific portions of the refactored Android code base.

4.3 Common Platform API

The Common Platform API, CP-API for short, isolates the platform-specific
parts of Android. The platform-independent parts can be reused while the CP-
API needs to be implemented for each target. In the following we discuss the
CP-API for the view hierarchy. Every UI framework features a view hierarchy
featuring a variety of widgets. The view hierarchy typically has a common base
class from which the various widget classes are derived. Android’s base class of
the view hierarchy is class View, the base class for iOS is UIView and for WP7
the class is called Panel. The base class combines various capabilities that are
inherited to all derived classes. The following code excerpt shows the API for
setting a background color/image:

Java: View hierarchy
1 // Android

2 public class View {

3 native public void setBackgroundDrawable(Drawable d);

4 // ...

5 }

6



A Common Platform API for Android 171

7 // iOS

8 public class UIView {

9 native public void setBackgroundColor(UIColor c);

10 // ...

11 }

12

13 // WP7

14 public class Panel {

15 native public void setBackground(Brush b);

16 // ...

17 }

In Android the background of a widget can be an arbitrary Drawable. A
Drawable can be static color, a gradient, an image, or a custom drawable where
the application can manually draw the background. iOS is more restrictive and
only allows a background to be a static color (represented via class UIColor).
More complex backgrounds in iOS require to place a separate UIView that serves
as the background. WP7 is more flexible by allowing the background to be
a Brush. A Brush can be a static color, a gradient, or an image. But unlike
Android it is not possible to provide an application-specific custom Brush.

Considering the differences in functionality, the CP-API introduces a Java
interface that serves as an abstraction for the common base class of the view
hierarchy:

Java: CommonView interface
1 public interface CommonView {

2 public void setBackgroundDrawable(Drawable d);

3 // ...

4 }

Given this interface, the question arises how to implement it under iOS and
WP7. In case a specific Drawable is supported by the respective platform, it
can be mapped directly to the native API. E.g., a solid color Drawable can be
directly mapped to an appropriate UIColor under iOS and a Brush under WP7.
The more interesting case is when the Drawable is not supported by the native
platform. In this case we rearrange the view hierarchy by adding an extra view
that represents the background as shown in Figure 2. If the application sets
the background on view V3, a new view B3 is inserted into the view hierarchy.
View V3 is the child of B3 and its size and position are changed such that V3

completely overlaps with B3. It is then possible to render the Drawable in B3.
Since the Z-order of B3 is such that it is below V3 it effectively serves as the
background.

Interface CommonView therefore serves as an abstraction of the platform-specific
portions of an Android View. A platform-specific implementation has to be pro-
vided based on the native API. The device-independent portions of Android
need to be refactored to make use of the interface. Instantiating platform-specific
views is done via a factory. The main entry point to the CP-API is a singleton



172 A. Puder

Fig. 2. Adding a background to a view

implementing the CommonPlatformAPI interface that provides access to the var-
ious subsystems:

Java: CP-API and Widget Factory
1 public interface CommonPlatformAPI {

2 CommonFileSystem getFileSystem();

3 CommonAccelerometer getAccelerometer(SensorManager sensorManager);

4 CommonWidgetFactory getWidgetFactory();

5 CommonFontFactory getFontFactory();

6 CommonPowerManager getPowerManager();

7 CommonMediaPlayer getMediaPlayer(MediaPlayer mediaPlayer);

8 // ...

9 }

10

11 public interface CommonWidgetFactory {

12 CommonView createCommonView();

13 ButtonAdapter createButton();

14 ImageViewAdapter createImageView();

15 TextViewAdapter createTextView();

16 RadioGroupAdapter createRadioGroup();

17 // ...

18 }

The CommonWidgetFactory interface can be obtained via the top-level Com-
monPlatformAPI interface and it allows the creation of the various Android
widget adapters. The adapter interfaces declare the platform-specific API of the
corresponding Android widgets ensuring reduced overhead for the refactoring of
the platform-independent portions. The following code excerpt shows the decla-
ration of the ButtonAdapter interface:

Java: ButtonAdapter interface
1 public interface ButtonAdapter extends CommonView {

2 void setText(CharSequence text);

3 void setOnClickListener(OnClickListener listener);

4 // ...

5 }



A Common Platform API for Android 173

The interface features a subset of the methods declared in the Android
class Button. In the following we show how the two featured methods of
ButtonAdapter are implemented for iOS and WP7:

Java: Implementation of ButtonAdapter for iOS
1 public class IOSButtonAdapter implements ButtonAdapter {

2

3 private UIButton nativeButton;

4

5 public IOSButtonAdapter() {

6 nativeButton = UIButton.buttonWithType(UIButtonType.RoundedRect);

7 }

8

9 @Override

10 public void setText(CharSequence text) {

11 nativeButton.setTitle(text, UIControlState.Normal);

12 }

13

14 @Override

15 public void setOnClickListener(final OnClickListener listener) {

16 nativeButton.addTarget(new UIControlDelegate() {

17

18 @Override

19 public void raiseEvent(UIControl sender, int eventType) {

20 listener.onClick(IOSButtonAdapter.this);

21 }

22 }, UIControlEvent.TouchUpInside);

23 }

24 }

Class IOSButtonAdapter is a wrapper of a native iOS UIButton. The methods
declared in interface ButtonAdapter are implemented based on the UIButton

API, e.g., the setText() method is mapped to the corresponding setTitle()

method of the UIButton. Another example is method setOnClickListener()

that defines a delegate in the application to be called when the user taps on
the button. The iOS UIButton features a method addTarget() that serves the
same purpose. The iOS delegate has to implement a callback method called
raiseEvent() that simply delegates the click event to the Android application.
This example shows that for upcalls done by Android to the application it is
possible to use the original Android interfaces (OnClickListener) and it is not
necessary to create special wrapper interfaces in the CP-API.

Analogous to the iOS implementation, the following code excerpt shows the
same implementation of the ButtonAdapter, this time for WP7:

Java: Implementation of ButtonAdapter for WP7
1 public class WP7ButtonAdapter implements ButtonAdapter {

2 private OnClickListener listener;

3 private System.Windows.Controls.Button nativeButton;

4



174 A. Puder

5 public WP7ButtonAdapter() {

6 nativeButton = new System.Windows.Controls.Button();

7 }

8

9 @Override

10 public void setText(CharSequence text) {

11 nativeButton.setContent(text);

12 }

13

14 @Override

15 public void setOnClickListener(OnClickListener listener) {

16 this.listener = listener;

17 nativeButton.Click.__add(new RoutedEventHandler(this,

18 "button_onClick"));

19 }

20

21 public void button_onClick(Object sender, RoutedEventArgs e) {

22 listener.onClick(this);

23 }

24 }

In this case WP7ButtonAdapter is a wrapper for a native WP7 Button. The
setText() method here is mapped to the equivalent setContent() method.
The previous section showed how the Java version of this method is routed to
the native C# method via code injection. The Android click listener is installed
via WP7’s event and delegate model. Method add is the Java version of C#’s
overloaded + = operator with which a delegate can be added to the Click event.
Method button onClick() will be called whenever the user pressed the WP7
button. Its implementation delegates the call to the Android application via the
usual OnClickListener.

Figure 3 visualizes the structure of the refactored Android code base. The
platform-independent portions are common to all supported platforms and con-
tain modules such as layout management or activity lifecycle. Classes such as
android.widget.Button are refactored into platform-independent parts that
access platform-dependent implementations via interfaces of the Common Plat-
form API. Adapter classes implement the CP-API based on features of the re-
spective target platform.

5 Prototype Implementation

The concepts presented in this paper have been implemented as part of the
XMLVM project. Android 2.3 served as a starting point for the refactoring
effort. The platform-independent portions include the Activity lifecycle man-
agement, Intents, and layout management. The CP-API covers the majority of
the Android widgets as well as the complete sensor API (accelerometer, gyro-
scope, GPS, camera, etc). Platform-specific implementations exist for iOS and
WP7. Android applications complying to the best practices mentioned earlier



A Common Platform API for Android 175

Fig. 3. Refactored Android code base

can be cross-compiled to Objective-C and C#. The refactored Android library
is cross-compiled to those languages as well, yielding in native applications for
the respective platform.

To demonstrate the feasibility of our approach we have cross-compiled an
existing Android monitoring application. We have used the same application
to show the cross-compilation from Android to iOS [7]. Based on the CP-API
we have added a platform-specific version that allows the same application to
be cross-compiler to WP7. The application issues HTTP requests to a network
appliance and displays usage statistics in a custom widget that draws a graph.
The original Android version uses a RadioButton group (see Figure 4). The
corresponding RadioGroupAdapter of the CP-API maps this Android widget
to a UISegmentedControl under iOS and a RadioButton under WP7. Since a
UISegmentedControl is wider than high, Android’s layout manager automati-
cally stretches the custom graph-drawing widget, resulting in a native look-and-
feel of the application on all platforms.

6 Conclusions and Outlook

Porting smartphone applications to various mobile platforms requires significant
efforts. Various cross-platform frameworks seek to facilitate this process. The
approach taken in this paper is to cross-compile Android applications to other
platforms. It is important to keep the UI idioms of the target platform and not
make the cross-compiled application look and feel like an Android application.
To accomplish this the Android code base needs to be refactored in order to
introduce a Common Platform API that isolates the platform-specific portions
of Android.



176 A. Puder

Fig. 4. Example

This approach works well for Android applications that follow certain best
practices, such as avoiding the use of the menu button. In some cases the best
practices require unnatural workarounds in order to cross-compile an application.
In the future we plan to investigate a partial cross-compilation approach where
only certain portions of the Android application are cross-compiled. For those
parts of the application that are not cross-compiled the developer would have
to provide a customized implementation for the target platform that can exploit
its capabilities that may not be present in Android.

Acknowledgements. Markus Neubrand and Oren Antebi have implemented
the concepts described in this paper as part of their master thesis work at the
San Francisco State University.

References

1. The Android Open Source Project. Dalvik eXchange (DX),
http://www.git://android.git.kernel.org/platform/dalvik.git

2. ECMA. C# Language Specification, 4th edn. (June 2006)
3. El-Ramly, M., Eltayeb, R., Alla, H.A.: An Experiment in Automatic Conversion of

Legacy Java Programs to C#. In: ACS/IEEE International Conference on Com-
puter Systems and Applications, pp. 1037–1045 (2006)

4. Google, Inc. The Dalvik virtual machine,
http://en.wikipedia.org/wiki/Dalvik_virtual_machine

http://www.git://android.git.kernel.org/platform/dalvik.git
http://en.wikipedia.org/wiki/Dalvik_virtual_machine


A Common Platform API for Android 177

5. Kochan, S.: Programming in Objective-C, 4th edn. Addison-Wesley Professional
(December 2011)

6. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn.
Addison-Wesley Pub. Co. (April 1999)

7. Puder, A.: Running Android Applications without a Virtual Machine. In: Venkata-
subramanian, N., Getov, V., Steglich, S. (eds.) Mobilware 2011. LNICST, vol. 93,
pp. 121–134. Springer, Heidelberg (2012)

8. Puder, A., D’Silva, S.: Mapping Objective-C API to Java. In: MobiCASE, Mobile
Networks and Applications, Seattle. Springer (2012)

9. Puder, A., Lee, J.: Towards an XML-based Byte Code Level Transformation Frame-
work. In: 4th International Workshop on Bytecode Semantics, Verification, Anal-
ysis and Transformation. Elsevier, York (2009)

10. W3C. WebIntents (2012), http://www.w3.org/wiki/WebIntents

http://www.w3.org/wiki/WebIntents

	A Common Platform API for Android
	Introduction
	Limits to Cross-Platform Frameworks
	Related Work
	Cross-Compiling Android Applications
	Design Principles
	JNI for Non-C Platforms
	Common Platform API

	Prototype Implementation
	Conclusions and Outlook
	References




