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Abstract. Implementing Multi Sequence Alignment (MSA) problem using the 
method of progressive alignment is not feasible on common computing 
systems; it takes several hours or even days for aligning thousands of sequences 
if we use sequential versions of the most popular MSA algorithm - Clustal. In 
this paper, we present our parallel algorithm called CUDAClustal, a MSA 
parallel program. We have paralleled the first stage of the algorithm Clustal and 
achieved a significant speedup when compared to the sequential program 
running on a computer of Pentium 4 3.0 GHz processor. Our tests were 
performed on one GPU Geforce GTX 295 and they gave a great computing 
performance: the running time of CUDAClustal is smaller approximately 30 
times than Clustal for the first stage. This shows the large benefit of GPU for 
solving the MSA problem and its high applicability in bioinformatics. 
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1 Introduction 

Bioinformatics is an important field which affects almost sides of people life, it 
mainly go along with genetics and the science of researching genes. This paper solves 
problem of multi sequence alignment (MSA) problem [2]. The challenge here is to 
find out how to align thousands of ADN, ARN or protein sequences to identify 
similar residues and regions between them. There are methods of resolving this 
problem such as dynamic programming: Needleman-Wunsch [3], Smith-Waterman 
[1], progressive alignment methods: Clustal [4], T-Coffee [10]. 

However, those proposed methods face computational performance problem 
because the computational complexity of algorithms is very large. In the case of the 
algorithm Clustal, the complexity is Oሺ݊ଶ ൈ ݈ଶሻ, in which n is the number of sequences 
and l is the average length of sequences. This means that to align multi sequences 
with a dataset of 1000 sequences with the average length of 500, it takes several hours 
if using common CPUs. Therefore in this paper, we took advantage of the great 
computing power of GPU to grow computational performance. Results have shown a 
significant increase of computational performance when compared to the sequential 
program, demonstrating GPU’s high applicability in bioinformatics field. 
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1.1 Pairwise Sequence Alignment Problem  

In bioinformatics fields, one of the most important problems is sequence alignment 
problem, including two main problems: pairwise sequence alignment (PSA) [15] and 
multi sequence alignment (MSA) [2]. Firstly, we examine the problem PSA; it is the 
foundation for the MSA problem. Supposing that we have a pair of sequences {A,B} 
satisfying the following properties: 

ܣ • ൌ ܽଵܽଶ … ܽೌ, ܤ ൌ ܾଵܾଶ … ್ܾ 

• ܽ, ܾ א ܴ ሺ1  ݅  ݈, 1  ݆  ݈ሻ 
• ܴ is a set of given characters 
• ܴ ה '-'  (gap) 

An alignment of the pair of sequences {A,B} results in another sequence pair of 
{A',B'} satisfying all the following properties: 

′ܣ • ൌ ܽଵ′ ܽଶ′ … ܽ′′ ′ܤ   , ൌ ܾଵ′ ܾଶ′ … ܾ′′ ሺ݈′  ݈, ݈ሻ 

• ܽ ′ , ܾ′ א ܴ  ൛'-'ൟ ሺ1  ݅, ݆  ݈′ሻ 

• If removing some gaps, ܣ′ will become ܣ and ܤ′ will be ܤ 

′ܽ :݅ • ൌ ܾ′ ൌ '-' ሺ1  ݅  ݈′ሻ 

In the pairwise sequence alignment problem, the sum of scores of all character pairs is 
defined as the score of alignment. The optimal alignment is the one with the highest 
score. The score of this optimal alignment is called the similarity of the two given 
sequences. A popular ranking method is using a weight matrix; in this paper, we use 
the popular weight matrix BLOSUM. 

1.2 Multi Sequence Alignment Problem  

Supposing that we have n sequences ሼܣଵ, ,ଶܣ … , ሽ ሺ݊ܣ  3ሻsatisfying all the 
following conditions: 

ܣ • ൌ ܽ,ଵܽ,ଶ … ܽ,  ሺ1  ݅  ݊ሻ 

• ܽ, א ܴ ሺ1  ݅  ݊, 1  ݆  ݈ሻ 

• ܴ is a set of given characters 

• ܴ ה '-'  (Gap) 

A solution of aligning multi sequences ሼܣଵ, ,ଶܣ … , ′ଵܣሽ is a set of sequences ሼܣ , ′ଶܣ , … , ′ܣ ሽ satisfying all the following conditions: 

′ܣ • ൌ ܽ,ଵ′ ܽ,ଶ′ … ܽ,′′  ሺ݈′  ݈ଵ, ݈ଶ, … , ݈ሻ 

• ܽ,′ א ܴ  ൛'-'ൟ ሺ1  ݅  ݊, 1   ݆  ݈′ሻ 

• If removing gaps then ܣ′  will become ܣ ሺ1  ݅  ݊ሻ 

′ଵ,ܽ :݆ • ൌ  ܽଶ,′ ൌ ڮ ൌ  ܽ,′  = '-' ሺ1  ݅  ݈′ሻ 
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Fig. 1. An example of aligning multi sequences. 

Methods of grading for MSA alignments have the same principles with PSA. Major 
approaches of solving the MSA problem include: 

- The dynamic programming method: this method is not used to directly solve the 
MSA problem because the size of required memory have the exponential 
increase. 

- The progressive alignment method: the most used method for MSA. This 
heuristic method uses the approach of “progressive”: aligning sequences which 
are “close” to each other and then adding progressively further sequences into 
the current alignment. The most used method in progressive alignment is the 
algorithm Clustal [13]. This algorithm includes three steps which are presented 
in below section. Steps of calculating distances and aligning multi sequences 
require the large computing power which common computing systems do not 
meet within an accept time, therefore we implemented these steps on GPU using 
the parallel programming language CUDA and achieved a very great 
performance. 

2 GPU and Programming Model CUDA 

In recent years, the computing power of GPU graphics processors has increased 
significantly compared to CPU. Until June 2008, NVIDIA's GPU GT200 generation 
has reached the threshold of 933 GFLOPS, more than 10 times over dual-core 
processor the Intel Xeon 3.2 GHz at the same time. The computing performance of 
GPUs is only seen in problems that one certain task can be executed on a lot of 
independent data concurrently and then each processing core of GPU is assigned to 
perform one task on a set of data. CUDA [11] is popular software which supports to 
develop applications on multi cores GPU. A CUDA program includes one or a few 
special pieces of code, called parallel kernels. These kernels can be executed in 
parallel on the large number of threads on GPUs. Threads are divided into small 
groups which are executed on the same streaming multiprocessor, called thread 
blocks, these blocks are also designed to a grid. GPU’s memory is hierarchically 
organized for effective usage: 

- Main memory: the memory area for CPU code. Only this code can access and 
modify information here.  
- Global memory: the memory area that all GPU threads can access to it. 
Programmers can move data from main memory to global memory by using functions 
from a CUDA basic library. This memory is often used to store inputs and outputs for 
parallel threads on GPUs.  
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- Shared memory: the memory area that only threads in one same block can access. 
This memory is integrated on-chip; so the speed of accessing data on it is much higher 
than on global memory. This memory is often used to store temporary shared data 
among threads in a block to speed up the process of memory usage.  
- Local memory: the memory area allocated to local variables of each thread and one 
GPU thread cannot access to those from others. 

With the ability to perform data parallelism on such a lot of threads, GPU is an 
appropriate choice to solve the multi sequence alignment problem, in which threads 
can calculate one cell on sub-diagonals of the similarity matrix in parallel or calculate 
distances between sequences concurrently, as presented in the below section. 

3 Parallel Clustal on GPU 

3.1 Overview of the Algorithm Clustal  

As mentioned above, in the approach of progressive alignment to solve the MSA 
problem, Clustal [13] is one of the most used algorithms. This algorithm includes 
three stages; the following is details of three stages:  

1. Align Pairwise Sequences 
At first step, we do alignment all pairs of sequences to calculate relative distances 
about evolution between all sequences. The common method is dynamic 
programming, in which the value of distance between two sequences is calculated as 
compensative value of point for these two sequences. The implementation of the 
algorithm Clustal in this paper uses a simple version of Smith-Waterman algorithm. 
Firstly, the algorithm does alignments for all pairs of sequences ൛ܣ, ൟ ሺ1ܣ  ݅ ൏ ݆ ݊ሻ which can be generated from n input sequences  ሼܣଵ, ,ଶܣ … ,  ሽ and using theܣ
score of the optimal alignment to calculate one distance value ݀݅ݐݏ൫ܣ,  ൯ for thoseܣ
pair of sequences. The value of distance is calculated as follows: for a pair of 
sequences ܣ௫ ൌ ܽ௫,ଵܽ௫,ଶ … ܽ௫,ೣ  and ܣ௬ ൌ ܽ௬,ଵܽ௬,ଶ … ܽ௬,  , we create a similarity 

matrix H with the size of ሺ݈௫  1ሻ ൈ ൫ ݈௬  1൯ as follows: 

,ܪ • ൌ ,ܪ ൌ 0 ሺ0  ݅  ݈௫, 0  ݆   ݈௬ሻ (sentries)                                     (1) 

,ܪ • ൌ ݔܽ݉ ۈۉ
ۇ ିଵ,ܪ,0 െ ,ିଵܪ,1 െ ିଵ,ିଵܪ,1  ,൫ܽ௫,ܾݑݏ ܽ௬,൯ۋی

൬ ۊ 1  ݅  ݈௫, 1  ݆   ݈௬൰                           (2) 

After building the matrix H, the distance value is calculated as follows:  

,௫ܣ൫ݐݏ݅݀              ௬൯ܣ ൌ 1 െ ೣ,ܪ ݉݅݊൫݈௫, ݈௬൯⁄                                (3) 

2. Build the phylogenetic tree: In this step, distance values are used to create a binary 
phylogenetic tree by algorithms of clustering. Here we apply a simple version of the 
popular clustering algorithm neighbor-joining.  



304 H.P. Pham, H.D. Nguyen, and T.T. Nguyen 

3. Perform multi sequences alignment: the phylogenetic tree is used to perform 
multi sequences alignment progressively. Aligning multi sequences is executed by 
using a version of the algorithm Needleman-Wunsch [3].  

3.2 Parallel the Algorithm Clustal  

In this paper, we show how to use the parallel computing technology CUDA on GPU 
to accelerate the algorithm by paralleling stages of the algorithm Clustal and evaluate 
the performance of the GPU-based algorithm. 

3.2.1   Basic Strategy of Parallelization  
Parallelization strategy of the algorithm can be divided into two directions: paralleling 
the creation of similarity matrices and paralleling the calculation of distance values 
between sequences. To calculate distance values, we can see that distances of all pairs 
of sequences can be calculated independently; therefore we can calculate for all 
distances in parallel. In parallelization of building similarity matrices, from 
mathematical formulas of the algorithm Smith-Waterman in part 3.1, calculation of 
one element in the matrix only depends on values of its left, upper and upper-left 
neighbors. This is described as Fig.2. 

    

Fig. 2. The dependent relationship between values of elements in a similarity matrix 

So all elements on the same diagonal of the matrix are directly or indirectly 
complete independent to each other. Therefore, calculation of these elements can be 
executed in parallel theoretically. This leads to basic parallel strategy as follows: 

- Calculate all elements on the same diagonal concurrently. 
- Diagonals are sequentially calculated in order of from upper-left to down right. 

3.2.2   Parallelization Using CUDA on GPU  
One significantly modified parallel method from above basic parallel strategy to 
improve the performance is proposed in the program MSA-CUDA, one parallel 
implementation of the algorithm Clustal by Yongchao Liu and Maskell in [17]. MSA-
CUDA shows two new parallel methods: intra-task parallelization and inter-task 
parallelization. Here, one task is defined as calculating the distance between a pair of 
sequences - calculating a similarity matrix of the pair of sequences. In intra-task 
parallelization, one task is assigned to one block of threads and all threads inside that 
block combine to perform the assigned task. For inter-task parallelization, one task is 
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assigned to one thread and threads inside a block do not combine to each other. 
Moreover, calculation of a similarity matrix in MSA-CUDA is also modified with the 
method of cell block for inter-task parallelization. In this method, each matrix is 
calculated by units of blocks of elements which are of sub-matrices of the size of n×n 
of the original matrix instead of every single element. 

 

Fig. 3. Illustration of calculating the matrix by intra-task parallelization of strip-wise 

3.2.3   Parallelization for Stage 1 
To parallelize stage 1 of the algorithm Clustal, we utilized an original “strip-wise 
parallelization” approach on GPUs, based on the idea of “cell block” found in MSA-
CUDA and Hirschberg’s algorithm [5] for sequence alignment with linear memory. 
Similar to MSA-CUDA, our approach is split into two flavors: intra-task 
parallelization and inter-task parallelization. 

a) Intra-task parallelization 
In intra-task parallelization, each similarity matrix is assigned to a whole block, and 
all threads in the block cooperate to compute the matrix in question. The similarity 
matrix is split into vertical “block strips” with fixed horizontal size (about 4-16 cells) 
and vertical size equal to the matrix’s vertical size. Each block strip will be computed 
almost simultaneously by all threads in the block (except the last strip). 
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Next, each block strip is spilt into a fixed number of thread strips, each of which 
corresponds to a thread in the block. Hence, the number of thread strips in each block 
strip (except for the last) is equal to the number of threads in the block. Each thread 
strip, in turn, is split into steps. Each step consists of one row of cells in the thread 
strip. 

Since the computation of each cell depends on the cells to its left, above and upper-
left, the block strips will be computed from left to right, the steps will be computed 
from top to bottom and the cells in each step will be computed from left to right. Also, 
the thread strips will not start computing simultaneously, but the thread strips on the 
left will start first and work gradually to the right. This can be seen in the figure 
above. After each step is finished, all threads will be synchronized once before 
moving on to the next step. 

In this way, the similarity matrix can be computed by every thread in the block 
(except for the beginning and the end of each block strip), which reduces computation 
time. However, the main advantage of strip-wise intra-task parallelization lies with 
the fact that the block strips and thread strips are of fixed widths. This means that one 
can utilize Hirschberg’s algorithm to store all the intermediate results on shared 
memory or even registers, as seen in Fig. 4, without the worry of memory overflow 
due to their limited sizes. 

 

 

Fig. 4. Usage of memory in intra-task parallelization 

Here only the cells computed in the last step and the cells being computed in the 
current step are stored. These cells can be stored in register, or in shared memory to 
take advantage of array structure. The cells on the border with the next thread strip on 
the right must be stored in shared memory to allow the next thread strip to use the 
results for the computation of its border cells. Only the cells bordering the next block 
strip are stored in global memory to be used later. The right-most columns of cells in 
the matrix will not required global memory as only the cell at the bottom-most does 
matter at that point. 

This way of memory usage should sharply reduce memory latency compared to 
relying extensively on global memory to store intermediate results (eg. In MSA-
CUDA’s intra-task parallelization). In the Fig.4, global memory is accessed only once 
for the computation of 12 cells. And in the actual software the rate is 1:512. This 
means that for matrix with width of less than or equal to 512 cells, global memory 
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will not be used at all in the computation of the matrix itself, though it is still used to 
create sentry at the start of the computation in the actual software. 

b) Inter-task parallelization 
Essentially, inter-task parallelization is a watered-down version of intra-task 
parallelization, with each similarity matrix being assigned to a thread instead of a 
whole block. The computation are carried out pretty much the same as intra-task 
parallelization, albeit with only one thread the “block strip” and “thread strip” become 
one. 

Inter-task parallelization suffers greatly in performance improvement for the 
computation of a single similarity matrix compared to intra-task parallelization, 
having all the cells in the similarity matrix computed consequentially, and a higher 
rate of global memory usage. Nonetheless, it makes up for it in computing more 
similarity matrices in parallel than intra-task parallelization, since now each thread 
computes one matrix instead of each block. 

Inter-task parallelization, therefore, is more suitable for cases involving larger 
number of very short sequences. In these cases, because the size of the similarity 
matrices may be much smaller than the fixed size of one single block strip, many 
threads will go idle during the computation and are wasted. Intra-task parallelization 
should be used in cases with small number of very long sequences, in which the huge 
“jump” of a whole block strip can be fully exploited. 

3.2.4   Parallelization for Stage 3 
Theoretically, strip-wise parallelization approach can also be applied to the 
computation of similarity matrices in Stage 3 of the Clustal algorithm. However, due 
to time constraints, this has not been implemented in the actual software as of yet. 
Apart from the parallelization of similarity matrix computation, multiple progressive 
alignments in multiple internal nodes can be carried out in parallel, as long as these 
internal nodes are not independent in computation from each other. This has been 
implemented successfully in MSA-CUDA, so we would not dig further into this. 

4 Experiments and Evaluation  

Our parallel algorithm - CUDAClustal in this paper were implemented and tested on 
one GPU Geforce GTX 295 in a PC running the Linux OS. In our tests, we extract 
data from the database UniProtKB/Swiss-Prot for testing. UniProtKB is a database 
containing a large amount of biological information about proteins; in which Swiss-
Prot is the part evaluated and edited by hand. The algorithm is paralleled on four 
different datasets, with two cases: a large number of short sequences and a small 
number of long sequences. Details of data are shown in the Table 1. 

CUDAClustal shows a significant improvement of performance when compared to 
sequential versions of the algorithm Clustal. If evaluating the time of running the 
entire steps, CUDAClustal is faster two times than Clustal when working with 
datasets with the large number of sequences (test1.fasta, test2.fasta) and is faster three 
times than Clustal in the case of datasets with large average lengths of sequences 
(test3.fasta, test4.fasta). These results are described in Table 1. 
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Table 1. Comparison of runtime between CUDAClustal and Clustal 

Dataset 
Number of 
sequences 

Average 
length of 
sequences 

Runtime 

CUDAClustal Clustal 

test1.fasta 200 ~300 120,13s 220,25s 

test2.fasta 300 ~300 269,88s 545,25s 

test3.fasta 100 ~800 110,82 327,51 

test4.fasta 50 ~1600 121,65s 332,2s 

 
Currently, CUDAClustal has been paralleled for only stage one of the entire 

algorithm, so to evaluate the computing performance accurately, we consider the 
runtime of each stages. Results show that for all datasets, CUDAClustal gives a great 
computational performance: the runtime for stage one of CUDAClustal is smaller 
approximately 30 times than the sequential Clustal. This result is shown in Table 2. 
So if only considering parts which have been paralleled then the effect of using GPU 
is very feasible. This means that if stage three of the algorithm is also paralleled, the 
total time of the program will be more significantly reduced. 

Table 2. Comparison of runtime by stages between CUDAClustal and Clustal 

Datasets 

Stage 1 Stage 2 & 3 

CUDAClustal 

Clustal CUDAClustal Clustal Memory 
Operation 

Runtime of 
kernel 

test1.fasta 0,26s 4,40s 124,13s 115,46s 96,12s 

test2.fasta 0,35s 12,16s 304,28s 257,37s 287,88s 

test3.fasta 0,04s 8,03s 237,00s 102,48s 90,51s 

test4.fasta 0,001s 6,51s 233,05s 115,14s 99,15s 

5 Conclusion 

The technology GPU shows the ability of improving computational performance for 
problems which can be paralleled. In this paper, we present our parallel algorithm – 
CUDAClustal to solve the MSA problem. We have paralleled the first stage of the 
algorithm and achieved a significant speedup when compared to the sequential 
program. Here, parallelization for stage one brings increase in performance which is 
approximately two times for the entire algorithm Clustal and 30 times for stage one. 
This proves a certain success level of paralleling the algorithm using CUDA on GPU, 
enabling to parallel the whole three steps. In the future work, we intend to modify our 
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program by parallelizing stage three by performing alignment at nodes with the same 
height from leaf nodes in parallel. Moreover, we will implement the algorithm on 
multi GPU and GPU Cluster to increase the computing performance. 
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