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Abstract. This paper proposes a solution for clustering hierarchical data using 
SOM neural network. The training process that combines data-partition and 
network-partition allows forming an automated hierarchical tree structure 
representing the clustering process more detailed from the root node to the leaf 
node. In which the root node and intermediate nodes act as the orientation for 
data distribution, and the leaf nodes represent real clusters of data. This training 
tree structure allows programming parallel processing to speed up network 
training. In addition, applying the trained network could be more efficient 
because the search process performed on the tree structure. 
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1 Introduction 

Teuvo Kohonen developed SOM neural network in the 80s. This is the feed-forward 
neural network using of the competitive learning, unsupervised (or self-organizing), 
allowing mapping data from a multi-dimensional space to two–dimensional space, 
thereby creating a feature map of the data [7]. SOM is an appropriate tool to solve the 
problem of data clustering, an important preprocessing step in data mining [1]. When 
applying the SOM neural network for clustering data, it consists of three phases: 

- Phase 1: Training the network with sample data set. 
- Phase 2: Applying the trained network. 
- Phase 3: Visualize network (usually using the gray level map, U-Matrix, to 

present data distribution image [6]) 

However, the standard SOM model requires computation time relatively long (both 
training time and applying the trained network). The main reason is Kohonen matrix 
must be large enough to describe all features of the data (usually thousands of 
neurons), while with each input vector, the network will perform sequential search 
across the entire Kohonen matrix. Currently, there have been many studies on this 
issue, for example: Batch SOM algorithm [2] speeds up training by deferring the 
updates of weights to the end of a learning epoch (after browsing all the training 
samples); Tree-Structured SOM algorithm (TS-SOM) [4] builds a training tree 
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structure, in which each node on the tree is a neuron. The numbers of sub-nodes of 
each node are equal and increase according to exponential function. The nodes at the 
same level forms a layer, upper layer trains the underlying one. For example, the first 
layer has four nodes (neuron), each node has 4 sub-nodes, so the second layer has 16 
nodes, and the third layer has 64 nodes… The training time is faster because finding 
the winning neuron (Best Matching Unit - BMU) at each step of the training process 
is performed following the branches of the tree. Alfredo F. Costa proposed a tree 
structure representing the clusters, in which each node of the tree is a Kohonen map 
[3]. Each node is fully trained as standard SOM, then builds the U-Matrix and uses 
this information to form the sub-nodes. This solution is not effective because the fact 
that at the root node has finished training and U-Matrix of the root node completely 
visualized input data (step 3 above). However, data analysis (data-partition) following 
tree structure is a good idea to program processing in parallel. 

After studying the standard model and some improved models of SOM, we found 
that there are two issues needed to be considered in order to improve the efficiency of 
SOM neural network when applied to large data sets. Firstly, reducing the size of 
Kohonen matrix but still fully describing the features of data.  Secondly, having 
mechanisms to search and process data in parallel on different parts of the network.  

This paper proposes a hierarchical training technique based on threshold T, non-
similar on the features of the data, which allows segmenting data (data-partition) 
according to the hierarchy tree structure. Each node of the tree is a Kohonen matrix, 
in which the root node and the intermediate nodes (branch nodes) only serve to orient 
the data segmenting, leaf nodes represent real clusters of data. Thus, the size of the 
original Kohonen matrix will reduce, and the size of sub Kohonen will reduce 
gradually after each branching. At each node, threshold T clusters the neurons in the 
process of training. Each cluster in the parent node is the basis for establishing a child 
node. All data vectors that belong to a cluster of the parent node will be used to train 
the child node corresponding to that cluster. At the next training level, when threshold 
T declines α value, repeat the training and develop the children nodes for all the 
current leaf nodes. Training process will stop when the threshold T reduces to a 
minimum value ε.  

The rest of the paper include: Section 2 presents the standard SOM model and U-
Matrix, Section 3 presents the principle of neural clustering in the training process 
based on the threshold T, Section 4 provides a hierarchical tree training architecture, 
Section 5 presents the experimental results and the final section concludes and 
comments on the presented solution in the articles. 

2 SOM Neural Network and U-Matrix 

SOM neural network includes an input layer and a output layer called Kohonen layer. 
Kohonen layer is often organized as a two dimensional matrix of neurons. Each unit i 
(neurons) in the Kohonen layer is attached a weight vector wi=[wi1, wi2,… ,win], with 
n is the input vector size, wij is the weight of neuron i corresponding to the input j. 
Network training process is repeated several times, at iteration t, three steps are done: 
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• Step 1- find the BMU: randomly select an input v from the data set, find b 
neuron that has the smallest dist distance function in the Kohonen matrix 
(frequently use functions Euclidian, Manhattan or Vector Dot Product). b 
neuron is called BMU. 
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• Step 3- update the weights of the neurons in the neighborhood radius of the 
BMU in a trend closer to the input vector v : 
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neuron i in the Kohonen matrix.  

To observe the feature map of the 
data, visual matrix using gray level 
(U-Matrix) is often used (Figure 1). 
The bright region in the matrix 
represents the clusters (the distance 
between the weight vectors of 
neurons is small), dark areas (large 
distance) which is used to separate 
areas between clusters. 
Agglomerative algorithm [8] is used 
to determine the boundary between 
the clusters. 

Indeed, each neuron in the 
Kohonen layer represents one or several data samples, therefore the clustering data is 
clustering the neurons. The paper [5] we proposed improved SOM algorithm that allowed 
us to identify data clusters (clusters of neurons) and labeled on each neuron on Kohonen 
matrix in the process of network training without a visual matrix. Applying standard SOM 
to cluster data, it has computing complexity is O(n4), whereas using improved SOM, it is 
O(n3). The principles identifying clusters will be presented in the next section.  

Fig. 1. Illustration of U-Matrix 
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3 Principles of Neuron Cluster in the Training Process 

For each neuron in the neighborhood radius of the BMU (including BMU), besides 
updating the weight vector (step 3), we labeled neurons with clustered index based on 
the following four principles: 

• Principles of cluster formation: if BMU does not yet belong to any cluster, a new 
cluster is formed, which include BMU and neurons in the neighborhood radius of 
the BMU if these neurons are also not members of any clusters. Figure 2, BMU 
and N1 do not belong to any 
cluster, N1 is within the 
impact of BMU, therefore 
forming a new cluster of 
BMU and N1. 

• Principle of neurons 
dispute: A neuron M is 
deemed to be a dispute if it 
was attached to a cluster G1 
and located in the radius of 
the impact of the BMU. Let 
k1 be the feature difference 
between the M and G1; k2 is 
the feature difference 
between the M and BMU. 
If k1 < k2, M belongs to 
cluster G1, otherwise, M 
belongs to the cluster of the 
BMU. Figure 2, N2 is of 
cluster 1 but located within 
a radius of the impact of 
the BMU, so disputes 
occur between cluster of 
the BMU and cluster 1. 

• Principle of cluster 
splitting: If BMU belongs 
to a certain cluster, check 
splitting condition: let k be 
the different feature value 
of BMU from its cluster. If 
k>=T (splitting threshold), 
BMU will form a new 
cluster, similarly to 
principles of cluster 
formation; otherwise, 
BMU will extend cluster 

Cluster 1

Cluster 2

 

Fig. 2. Illustration of the principle of the cluster 
formation and neurons dispute 

Cluster 4

Cluster 3

 

Fig. 3. Illustration of the principle of the cluster 
formation and neurons dispute 
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which contain it using the principle of extension. Figure 3, the BMU is the 
neuron of cluster 3, splitting condition should be considered. 

• Principle of cluster extension: If BMU is a member of a cluster, and splitting 
condition is false, it will consolidate its cluster by admitting more neurons in 
its radius impact as the principle of cluster formation. Figure 3, if the BMU 
does not satisfy the splitting condition (but still in cluster 3), it will admit N6 
to cluster 3 and N4 will be disputed with the cluster 4. 

The four principles above did not entirely alter the data feature results of network, 
because in fact they only assigned cluster index for each neuron. Therefore, the 
quality of the Kohonen map is constant. However, the numbers of clusters formed 
depend on the splitting threshold T. If T is large, the numbers of clusters formed is 
small. Otherwise, they are large. The next section presents the training hierarchical 
tree structure based on the parameter T. 

4 The Training Hierarchical Tree Structure 

The training hierarchical tree structure comes from the idea of dividing the data into 
large clusters, from each large cluster further divided into smaller clusters, and from 
the small cluster is further subdivided into smaller clusters. In which, each node of the 
tree is designed as a SOM neural network, allowing to cluster data more detail 
gradually from the root node to the leaf node. A parent node after having been trained 
will be used to divide its data into subsets. Each subset of data continues to be used to 
train the corresponding child nodes generated. This division process is based on the 

threshold T, with { }
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difference between two certain elements in the entire data set.   
Tree will grow and be trained 

on each layer. At each layer, all 
the leaf nodes are trained with the 
same threshold T. At lower layer, 
T decreases a value α until T=ε. 
Figure 4 illustrates training 
structure with m layers, the first 
layer is trained with threshold 
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each layer, T value decreases α 
until it reachs ε value. 

On the first layer, all original 
data are trained by only a single 
Kohonen whose size is nxn, and 
uses splitting threshold T1. Results 
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Fig. 4. Illustration of the training hierarchical tree 
structure 
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were k subsets of I={I1, I2, …, Ik}. On the second layer, each subset I1, I2,…, Ik will be 
trained by each corresponding Kohonen KI1, KI2, …, KIk and uses splitting threshold  
T2=T1-α. Thus each set Ii (where i=1..k) trained by KIi was divided into subsets Ii1, Ii2,… 
On the next layers, repeat the reduction T and train each child node with the 
corresponding subset of it, until T=ε. 

The size of the child nodes will be reduced gradually depending on the size of the 
parent node and the ratio of the number of elements in the subset used to train it with 
the number of elements used to train the parent node. 

Let nchild be size of child node: ar
ar
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cardinality of the set, β is used to limit the child node size reduction in compared with 
the parent node size (we tested with β=0.3). 

Because the role of the root node and the intermediate nodes are data oriented 
division, the root node size does not need to be large enough to describe all features of 
the data set. This significantly reduces the training time at each node. In addition, data 
is divided as tree structure to train in parallel on many Kohonen networks, so training 
time and application time of the trained network are faster than standard SOM model. 

To test these evaluations, we have written the test program on a personal computer, 
using multithreaded programming technique combining recursion. These 
experimental results will be presented in the next section. 

5 Experimental Results 

To facilitate the visual observation and evaluate research results, we choose the 
problem of color image segment. The input data set is the pixels. Each pixel is 
considered as a vector of input data including three elements corresponding to three 
colors R, G, B. Thus, the network has three inputs and the size of the data set is the 
size of an image (up to hundred thousands of pixels). 

We adjust the training parameters for both models training hierarchical tree and 
standard SOM model (applying the four principles presented in the section 3) to reach 
the similar result of the formation of clusters and evaluate the effectiveness of 
execution time. 

The standard SOM model: size of Kohonen is 30x30, splitting threshold T=30. 
The training hierarchical tree model: size of original Kohonen is 11x11, splitting 

threshold 30<=T<=120 (with ε=30, T1=120< 

{ } 2 2 2

,
ax || || 255 255 255 442i j

i j
m v v- = + +  ), at each layer, T reduces α=20.  

We tested four different sized images, each image ran 5 times. The table below 
presents the test results. 

In all cases, the training time and time applying trained network to cluster of 
hierarchical tree model are faster. The first two images with the size of about 26  
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Original 
image 

Times 

Standard SOM model Hierarchical tree model 
Time (ms) Image result/ 

numbers of 
clusters 

Time (ms) Image result/ 
numbers of 

clusters Training 
Applying 
clustering 

Training 
Applying 
clustering 

 

1 
2 
3 
4 
5 

4747.27 
4627.26 
4759.54 
4813.65 
4687.25 

1813.10 
1897.45 
1854.32 
1864.35 
1824.54 

1974.32 
2012.35 
1987.32 
2103.54 
2014.36 

623.03 
708.25 
732.12 
698.65 
743.25 

163X159 avg 4726.99 1850.75 111-130 2018.38 701.06 127-155 

 

1 
2 
3 
4 
5 

4655.26 
4568.25 
4687.26 
4756.21 
4587.25 

1592.35 
1685.32 
1672.32 
1612.32 
1586.21 

1163.06 
1254.32 
1198.32 
1245.35 
1234.15 

679.03 
684.35 
687.32 
702.35 
624.21 

160X160 avg 4650.85 1629.70 22-29 1219.04 675.45 29-35 

 

1 
2 
3 
4 
5 

19665.56 
19565.69 
19615.58 
19625.76 
19584.84 

6833.26 
6696.21 
6787.65 
6681.84 
6904.65 

4025.32 
4059.23 
3998.26 
4065.32 
4100.23 

2313.25 
2268.12 
2298.32 
2274.54 
2289.78 

350x300 avg 19611.49 6780.72 32-36 4049.67 2288.80 31-36 

 

1 
2 
3 
4 
5 

41307.32 
42563.24 
43124.87 
40154.65 
42564.65 

14346.54 
14687.25 
14753.24 
13968.24 
14885.98 

7738.44 
7954.32 
7542.21 
7652.32 
7764.24 

4107.23 
4321.25 
4215.36 
4198.25 
4253.35 

550x382 avg 41942.95 14528.25 80-110 7730.31 4219.09 77-109 
 

Fig. 5. Comparison of experimental results of the two models 

thousand pixels, hierarchical tree model has training time of approximately 2.3 to 3.8 
times faster, and application time is about 2.5 times faster. Two next images (the 
numbers of pixels are over 100 thousands) hierarchical tree model has faster training 
time of approximately 4.8 to 5.4 times, and faster application time 3 to 3.5 times. This 
shows that the speed advantage of the hierarchical tree model increases when the data 
size is large. We have tested with variety of input images and received the similar 
results. 

6 Conclusions 

The training hierarchical tree structure significantly reduces the network training time 
by two main reasons. Firstly, the size of Kohonen matrix reduced (due to the features 
of the data are not represented on a Kohonen matrix, but represented on the sub 
Kohonen matrixes which are the leaf node of the training tree). Secondly, allowed 
segmenting the data to train in parallel by many SOM neural networks. In addition, 
the training model is represented by a tree structure so the application time of trained 
network to cluster data is also dramatically reduced.  
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In terms of the quality, data features are completely unchanged since the 
hierarchical tree model does not change the standard SOM algorithm but only 
segments data for parallel processing. 

However, as a standard SOM model, proposing a suitable configuration for the 
network is difficult. It is needed to test several times to select the parameters (original 
Kohonen matrix size and scope of the threshold T and the reduced value of T after each 
layer) best suited to each type of data. In principle, the smaller the matrix size is, the 
faster the original Kohonen network runs, but if it is too small , the efficiency of the 
characterization data of the network will decrease like the standard SOM model; if T1 
is too large, this will affect the efficiency of data segmenting of the original Kohonen 
and Kohonens in the first layers. 
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