
P.C. Vinh et al. (Eds.): ICCASA 2012, LNICST 109, pp. 282–289, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Clustering Hierarchical Data Using SOM Neural Network

Le Anh Tu1, Nguyen Quang Hoan2, and Le Son Thai1

1 Thai Nguyen University of Information and Communication Technology
2 Posts and Telecommunications Institute of Technology

{anhtucntt,lesonthai}@gmail.com, quanghoanptit@yahoo.com.vn

Abstract. This paper proposes a solution for clustering hierarchical data using
SOM neural network. The training process that combines data-partition and
network-partition allows forming an automated hierarchical tree structure
representing the clustering process more detailed from the root node to the leaf
node. In which the root node and intermediate nodes act as the orientation for
data distribution, and the leaf nodes represent real clusters of data. This training
tree structure allows programming parallel processing to speed up network
training. In addition, applying the trained network could be more efficient
because the search process performed on the tree structure.

Keywords: neural network, kohonen, self organizing map, clustering data, data
mining.

1 Introduction

Teuvo Kohonen developed SOM neural network in the 80s. This is the feed-forward
neural network using of the competitive learning, unsupervised (or self-organizing),
allowing mapping data from a multi-dimensional space to two–dimensional space,
thereby creating a feature map of the data [7]. SOM is an appropriate tool to solve the
problem of data clustering, an important preprocessing step in data mining [1]. When
applying the SOM neural network for clustering data, it consists of three phases:

- Phase 1: Training the network with sample data set.
- Phase 2: Applying the trained network.
- Phase 3: Visualize network (usually using the gray level map, U-Matrix, to

present data distribution image [6])

However, the standard SOM model requires computation time relatively long (both
training time and applying the trained network). The main reason is Kohonen matrix
must be large enough to describe all features of the data (usually thousands of
neurons), while with each input vector, the network will perform sequential search
across the entire Kohonen matrix. Currently, there have been many studies on this
issue, for example: Batch SOM algorithm [2] speeds up training by deferring the
updates of weights to the end of a learning epoch (after browsing all the training
samples); Tree-Structured SOM algorithm (TS-SOM) [4] builds a training tree

 Clustering Hierarchical Data Using SOM Neural Network 283

structure, in which each node on the tree is a neuron. The numbers of sub-nodes of
each node are equal and increase according to exponential function. The nodes at the
same level forms a layer, upper layer trains the underlying one. For example, the first
layer has four nodes (neuron), each node has 4 sub-nodes, so the second layer has 16
nodes, and the third layer has 64 nodes… The training time is faster because finding
the winning neuron (Best Matching Unit - BMU) at each step of the training process
is performed following the branches of the tree. Alfredo F. Costa proposed a tree
structure representing the clusters, in which each node of the tree is a Kohonen map
[3]. Each node is fully trained as standard SOM, then builds the U-Matrix and uses
this information to form the sub-nodes. This solution is not effective because the fact
that at the root node has finished training and U-Matrix of the root node completely
visualized input data (step 3 above). However, data analysis (data-partition) following
tree structure is a good idea to program processing in parallel.

After studying the standard model and some improved models of SOM, we found
that there are two issues needed to be considered in order to improve the efficiency of
SOM neural network when applied to large data sets. Firstly, reducing the size of
Kohonen matrix but still fully describing the features of data. Secondly, having
mechanisms to search and process data in parallel on different parts of the network.

This paper proposes a hierarchical training technique based on threshold T, non-
similar on the features of the data, which allows segmenting data (data-partition)
according to the hierarchy tree structure. Each node of the tree is a Kohonen matrix,
in which the root node and the intermediate nodes (branch nodes) only serve to orient
the data segmenting, leaf nodes represent real clusters of data. Thus, the size of the
original Kohonen matrix will reduce, and the size of sub Kohonen will reduce
gradually after each branching. At each node, threshold T clusters the neurons in the
process of training. Each cluster in the parent node is the basis for establishing a child
node. All data vectors that belong to a cluster of the parent node will be used to train
the child node corresponding to that cluster. At the next training level, when threshold
T declines α value, repeat the training and develop the children nodes for all the
current leaf nodes. Training process will stop when the threshold T reduces to a
minimum value ε.

The rest of the paper include: Section 2 presents the standard SOM model and U-
Matrix, Section 3 presents the principle of neural clustering in the training process
based on the threshold T, Section 4 provides a hierarchical tree training architecture,
Section 5 presents the experimental results and the final section concludes and
comments on the presented solution in the articles.

2 SOM Neural Network and U-Matrix

SOM neural network includes an input layer and a output layer called Kohonen layer.
Kohonen layer is often organized as a two dimensional matrix of neurons. Each unit i
(neurons) in the Kohonen layer is attached a weight vector wi=[wi1, wi2,… ,win], with
n is the input vector size, wij is the weight of neuron i corresponding to the input j.
Network training process is repeated several times, at iteration t, three steps are done:

284 L.A. Tu, N.Q. Hoan, and L.S. Thai

• Step 1- find the BMU: randomly select an input v from the data set, find b
neuron that has the smallest dist distance function in the Kohonen matrix
(frequently use functions Euclidian, Manhattan or Vector Dot Product). b
neuron is called BMU.

{ }is || w || min || ||b i
i

d t v v m= - = -

 (1)

• Step 2- determine the neighborhood radius of the BMU:

() 0 exp
t

ts s
l

é ù
ê ú= -
ê úë û

 is interpolation function of radius (decreasing as the

numbers of iterations), where σ0 is the initial radius; time constant

()0log

K
l

s
= , where K is the total number of iterations.

• Step 3- update the weights of the neurons in the neighborhood radius of the
BMU in a trend closer to the input vector v :

() () () () ()w 1 w wi i bi it t t h t v ta é ù+ = + -ê úë û (2)

where () 0 exp
t

ta a
l

é ù
ê ú= -
ê úë û

 is the learning speed interpolation function, with α0 is the

initial value of the learning rate; hbi(t) is the interpolation function over learning
times, shows the effect of distance to the learning process, can be calculated by the

formula ()
()

2

2

|| ||
exp

2
b i

bi

r r
h t

ts

é ù-ê ú= -ê ú
ê úë û

 where rb and ri position of the neuron b and

neuron i in the Kohonen matrix.

To observe the feature map of the
data, visual matrix using gray level
(U-Matrix) is often used (Figure 1).
The bright region in the matrix
represents the clusters (the distance
between the weight vectors of
neurons is small), dark areas (large
distance) which is used to separate
areas between clusters.
Agglomerative algorithm [8] is used
to determine the boundary between
the clusters.

Indeed, each neuron in the
Kohonen layer represents one or several data samples, therefore the clustering data is
clustering the neurons. The paper [5] we proposed improved SOM algorithm that allowed
us to identify data clusters (clusters of neurons) and labeled on each neuron on Kohonen
matrix in the process of network training without a visual matrix. Applying standard SOM
to cluster data, it has computing complexity is O(n4), whereas using improved SOM, it is
O(n3). The principles identifying clusters will be presented in the next section.

Fig. 1. Illustration of U-Matrix

 Clustering Hierarchical Data Using SOM Neural Network 285

3 Principles of Neuron Cluster in the Training Process

For each neuron in the neighborhood radius of the BMU (including BMU), besides
updating the weight vector (step 3), we labeled neurons with clustered index based on
the following four principles:

• Principles of cluster formation: if BMU does not yet belong to any cluster, a new
cluster is formed, which include BMU and neurons in the neighborhood radius of
the BMU if these neurons are also not members of any clusters. Figure 2, BMU
and N1 do not belong to any
cluster, N1 is within the
impact of BMU, therefore
forming a new cluster of
BMU and N1.

• Principle of neurons
dispute: A neuron M is
deemed to be a dispute if it
was attached to a cluster G1
and located in the radius of
the impact of the BMU. Let
k1 be the feature difference
between the M and G1; k2 is
the feature difference
between the M and BMU.
If k1 < k2, M belongs to
cluster G1, otherwise, M
belongs to the cluster of the
BMU. Figure 2, N2 is of
cluster 1 but located within
a radius of the impact of
the BMU, so disputes
occur between cluster of
the BMU and cluster 1.

• Principle of cluster
splitting: If BMU belongs
to a certain cluster, check
splitting condition: let k be
the different feature value
of BMU from its cluster. If
k>=T (splitting threshold),
BMU will form a new
cluster, similarly to
principles of cluster
formation; otherwise,
BMU will extend cluster

Cluster 1

Cluster 2

Fig. 2. Illustration of the principle of the cluster
formation and neurons dispute

Cluster 4

Cluster 3

Fig. 3. Illustration of the principle of the cluster
formation and neurons dispute

286 L.A. Tu, N.Q. Hoan, and L.S. Thai

which contain it using the principle of extension. Figure 3, the BMU is the
neuron of cluster 3, splitting condition should be considered.

• Principle of cluster extension: If BMU is a member of a cluster, and splitting
condition is false, it will consolidate its cluster by admitting more neurons in
its radius impact as the principle of cluster formation. Figure 3, if the BMU
does not satisfy the splitting condition (but still in cluster 3), it will admit N6
to cluster 3 and N4 will be disputed with the cluster 4.

The four principles above did not entirely alter the data feature results of network,
because in fact they only assigned cluster index for each neuron. Therefore, the
quality of the Kohonen map is constant. However, the numbers of clusters formed
depend on the splitting threshold T. If T is large, the numbers of clusters formed is
small. Otherwise, they are large. The next section presents the training hierarchical
tree structure based on the parameter T.

4 The Training Hierarchical Tree Structure

The training hierarchical tree structure comes from the idea of dividing the data into
large clusters, from each large cluster further divided into smaller clusters, and from
the small cluster is further subdivided into smaller clusters. In which, each node of the
tree is designed as a SOM neural network, allowing to cluster data more detail
gradually from the root node to the leaf node. A parent node after having been trained
will be used to divide its data into subsets. Each subset of data continues to be used to
train the corresponding child nodes generated. This division process is based on the

threshold T, with { }
,
ax || ||i j

i j
T m v ve£ < - , where ε is the limit on the value of non-

similar elements in the same cluster, { }
,
ax || ||i j

i j
m v v- is the value of the largest

difference between two certain elements in the entire data set.
Tree will grow and be trained

on each layer. At each layer, all
the leaf nodes are trained with the
same threshold T. At lower layer,
T decreases a value α until T=ε.
Figure 4 illustrates training
structure with m layers, the first
layer is trained with threshold

{ }1
,
ax || ||i j

i j
T T m v v= < - , on

each layer, T value decreases α
until it reachs ε value.

On the first layer, all original
data are trained by only a single
Kohonen whose size is nxn, and
uses splitting threshold T1. Results

{ }1
,
ax || ||i j

i j
T m v v< -

T2=T1-
α

Tk=Tk-1 -α

Tm= ε

Fig. 4. Illustration of the training hierarchical tree
structure

 Clustering Hierarchical Data Using SOM Neural Network 287

were k subsets of I={I1, I2, …, Ik}. On the second layer, each subset I1, I2,…, Ik will be
trained by each corresponding Kohonen KI1, KI2, …, KIk and uses splitting threshold
T2=T1-α. Thus each set Ii (where i=1..k) trained by KIi was divided into subsets Ii1, Ii2,…
On the next layers, repeat the reduction T and train each child node with the
corresponding subset of it, until T=ε.

The size of the child nodes will be reduced gradually depending on the size of the
parent node and the ratio of the number of elements in the subset used to train it with
the number of elements used to train the parent node.

Let nchild be size of child node: ar
ar

| |

| |
child

child p ent
p ent

I
n n

I

bæ ö÷ç ÷ç= ÷ç ÷ç ÷çè ø
, where |.| represents the

cardinality of the set, β is used to limit the child node size reduction in compared with
the parent node size (we tested with β=0.3).

Because the role of the root node and the intermediate nodes are data oriented
division, the root node size does not need to be large enough to describe all features of
the data set. This significantly reduces the training time at each node. In addition, data
is divided as tree structure to train in parallel on many Kohonen networks, so training
time and application time of the trained network are faster than standard SOM model.

To test these evaluations, we have written the test program on a personal computer,
using multithreaded programming technique combining recursion. These
experimental results will be presented in the next section.

5 Experimental Results

To facilitate the visual observation and evaluate research results, we choose the
problem of color image segment. The input data set is the pixels. Each pixel is
considered as a vector of input data including three elements corresponding to three
colors R, G, B. Thus, the network has three inputs and the size of the data set is the
size of an image (up to hundred thousands of pixels).

We adjust the training parameters for both models training hierarchical tree and
standard SOM model (applying the four principles presented in the section 3) to reach
the similar result of the formation of clusters and evaluate the effectiveness of
execution time.

The standard SOM model: size of Kohonen is 30x30, splitting threshold T=30.
The training hierarchical tree model: size of original Kohonen is 11x11, splitting

threshold 30<=T<=120 (with ε=30, T1=120<

{ } 2 2 2

,
ax || || 255 255 255 442i j

i j
m v v- = + +), at each layer, T reduces α=20.

We tested four different sized images, each image ran 5 times. The table below
presents the test results.

In all cases, the training time and time applying trained network to cluster of
hierarchical tree model are faster. The first two images with the size of about 26

288 L.A. Tu, N.Q. Hoan, and L.S. Thai

Original
image

Times

Standard SOM model Hierarchical tree model
Time (ms) Image result/

numbers of
clusters

Time (ms) Image result/
numbers of

clusters Training
Applying
clustering

Training
Applying
clustering

1
2
3
4
5

4747.27
4627.26
4759.54
4813.65
4687.25

1813.10
1897.45
1854.32
1864.35
1824.54

1974.32
2012.35
1987.32
2103.54
2014.36

623.03
708.25
732.12
698.65
743.25

163X159 avg 4726.99 1850.75 111-130 2018.38 701.06 127-155

1
2
3
4
5

4655.26
4568.25
4687.26
4756.21
4587.25

1592.35
1685.32
1672.32
1612.32
1586.21

1163.06
1254.32
1198.32
1245.35
1234.15

679.03
684.35
687.32
702.35
624.21

160X160 avg 4650.85 1629.70 22-29 1219.04 675.45 29-35

1
2
3
4
5

19665.56
19565.69
19615.58
19625.76
19584.84

6833.26
6696.21
6787.65
6681.84
6904.65

4025.32
4059.23
3998.26
4065.32
4100.23

2313.25
2268.12
2298.32
2274.54
2289.78

350x300 avg 19611.49 6780.72 32-36 4049.67 2288.80 31-36

1
2
3
4
5

41307.32
42563.24
43124.87
40154.65
42564.65

14346.54
14687.25
14753.24
13968.24
14885.98

7738.44
7954.32
7542.21
7652.32
7764.24

4107.23
4321.25
4215.36
4198.25
4253.35

550x382 avg 41942.95 14528.25 80-110 7730.31 4219.09 77-109

Fig. 5. Comparison of experimental results of the two models

thousand pixels, hierarchical tree model has training time of approximately 2.3 to 3.8
times faster, and application time is about 2.5 times faster. Two next images (the
numbers of pixels are over 100 thousands) hierarchical tree model has faster training
time of approximately 4.8 to 5.4 times, and faster application time 3 to 3.5 times. This
shows that the speed advantage of the hierarchical tree model increases when the data
size is large. We have tested with variety of input images and received the similar
results.

6 Conclusions

The training hierarchical tree structure significantly reduces the network training time
by two main reasons. Firstly, the size of Kohonen matrix reduced (due to the features
of the data are not represented on a Kohonen matrix, but represented on the sub
Kohonen matrixes which are the leaf node of the training tree). Secondly, allowed
segmenting the data to train in parallel by many SOM neural networks. In addition,
the training model is represented by a tree structure so the application time of trained
network to cluster data is also dramatically reduced.

 Clustering Hierarchical Data Using SOM Neural Network 289

In terms of the quality, data features are completely unchanged since the
hierarchical tree model does not change the standard SOM algorithm but only
segments data for parallel processing.

However, as a standard SOM model, proposing a suitable configuration for the
network is difficult. It is needed to test several times to select the parameters (original
Kohonen matrix size and scope of the threshold T and the reduced value of T after each
layer) best suited to each type of data. In principle, the smaller the matrix size is, the
faster the original Kohonen network runs, but if it is too small , the efficiency of the
characterization data of the network will decrease like the standard SOM model; if T1
is too large, this will affect the efficiency of data segmenting of the original Kohonen
and Kohonens in the first layers.

References

[1] Han, J., Kamber, M.: Data Mining - Concepts and Techniques, ch. 8. Morgan Kaufmann
(2001)

[2] Silva, M.: A hybrid parallel SOM algorithm for large maps in data-mining. In: 13th
Portuguese Conference on Artificial Intelligence (EPIA 2007), Workshop on Business
Intelligence. IEEE, Guimaraes (2007)

[3] Costa, M.: A new tree-structured self-organizing map for data analysis. In: Proceedings of
the International Joint Conference on IJCNN (2001)

[4] Laaksonen, J., Koskela, M., Oja, E.: Application of Tree Structured Self-Organizing Maps
in Content-Based Image Retrieval. In: Proceedings of 9th ICANN 1999, Edinburgh, UK
(1999)

[5] Tu, L.A., Hoan, N.Q.: Improving som neural network algorithm for color image clustering
problem. In: Proceedings of VCCA Conference-VietNam (2011)

[6] Ultsch, A., Peter Siemon, H.: Kohonen’s self-organizing feature maps for exploratory data
analysis. In: Proceedings of the International Neural Network Conference (INNC 1990),
pp. 305–308. Kluwer (1990)

[7] Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer (2001)
[8] https://rtmath.net/help/html/29f7cb00-39a1-4fc0-af60-52925f074edd.htm

	Clustering Hierarchical Data Using SOM Neural Network
	Introduction
	SOM Neural Network and U-Matrix
	Principles of Neuron Cluster in the Training Process
	The Training Hierarchical Tree Structure
	Experimental Results
	Conclusions
	References

