
P.C. Vinh et al. (Eds.): ICCASA 2012, LNICST 109, pp. 300–309, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Aligning Multi Sequences on GPUs

Hong Phong Pham1, Huu Duc Nguyen1, and Thanh Thuy Nguyen2

1 Department of Information System, Hanoi University of Science and Technology,
NOT is High Performance Computing Center

2 Department of Computer Science, VNU - University of Engineering and Technology
{phongph.hut,ducnh.hut}@gmail.com,

nguyenthanhthuy@vnu.edu.vn

Abstract. Implementing Multi Sequence Alignment (MSA) problem using the
method of progressive alignment is not feasible on common computing
systems; it takes several hours or even days for aligning thousands of sequences
if we use sequential versions of the most popular MSA algorithm - Clustal. In
this paper, we present our parallel algorithm called CUDAClustal, a MSA
parallel program. We have paralleled the first stage of the algorithm Clustal and
achieved a significant speedup when compared to the sequential program
running on a computer of Pentium 4 3.0 GHz processor. Our tests were
performed on one GPU Geforce GTX 295 and they gave a great computing
performance: the running time of CUDAClustal is smaller approximately 30
times than Clustal for the first stage. This shows the large benefit of GPU for
solving the MSA problem and its high applicability in bioinformatics.

Keywords: Multi sequence alignment, Clustal, CUDA, GPU.

1 Introduction

Bioinformatics is an important field which affects almost sides of people life, it
mainly go along with genetics and the science of researching genes. This paper solves
problem of multi sequence alignment (MSA) problem [2]. The challenge here is to
find out how to align thousands of ADN, ARN or protein sequences to identify
similar residues and regions between them. There are methods of resolving this
problem such as dynamic programming: Needleman-Wunsch [3], Smith-Waterman
[1], progressive alignment methods: Clustal [4], T-Coffee [10].

However, those proposed methods face computational performance problem
because the computational complexity of algorithms is very large. In the case of the
algorithm Clustal, the complexity is Oሺ݊ଶ ൈ ݈ଶሻ, in which n is the number of sequences
and l is the average length of sequences. This means that to align multi sequences
with a dataset of 1000 sequences with the average length of 500, it takes several hours
if using common CPUs. Therefore in this paper, we took advantage of the great
computing power of GPU to grow computational performance. Results have shown a
significant increase of computational performance when compared to the sequential
program, demonstrating GPU’s high applicability in bioinformatics field.

 Aligning Multi Sequences on GPUs 301

1.1 Pairwise Sequence Alignment Problem

In bioinformatics fields, one of the most important problems is sequence alignment
problem, including two main problems: pairwise sequence alignment (PSA) [15] and
multi sequence alignment (MSA) [2]. Firstly, we examine the problem PSA; it is the
foundation for the MSA problem. Supposing that we have a pair of sequences {A,B}
satisfying the following properties:

ܣ • ൌ ܽଵܽଶ … ܽೌ, ܤ ൌ ܾଵܾଶ … ್ܾ

• ܽ, ܾ א ܴ ሺ1 ݅ ݈, 1 ݆ ݈ሻ
• ܴ is a set of given characters
• ܴ ה '-' (gap)

An alignment of the pair of sequences {A,B} results in another sequence pair of
{A',B'} satisfying all the following properties:

′ܣ • ൌ ܽଵ′ ܽଶ′ … ܽ′′ ′ܤ , ൌ ܾଵ′ ܾଶ′ … ܾ′′ ሺ݈′ ݈, ݈ሻ

• ܽ ′ , ܾ′ א ܴ ൛'-'ൟ ሺ1 ݅, ݆ ݈′ሻ

• If removing some gaps, ܣ′ will become ܣ and ܤ′ will be ܤ

′ܽ :݅ • ൌ ܾ′ ൌ '-' ሺ1 ݅ ݈′ሻ

In the pairwise sequence alignment problem, the sum of scores of all character pairs is
defined as the score of alignment. The optimal alignment is the one with the highest
score. The score of this optimal alignment is called the similarity of the two given
sequences. A popular ranking method is using a weight matrix; in this paper, we use
the popular weight matrix BLOSUM.

1.2 Multi Sequence Alignment Problem

Supposing that we have n sequences ሼܣଵ, ,ଶܣ … , ሽ ሺ݊ܣ 3ሻsatisfying all the
following conditions:

ܣ • ൌ ܽ,ଵܽ,ଶ … ܽ, ሺ1 ݅ ݊ሻ

• ܽ, א ܴ ሺ1 ݅ ݊, 1 ݆ ݈ሻ

• ܴ is a set of given characters

• ܴ ה '-' (Gap)

A solution of aligning multi sequences ሼܣଵ, ,ଶܣ … , ′ଵܣሽ is a set of sequences ሼܣ , ′ଶܣ , … , ′ܣ ሽ satisfying all the following conditions:

′ܣ • ൌ ܽ,ଵ′ ܽ,ଶ′ … ܽ,′′ ሺ݈′ ݈ଵ, ݈ଶ, … , ݈ሻ

• ܽ,′ א ܴ ൛'-'ൟ ሺ1 ݅ ݊, 1 ݆ ݈′ሻ

• If removing gaps then ܣ′ will become ܣ ሺ1 ݅ ݊ሻ

′ଵ,ܽ :݆ • ൌ ܽଶ,′ ൌ ڮ ൌ ܽ,′ = '-' ሺ1 ݅ ݈′ሻ

302 H.P. Pham, H.D. Nguyen, and T.T. Nguyen

Fig. 1. An example of aligning multi sequences.

Methods of grading for MSA alignments have the same principles with PSA. Major
approaches of solving the MSA problem include:

- The dynamic programming method: this method is not used to directly solve the
MSA problem because the size of required memory have the exponential
increase.

- The progressive alignment method: the most used method for MSA. This
heuristic method uses the approach of “progressive”: aligning sequences which
are “close” to each other and then adding progressively further sequences into
the current alignment. The most used method in progressive alignment is the
algorithm Clustal [13]. This algorithm includes three steps which are presented
in below section. Steps of calculating distances and aligning multi sequences
require the large computing power which common computing systems do not
meet within an accept time, therefore we implemented these steps on GPU using
the parallel programming language CUDA and achieved a very great
performance.

2 GPU and Programming Model CUDA

In recent years, the computing power of GPU graphics processors has increased
significantly compared to CPU. Until June 2008, NVIDIA's GPU GT200 generation
has reached the threshold of 933 GFLOPS, more than 10 times over dual-core
processor the Intel Xeon 3.2 GHz at the same time. The computing performance of
GPUs is only seen in problems that one certain task can be executed on a lot of
independent data concurrently and then each processing core of GPU is assigned to
perform one task on a set of data. CUDA [11] is popular software which supports to
develop applications on multi cores GPU. A CUDA program includes one or a few
special pieces of code, called parallel kernels. These kernels can be executed in
parallel on the large number of threads on GPUs. Threads are divided into small
groups which are executed on the same streaming multiprocessor, called thread
blocks, these blocks are also designed to a grid. GPU’s memory is hierarchically
organized for effective usage:

- Main memory: the memory area for CPU code. Only this code can access and
modify information here.
- Global memory: the memory area that all GPU threads can access to it.
Programmers can move data from main memory to global memory by using functions
from a CUDA basic library. This memory is often used to store inputs and outputs for
parallel threads on GPUs.

 Aligning Multi Sequences on GPUs 303

- Shared memory: the memory area that only threads in one same block can access.
This memory is integrated on-chip; so the speed of accessing data on it is much higher
than on global memory. This memory is often used to store temporary shared data
among threads in a block to speed up the process of memory usage.
- Local memory: the memory area allocated to local variables of each thread and one
GPU thread cannot access to those from others.

With the ability to perform data parallelism on such a lot of threads, GPU is an
appropriate choice to solve the multi sequence alignment problem, in which threads
can calculate one cell on sub-diagonals of the similarity matrix in parallel or calculate
distances between sequences concurrently, as presented in the below section.

3 Parallel Clustal on GPU

3.1 Overview of the Algorithm Clustal

As mentioned above, in the approach of progressive alignment to solve the MSA
problem, Clustal [13] is one of the most used algorithms. This algorithm includes
three stages; the following is details of three stages:

1. Align Pairwise Sequences
At first step, we do alignment all pairs of sequences to calculate relative distances
about evolution between all sequences. The common method is dynamic
programming, in which the value of distance between two sequences is calculated as
compensative value of point for these two sequences. The implementation of the
algorithm Clustal in this paper uses a simple version of Smith-Waterman algorithm.
Firstly, the algorithm does alignments for all pairs of sequences ൛ܣ, ൟ ሺ1ܣ ݅ ൏ ݆ ݊ሻ which can be generated from n input sequences ሼܣଵ, ,ଶܣ … , ሽ and using theܣ
score of the optimal alignment to calculate one distance value ݀݅ݐݏ൫ܣ, ൯ for thoseܣ
pair of sequences. The value of distance is calculated as follows: for a pair of
sequences ܣ௫ ൌ ܽ௫,ଵܽ௫,ଶ … ܽ௫,ೣ and ܣ௬ ൌ ܽ௬,ଵܽ௬,ଶ … ܽ௬, , we create a similarity

matrix H with the size of ሺ݈௫ 1ሻ ൈ ൫ ݈௬ 1൯ as follows:

,ܪ • ൌ ,ܪ ൌ 0 ሺ0 ݅ ݈௫, 0 ݆ ݈௬ሻ (sentries) (1)

,ܪ • ൌ ݔܽ݉ ۈۉ
ۇ ିଵ,ܪ,0 െ ,ିଵܪ,1 െ ିଵ,ିଵܪ,1 ,൫ܽ௫,ܾݑݏ ܽ௬,൯ۋی

൬ ۊ 1 ݅ ݈௫, 1 ݆ ݈௬൰ (2)

After building the matrix H, the distance value is calculated as follows:

,௫ܣ൫ݐݏ݅݀ ௬൯ܣ ൌ 1 െ ೣ,ܪ ݉݅݊൫݈௫, ݈௬൯⁄ (3)

2. Build the phylogenetic tree: In this step, distance values are used to create a binary
phylogenetic tree by algorithms of clustering. Here we apply a simple version of the
popular clustering algorithm neighbor-joining.

304 H.P. Pham, H.D. Nguyen, and T.T. Nguyen

3. Perform multi sequences alignment: the phylogenetic tree is used to perform
multi sequences alignment progressively. Aligning multi sequences is executed by
using a version of the algorithm Needleman-Wunsch [3].

3.2 Parallel the Algorithm Clustal

In this paper, we show how to use the parallel computing technology CUDA on GPU
to accelerate the algorithm by paralleling stages of the algorithm Clustal and evaluate
the performance of the GPU-based algorithm.

3.2.1 Basic Strategy of Parallelization
Parallelization strategy of the algorithm can be divided into two directions: paralleling
the creation of similarity matrices and paralleling the calculation of distance values
between sequences. To calculate distance values, we can see that distances of all pairs
of sequences can be calculated independently; therefore we can calculate for all
distances in parallel. In parallelization of building similarity matrices, from
mathematical formulas of the algorithm Smith-Waterman in part 3.1, calculation of
one element in the matrix only depends on values of its left, upper and upper-left
neighbors. This is described as Fig.2.

Fig. 2. The dependent relationship between values of elements in a similarity matrix

So all elements on the same diagonal of the matrix are directly or indirectly
complete independent to each other. Therefore, calculation of these elements can be
executed in parallel theoretically. This leads to basic parallel strategy as follows:

- Calculate all elements on the same diagonal concurrently.
- Diagonals are sequentially calculated in order of from upper-left to down right.

3.2.2 Parallelization Using CUDA on GPU
One significantly modified parallel method from above basic parallel strategy to
improve the performance is proposed in the program MSA-CUDA, one parallel
implementation of the algorithm Clustal by Yongchao Liu and Maskell in [17]. MSA-
CUDA shows two new parallel methods: intra-task parallelization and inter-task
parallelization. Here, one task is defined as calculating the distance between a pair of
sequences - calculating a similarity matrix of the pair of sequences. In intra-task
parallelization, one task is assigned to one block of threads and all threads inside that
block combine to perform the assigned task. For inter-task parallelization, one task is

 Aligning Multi Sequences on GPUs 305

assigned to one thread and threads inside a block do not combine to each other.
Moreover, calculation of a similarity matrix in MSA-CUDA is also modified with the
method of cell block for inter-task parallelization. In this method, each matrix is
calculated by units of blocks of elements which are of sub-matrices of the size of n×n
of the original matrix instead of every single element.

Fig. 3. Illustration of calculating the matrix by intra-task parallelization of strip-wise

3.2.3 Parallelization for Stage 1
To parallelize stage 1 of the algorithm Clustal, we utilized an original “strip-wise
parallelization” approach on GPUs, based on the idea of “cell block” found in MSA-
CUDA and Hirschberg’s algorithm [5] for sequence alignment with linear memory.
Similar to MSA-CUDA, our approach is split into two flavors: intra-task
parallelization and inter-task parallelization.

a) Intra-task parallelization
In intra-task parallelization, each similarity matrix is assigned to a whole block, and
all threads in the block cooperate to compute the matrix in question. The similarity
matrix is split into vertical “block strips” with fixed horizontal size (about 4-16 cells)
and vertical size equal to the matrix’s vertical size. Each block strip will be computed
almost simultaneously by all threads in the block (except the last strip).

306 H.P. Pham, H.D. Nguyen, and T.T. Nguyen

Next, each block strip is spilt into a fixed number of thread strips, each of which
corresponds to a thread in the block. Hence, the number of thread strips in each block
strip (except for the last) is equal to the number of threads in the block. Each thread
strip, in turn, is split into steps. Each step consists of one row of cells in the thread
strip.

Since the computation of each cell depends on the cells to its left, above and upper-
left, the block strips will be computed from left to right, the steps will be computed
from top to bottom and the cells in each step will be computed from left to right. Also,
the thread strips will not start computing simultaneously, but the thread strips on the
left will start first and work gradually to the right. This can be seen in the figure
above. After each step is finished, all threads will be synchronized once before
moving on to the next step.

In this way, the similarity matrix can be computed by every thread in the block
(except for the beginning and the end of each block strip), which reduces computation
time. However, the main advantage of strip-wise intra-task parallelization lies with
the fact that the block strips and thread strips are of fixed widths. This means that one
can utilize Hirschberg’s algorithm to store all the intermediate results on shared
memory or even registers, as seen in Fig. 4, without the worry of memory overflow
due to their limited sizes.

Fig. 4. Usage of memory in intra-task parallelization

Here only the cells computed in the last step and the cells being computed in the
current step are stored. These cells can be stored in register, or in shared memory to
take advantage of array structure. The cells on the border with the next thread strip on
the right must be stored in shared memory to allow the next thread strip to use the
results for the computation of its border cells. Only the cells bordering the next block
strip are stored in global memory to be used later. The right-most columns of cells in
the matrix will not required global memory as only the cell at the bottom-most does
matter at that point.

This way of memory usage should sharply reduce memory latency compared to
relying extensively on global memory to store intermediate results (eg. In MSA-
CUDA’s intra-task parallelization). In the Fig.4, global memory is accessed only once
for the computation of 12 cells. And in the actual software the rate is 1:512. This
means that for matrix with width of less than or equal to 512 cells, global memory

 Aligning Multi Sequences on GPUs 307

will not be used at all in the computation of the matrix itself, though it is still used to
create sentry at the start of the computation in the actual software.

b) Inter-task parallelization
Essentially, inter-task parallelization is a watered-down version of intra-task
parallelization, with each similarity matrix being assigned to a thread instead of a
whole block. The computation are carried out pretty much the same as intra-task
parallelization, albeit with only one thread the “block strip” and “thread strip” become
one.

Inter-task parallelization suffers greatly in performance improvement for the
computation of a single similarity matrix compared to intra-task parallelization,
having all the cells in the similarity matrix computed consequentially, and a higher
rate of global memory usage. Nonetheless, it makes up for it in computing more
similarity matrices in parallel than intra-task parallelization, since now each thread
computes one matrix instead of each block.

Inter-task parallelization, therefore, is more suitable for cases involving larger
number of very short sequences. In these cases, because the size of the similarity
matrices may be much smaller than the fixed size of one single block strip, many
threads will go idle during the computation and are wasted. Intra-task parallelization
should be used in cases with small number of very long sequences, in which the huge
“jump” of a whole block strip can be fully exploited.

3.2.4 Parallelization for Stage 3
Theoretically, strip-wise parallelization approach can also be applied to the
computation of similarity matrices in Stage 3 of the Clustal algorithm. However, due
to time constraints, this has not been implemented in the actual software as of yet.
Apart from the parallelization of similarity matrix computation, multiple progressive
alignments in multiple internal nodes can be carried out in parallel, as long as these
internal nodes are not independent in computation from each other. This has been
implemented successfully in MSA-CUDA, so we would not dig further into this.

4 Experiments and Evaluation

Our parallel algorithm - CUDAClustal in this paper were implemented and tested on
one GPU Geforce GTX 295 in a PC running the Linux OS. In our tests, we extract
data from the database UniProtKB/Swiss-Prot for testing. UniProtKB is a database
containing a large amount of biological information about proteins; in which Swiss-
Prot is the part evaluated and edited by hand. The algorithm is paralleled on four
different datasets, with two cases: a large number of short sequences and a small
number of long sequences. Details of data are shown in the Table 1.

CUDAClustal shows a significant improvement of performance when compared to
sequential versions of the algorithm Clustal. If evaluating the time of running the
entire steps, CUDAClustal is faster two times than Clustal when working with
datasets with the large number of sequences (test1.fasta, test2.fasta) and is faster three
times than Clustal in the case of datasets with large average lengths of sequences
(test3.fasta, test4.fasta). These results are described in Table 1.

308 H.P. Pham, H.D. Nguyen, and T.T. Nguyen

Table 1. Comparison of runtime between CUDAClustal and Clustal

Dataset
Number of
sequences

Average
length of
sequences

Runtime

CUDAClustal Clustal

test1.fasta 200 ~300 120,13s 220,25s

test2.fasta 300 ~300 269,88s 545,25s

test3.fasta 100 ~800 110,82 327,51

test4.fasta 50 ~1600 121,65s 332,2s

Currently, CUDAClustal has been paralleled for only stage one of the entire

algorithm, so to evaluate the computing performance accurately, we consider the
runtime of each stages. Results show that for all datasets, CUDAClustal gives a great
computational performance: the runtime for stage one of CUDAClustal is smaller
approximately 30 times than the sequential Clustal. This result is shown in Table 2.
So if only considering parts which have been paralleled then the effect of using GPU
is very feasible. This means that if stage three of the algorithm is also paralleled, the
total time of the program will be more significantly reduced.

Table 2. Comparison of runtime by stages between CUDAClustal and Clustal

Datasets

Stage 1 Stage 2 & 3

CUDAClustal

Clustal CUDAClustal Clustal Memory
Operation

Runtime of
kernel

test1.fasta 0,26s 4,40s 124,13s 115,46s 96,12s

test2.fasta 0,35s 12,16s 304,28s 257,37s 287,88s

test3.fasta 0,04s 8,03s 237,00s 102,48s 90,51s

test4.fasta 0,001s 6,51s 233,05s 115,14s 99,15s

5 Conclusion

The technology GPU shows the ability of improving computational performance for
problems which can be paralleled. In this paper, we present our parallel algorithm –
CUDAClustal to solve the MSA problem. We have paralleled the first stage of the
algorithm and achieved a significant speedup when compared to the sequential
program. Here, parallelization for stage one brings increase in performance which is
approximately two times for the entire algorithm Clustal and 30 times for stage one.
This proves a certain success level of paralleling the algorithm using CUDA on GPU,
enabling to parallel the whole three steps. In the future work, we intend to modify our

 Aligning Multi Sequences on GPUs 309

program by parallelizing stage three by performing alignment at nodes with the same
height from leaf nodes in parallel. Moreover, we will implement the algorithm on
multi GPU and GPU Cluster to increase the computing performance.

References

1. http://docencia.ac.upc.edu/master/AMPP/slides/
ampp_sw_presentation.pdf

2. http://en.wikipedia.org/wiki/Multiple_sequence_alignment
3. http://en.wikipedia.org/wiki/Needleman-Wunsch_algorithm
4. http://gpgpu.org
5. http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Dynamic/Hirsch
6. Cheetham, J., et al.: Parallel ClustalW for PC clusters. In: International Conference on

Computational Science and Its Applications (ICCSA), pp. 300–309 (2003)
7. Thompson, J.D., et al.: CLUSTAL W: improving the sensitivity of progressive multiple

sequence alignment through sequence weighting, position-specific gap penalties and
weight matrix choice. Nucleic Acids Res. 22(22), 4673–4680 (1994)

8. Li, K.B.: Clustal-MPI: ClustalW analysis using parallel and distributed computing.
Bioinformatics 19, 1585–1586 (2003)

9. Chaichoompu, K., Kittitornkun, et al.: MT ClustalW: multithreading multiple sequence
alignment. In: International Parallel and Distributed Processing Symposium (2006)

10. Notredame, Higgins, Heringa: T-Coffee: A novel method for multiple sequence
alignments. JMB 302, 205–217

11. NVIDIA, http://www.nvidia.com/object/cuda_home_new.htm
12. Duzlevski, O.: SMP version of ClustalW 1.82 (unpublished)
13. Sugawara, H., Chenna, R., et al.: Multiple sequence alignment with the Clustal series of

programs. Nucleic Acids Res. 31, 3497–3500 (2003)
14. Feng, S., Tan, G., et al.: Parallel multiple sequences alignment in SMP cluster. In:

International Conference on HPC in Asia Region, pp. 425–431 (2005)
15. Haque, W., Aravind, A., et al.: Pairwise sequence alignment algorithms: a survey. In:

Conference on Information Science, Technology and Application, New York (2009)
16. Liu, W., et al.: Streaming algorithms for biological sequence alignment on GPUs. IEEE

Transactions on Parallel and Distributed Systems 18, 1270–1281 (2007)
17. Liu, Y., Schmidt, B., Maskell, D.L.: MSA-CUDA: Multiple Sequence Alignment on

Graphics Processing Units with CUDA. In: International Conference on Application-
specific Systems, Architectures and Processors, USA (2009)

	Aligning Multi Sequences on GPUs
	Introduction
	Pairwise Sequence Alignment Problem
	Multi Sequence Alignment Problem

	GPU and Programming Model CUDA
	Parallel Clustal on GPU
	Overview of the Algorithm Clustal
	Parallel the Algorithm Clustal

	Experiments and Evaluation
	Conclusion
	References

