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Abstract. This paper deals with a genetic-based interval type 2 fuzzy c-means
clustering (GIT2FCM), which automatically find the optimal number of clusters.
A heuristic method based on a genetic algorithm (GA) is adopted to automati-
cally determine the number of cluster based on the validity index. The proposed
algorithm contains two main steps: initialize randomly the population of the GA
and use the GA to adjust the cluster centroids based on the validity index which
is computed by interval type 2 fuzzy c-means clustering (IT2FCM). The experi-
ments are done based on datasets with the statistics show that the algorithm gen-
erates good quality of clusters.
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1 Introduction

Clustering is used to detect any structures or patterns in the data set, in which objects
within the cluster level data show certain similarities. Clustering algorithms have dif-
ferent shapes from simple clustering as k-means and various improvements [2,3,4,5],
development of family of fuzzy c-mean clustering (FCM) [11]. In addition, genetic al-
gorithms (GAs) have been proposed as alternatives to carry out optimization search due
to its prosperities of multi-objective, coded variables and global optimization. The GA
[20] is an artificial genetic system based on the principle of natural selection where
stronger individuals are likely the winners in a competing environment. GA as a tool
for search and optimization has reached a mature stage with the development of low
cost and speedy computers. Thus, many studies have proposed an algorithm which in-
tegrated GA and FCM called genetic fuzzy c-mean algorithm (GFCM). GFCM has been
successfully applied to several data analysis problems such as image processing [24],
bio informatics [23]...

However, the general clustering algorithms and GFCM often have difficulty in de-
termining the number of clusters and choosing the initial centroids of the clusters. They
have limitation in the handling of the uncertainty and the combination between FCM
and GA. Recently, type-2 fuzzy sets are extensions of original fuzzy sets, have the
advantage of handling uncertainty, which have been developed and applied to many
different problems [6,7,8,9] including data clustering problems. In addition, interval
type-2 fuzzy c-means clustering (IT2FCM) [1] has developed a step in the clustering
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method in which FOU (footprint of uncertainty) is created for the fuzzier m using two
parameters for handling of uncertainty, making clustering more efficiently

Therefore, This paper proposes a genetic interval type 2 fuzzy c-mean clustering al-
gorithm (GIT2FCM) based on a validity index to automatically find the optimal initial
centroids of the clusters and determine the number of clusters. The proposed algorithm
uses the cluster validity measure proposed by Ramze Rezaee [10] to evaluate the clus-
tering results. By minimizing this validity measure by GA through adjusting the initial
centroids of the clusters and the number of clusters, the proposed algorithm will find
the optimal number of clusters. The algorithm consists of two steps. The first step, we
randomly initiate the population of the GA. The second step, a GA adjusts the clus-
ter centroids based on the validity index as a fitness function which is computed by
IT2FCM. The proposed algorithm also automatically determine the optimal number of
clusters. Experiments are implemented based various datasets of classification to show
the advantage of proposed approach.

Remain of the paper is organized as follows: Section II briefly introduces about type-
2 fuzzy sets, IT2FCM clustering and GA. Section III describes the proposed algorithm;
Section IV offers some experimental results and section V concludes the paper.

2 Preliminaries

2.1 Type-2 Fuzzy Sets

A type-2 fuzzy set [6] in X is denoted Ã, and its membership grade of x ∈ X is
μÃ(x, u), u ∈ Jx ⊆ [0, 1], which is a type-1 fuzzy set in [0, 1]. The elements of domain
of μÃ(x, u) are called primary memberships of x in Ã and memberships of primary
memberships in μÃ(x, u) are called secondary memberships of x in Ã.

Definition 1. A type-2 fuzzy set, denoted Ã, is characterized by a type-2 membership
function μÃ(x, u) where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), μÃ(x, u))|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (1)

or

Ã =

∫
x∈X

∫
u∈Jx

μÃ(x, u))/(x, u), Jx ⊆ [0, 1] (2)

in which 0 ≤ μÃ(x, u) ≤ 1.

At each value of x, say x = x′, the 2-D plane whose axes are u and μÃ(x
′, u) is called

a vertical slice of μÃ(x, u). A secondary membership function is a vertical slice of
μÃ(x, u). It is μÃ(x = x′, u) for x ∈ X and ∀u ∈ Jx′ ⊆ [0, 1], i.e.

μÃ(x = x′, u) ≡ μÃ(x
′) =

∫
u∈Jx′

fx′(u)/u, Jx′ ⊆ [0, 1] (3)

in which 0 ≤ fx′(u) ≤ 1.
Type-2 fuzzy sets are called an interval type-2 fuzzy sets [8] if the secondary mem-

bership function fx′(u) = 1 ∀u ∈ Jx i.e. a type-2 fuzzy set are defined as follows:
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Definition 2. An interval type-2 fuzzy set Ã is characterized by an interval type-2 mem-
bership function μÃ(x, u) = 1 where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), 1)|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (4)

Uncertainty of Ã, denoted FOU, is union of primary functions i.e.FOU(Ã) =
⋃

x∈X Jx.
Upper/lower bounds of membership function (UMF/LMF), denoted μÃ(x) and μ

Ã
(x),

of Ã.

2.2 Interval Type-2 Fuzzy Clustering Algorithm

IT2FCM is extension of FCM clustering by using two fuzziness parameters m1, m2 to
make FOU, corresponding to upper and lower values of fuzzy clustering (detail in [1]).
The use of fuzzifiers gives different objective functions to be minimized as follows:

{
Jm1(U, v) =

∑N
k=1

∑C
i=1(uik)

m1d2ik
Jm2(U, v) =

∑N
k=1

∑C
i=1(uik)

m2d2ik
(5)

in which dik =‖ xk − vi ‖ is Euclidean distance between the pattern xk and the cen-
troid vi, C is number of clusters and N is number of patterns. Upper/lower degrees of
membership, uik and uik are determined as follows:

uik =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1∑C
j=1 (dik/djk)

2/(m1−1)
if

1∑C
j=1 (dik/djk)

<
1

C

1∑C
j=1 (dik/djk)

2/(m2−1)
if

1∑C
j=1 (dik/djk)

≥ 1

C

(6)

uik =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1∑C
j=1 (dik/djk)

2/(m1−1)
if

1∑C
j=1 (dik/djk)

≥ 1

C

1∑C
j=1 (dik/djk)

2/(m2−1)
if

1∑C
j=1 (dik/djk)

<
1

C

(7)

in which i = 1, C, k = 1, N .
Because each pattern has membership interval as the upper u and the lower u, each

centroid of cluster is represented by the interval between vL and vR. Cluster centroids
is computed in the same way of FCM as follows:

vi =

∑N
k=1(uik)

mxk∑N
k=1(uik)m

(8)

in which i = 1, C.
After obtaining vRi , vLi , type-reduction is applied to get centroid of clusters as fol-

lows:

vi = (vRi + vLi )/2 (9)
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For membership grades:

ui(xk) = (uR
i (xk) + uL

i (xk))/2, j = 1, ..., C (10)

in which

uL
i =

M∑
l=1

uil/M, uil =

{
ui(xk) if xil uses ui(xk) for vLi
ui(xk) otherwise

(11)

uR
i =

M∑
l=1

uil/M, uil =

{
ui(xk) if xil uses ui(xk) for vRi
ui(xk) otherwise

(12)

Next, defuzzification for IT2FCM is made as if ui(xk) > uj(xk) for j = 1, ..., C and
i 	= j then xk is assigned to cluster i.

2.3 Genetic Algorithm

The GA [20] is an artificial system based on the principle of natural selection. As a
stochastic algorithm, GA is a robust and powerful optimization method for solving
problems with a large search space which are not easily solved by exhaustive methods.
Usually, a basic GA consists of three operators: selection, crossover, and mutation [19].

3 Genetic-Based Interval Type-2 FCM Clustering

3.1 Chromosome Representation

In GA applications, the unknown parameters are encoded in the form of strings, so-
called chromosomes. A chromosome is encoded with binary, integer or real numbers.
In this research a chromosome is encoded with a unit which represents a potential clus-
ter centroid. The length of the chromosome, K , is equivalent to the number of clusters
in the classification problem. K takes value in the range [Kmin, Kmax], where Kmin

is usually assigned to 2 and Kmax describes the maximum chromosome length, which
means the maximum number of possible cluster centroids. Therefore, Kmax must be
selected according to experience. Without assigning the number of clusters in advance,
a variable string length is used. Invalid (non-existing) clusters are represented with neg-
ative integer ”-1”. The values of the chromosomes are changed in an iterative process
to determine the correct number of clusters (the number of valid units in the chromo-
somes) and the actual cluster centroids for a given classification problem.

3.2 Population Initialization

In genetic algorithm, the population size of P is needed. In the proposed method, all
values are chosen randomly from the data space. Such a chromosome belongs to the so-
called parent generation. One (arbitrary)chromosomes of the parent generation is of size
K . Each chromosome of the population is a potential solution by IT2FCM algorithm
with number of clusters C = K .
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3.3 Selection

This fitness level is used to associate a probability of selection with each individual
chromosome. Roulette wheel selection is applied, a proportional selection algorithm
where the number of copies of a chromosome, that go into the mating pool for subse-
quent operations, is proportional to its fitness. If fi is the fitness of individual Pi in the
population, its probability of being selected is as follows:

pi =
fi

P∑
i=1

fi

(13)

where P is the number of individuals in the population.

3.4 Crossover

The purpose of the crossover operation is to create two new individual chromosomes
from two existing chromosomes selected randomly from the current population. Typical
crossover operations are one-point crossover, two-point crossover, cycle crossover and
uniform crossover. In this research, only the simplest one, the one-point crossover with a
fixed crossover probability of μc is used; For the one-point crossover, two chromosomes
are randomly chosen from the population. Assuming the length of the chromosome to
be k, this process randomly chooses a point between 1 and k− 1 and swaps the content
of the two chromosomes beyond the crossover point to obtain the offspring. A crossover
between a pair of chromosomes is affected only if they satisfy the crossover probability.

3.5 Mutation

During mutation, all the chromosomes in the population are checked unit by unit and
according to a fixed probability μm. All values of a specific unit may be randomly
changed. In this paper, a number σ in the range [0, 1] is generated with uniform distri-
bution. If the value at a gene position is v, after mutation it becomes

v = v + σ ∗ v, if v > 0
v = v + σ, if v = 0

3.6 Validity Index and Fitness Computation

The cluster validity measure used in this paper is the one proposed by Ramze Rezaee
[10]. It aims at minimizing the validity index given by the function

VCWB = αScat(C) +Dis(C) (14)

The term Scat(C) of VCWB is the average of scattering within clusters, which is de-
fined as

Scat(C) =
1
C

∑C
i=1 ||σ(vi)||
||σ(X)|| (15)
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in which ||X || = (XT .X)1/2 and

σ(vi) =
1

n

n∑
k=1

uik(xk − vi)
2 (16)

σ(X) =
1

n

n∑
k=1

(xk − x̄)2 (17)

with x̄ =
n∑

k=1

xk/n and xk ∈ X .

The Scat(C) term is used to measure the compactness of the clusters. The Dis(C)
term is the total separation between the clusters which is defined as follows:

Dis(C) =
Dmax

Dmin

C∑
k=1

(

C∑
z=1

‖ vk − vz ‖)−1 (18)

where Dmax = maximum(‖ vi− vj ‖) and Dmin = minimum(‖ vi− vj ‖), ∀i, j ∈
1, ..., C. Lastly, α is a weighting factor, given as

α = Dis(Cmax) (19)

From validity index, fitness computation is implemented in three following steps.

Step 1: The pixel dataset is clustered according to the centroid encoded in the con-
sidered chromosome, such that each pattern xi, i = 1, N is assigned to cluster with
centroid vj , j = 1,K according to the equations (6), (7), (10) in IT2FCM.

Step 2: This step adjusts the values of centroids encoded in the chromosome and
replaces them by the mean points of clusters, respectively. The new center v∗i for the
cluster Ci is given by iterative algorithm for finding centroids (9) in IT2FCM.

v∗i =
vRi + vLi

2
(20)

Step 3: Validity index is computed as above description to obtain VCWB . The goal
for achieving a proper clustering is to minimize the VCWB . Thus, the fitness function
for chromosome j is defined as 1/V j

CWB , which is equivalent to the cluster with the
smallest inner-cluster scatter and the largest cluster separation.

Therefore, the fitness function is defined as

f =
1

VCWB
(21)

3.7 Algorithm

Performance this algorithm is given by a sequence of steps, which are:
1. Generate initial population.
REPEAT
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2. Evaluate population followed fitness function by IT2FCM. In this step, We do an
IT2FCM step to cluster the processing data. After IT2FCM step, we can calculate the
fitness function of the chromosomes following the subsection Validity index and fitness
computation 21.

3. Selection.
4. Crossover.
5. Mutation.
6. Reinsertion of new individuals to the population.
UNTIL Termination criterion is met

Termination criterion: We execute the processes of fitness computation, selection,
crossover, and mutation for a predetermined number of iterations or the difference be-
tween these two fitness values lies below a pre-defined threshold. In every generational
cycle, the fittest chromosome till the last generation is preserved. Thus on termination,
this chromosome gives us the best solution encountered during the search.

4 Experiments

Experiments are implemented with the following parameters of the GIT2FCM are set:
The size of population, P , is taken 30, selection is roulette wheel, crossover rate,
μc = 0.9 and mutation rate, μm = 0.01 [14]. Over the experimental results, the al-
gorithm uses the terminating condition with the number of iterations is set to 20 or
the difference between these two fitness values (error) is smaller than 0.00001. Because
the experiments are well-known with the number of clusters smaller than 10, we choose
the value of chromosome length K is 11.

The results of the proposed algorithm will be compared with the results of the FCM,
IT2FCM with the number of the clusters is optimal obtained by GIT2FCM and the
initial centroids are randomly selected. Besides, the results of GFCM with the similar
combination between GA and FCM with the same parameters such as P = 30, μc =
0.9, μm = 0.01, K = 11 also are compared.

In addition, we measured results on the basis of several validity indexes to assess
performance of the algorithms.

The first experiment is done with image segmentation on the Wolf Image by GFCM
algorithm and GIT2FCM (the proposed algorithm). In Fig. 1, we computed the validity
index [10] on this image with different number of clusters. We can see that the num-
ber of clusters is 4 in which has the minimum validity index with both GFCM and
GIT2FCM. However, the value of validity index of GIT2FCM is smaller than the one
of GFCM on the same number of clusters. Fig. 4 shows that image segmentation by
GIT2FCM gives the better clustering by separating three clusters clearer involving the
wolf, the grass and background.

In the second experiment, the well-known datasets consisting IRIS, Wisconsin Diag-
nostic Breast Cancer (WDBC), Wine [25] are considered. Implementation is performed
to find the optimal number of clusters for these data by two algorithms: GFCM and
GIT2FCM (the proposed algorithm) with validity index VCWB . The optimal number of
clusters Copt is input of FCM and IT2FCM to cluster and compute validity indices. The
considered validity indices consist the Bezdeks partition coefficient (PC-I), the Dunns
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Fig. 1. Validity index is achieved by GFCM and GIT2FCM on Wolf Image

(a) Wolf image (b) GFCM result (c) GIT2FCM result

Fig. 2. Clustering results of GFCM with the number of clusters is 6 and the validity index is
0.085446; GIT2FCM with the number of clusters is 3 and the validity Index is 0.064709364

Table 1. The validity indices VCWB on various algorithms. The optimal clusters C obtained is 3
for Iris data and Wine data, C = 2 for WDBC.

Data + Algorithm 2 3 4 5 6 7 8 9 10 11

Iris,GIT2FCM 0.2424 0.2044 0.2669 0.2831 0.3066 0.3546 0.2202 0.4893 0.3982 0.2973

Iris,GFCM 1.6326 1.4228 2.8368 2.4591 1.6975 2.3160 4.1007 4.1276 3.9259 2.2807

WDBC,GIT2FCM 0.0015 0.0018 0.0017 0.0018 0.0020 0.0019 0.0020 0.0021 0.0021 0.0023

WDBC,GFCM 0.0020 0.0045 0.0074 0.0075 0.0114 0.0024 0.0075 0.0027 0.0029 0.0205

Wine,GIT2FCM 0.0045 0.0035 0.0036 0.0047 0.0048 0.0051 0.0054 0.0058 0.0059 0.0059

Wine,GFCM 0.0099 0.0043 0.0095 0.0087 0.0198 0.0172 0.0101 0.0254 0.0166 0.0231

separation index (Dunn-I), the Davies-Bouldins index (DB-I), and the Separation index
(S-I), Xie and Beni’s index (XB-I), Classification Entropy index (CE-I) [22], Turi’s in-
dex (T-I) [17], Yuangang Tang’s Index (YT-I) [21], CBW index (CBW-I). Results on
validity indices are shown in the table 1.
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Table 2. The various validity indices on WDBC, Wine and IRIS data by algorithms (1): FCM,
(2): GFCM, (3): IT2FCM and (4): GIT2FCM

Validity
WDBC data (C = 2) Wine data (C = 3) IRIS data (C = 3)

index (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

T-I 1.5713 0.8231 0.5131 0.4481 0.7721 0.3986 0.2356 0.1468 0.6423 0.3667 0.3582 0.0970

DB-I 4.1590 4.1590 1.2750 1.0359 5.6337 4.7694 0.7972 0.5326 4.9394 2.9907 1.3350 1.2805

XB-I 0.0103 0.0060 0.0026 0.0021 0.0159 0.0116 0.0067 0.0060 0.0137 0.0115 0.0113 0.0040

S-I 0.0597 0.0597 0.0024 0.0001 0.0441 0.0421 0.1732 0.0008 0.0374 0.0349 0.0195 0.0006

CE-I 0.1809 0.1809 0.1722 0.0612 0.3804 0.3733 0.1943 0.0815 0.3986 0.2211 0.0943 0.0909

PC-I 0.8969 0.8969 0.9059 0.9394 0.7948 0.7993 0.8083 0.9265 0.7832 0.7876 0.9516 0.9897

YT-I 8.7454 8.7453 7.8837 1.0003 7.7540 7.4410 6.3607 2.0046 5.9636 5.5663 4.7094 1.6805

CWB-I 0.0020 0.0020 0.0017 0.0015 0.0099 0.0044 0.0081 0.0035 1.5687 0.7467 0.7073 0.2635

Various validity indices are calculated with the optimal number of clusters that are
shown in the tables 2.

Because, the validity indices are proposed to evaluate the quality of clustering. The
better algorithm gives the smaller value of T-I, DB-I, XB-I, S-I, CE-I, YT-I ,CWB-I and
the larger value of PC-I. The summarized results show that the GIT2FCM clustering
(the proposed algorithm) have a better performance or higher quality clustering than
the other typical algorithm such as FCM, IT2FCM and GFCM. Besides, GIT2FCM can
automatically obtains the optimal number of clusters.

5 Conclusion

One of the priori inputs traditionally needed for unsupervised classification is the num-
ber of clusters in the data set. In many cases, however, this number of classes is not
available. This paper presents a clustering algorithm based on genetic technique which
determines the required number of clusters as part of the algorithm. The proposed ap-
proach do not need to predict the optimal number of clusters, required to partition the
dataset. The experiments are done based on well-known dataset with the statistics show
that the algorithm generates clusters with better quality.

The next goal is some studies related to speed-up algorithms for processing huge data
based parallel architecture of GPU computing and applying the algorithm to problems.
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