
Functional Stream Derivatives

of Context-Awareness on P2P Networks

Phan Cong Vinh1, Nguyen Thanh Tung2, Nguyen Van Phuc1,
and Nguyen Hai Thanh2

1 Department of IT, NTT University, 300A Nguyen Tat Thanh St., Ward 13,
District 4, HCM City, Vietnam

pcvinh@ntt.edu.vn, phuc.tsu@gmail.com
2 International School, Vietnam National University in Hanoi, 144 Xuan Thuy St.,

Cau Giay District, Hanoi, Vietnam
{tungnt,thanh.ishn}@isvnu.vn

Abstract. This paper will be both to give an in-depth analysis as well as
to present the new material on the notion of context-awareness process on
P2P networks, an idea that networking can both sense and react accor-
dantly based on external actions. The paper formalizes context-awareness
process using the notion of functional stream derivative, including P2P
networks, context-awareness and the functional stream derivatives of
context-awareness on P2P networks. A brief summary of this approach
is also given.

Keywords: Context-awareness, Context-awareness process, Functional
stream derivative, P2P networks.

1 Introduction

In development of P2P networks, one of the limitations of the current approaches
is that when increasing (fully or partially) the context-awareness of networking,
the semantics and understanding of the context-awareness process become diffi-
cult to capture for the development. As motivation, the context-awareness pro-
cess on P2P networks should be carefully considered under a suitably rigorous
mathematical structure to capture its semantics completely, and then support an
automatic developing process, in particular, and applications of context-aware
networking, generally.

Both initial algebras and final coalgebras are mathematical tools that can
supply abstract representations to aspects of the context-awareness process on
P2P networks. On the one hand, algebras can specify the operators and values.
On the other hand, coalgebras, based on a collection of observers, are considered
in this paper as a useful framework to model and reason about the context-
awareness process on P2P networks. Both initiality and finality give rise to a
basis for the development of context-awareness calculi on P2P networks directly
based on and driven by the specifications. From a programming point of view,

P.C. Vinh et al. (Eds.): ICCASA 2012, LNICST 109, pp. 160–167, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



Functional Stream Derivatives of Context-Awareness on P2P Networks 161

this paper provides coalgebraic structures to develop the applications in the area
of context-aware computing on P2P networks.

A coalgebraic structure provides an expressive, powerful and uniform view of
context-awareness, in which the observation of context-awareness processes on
P2P networks plays a central role. The concepts of bisimulation and homomor-
phism of context-awareness are used to compute the context-awareness process
on P2P networks.

2 Outline

The paper is a reference material for readers who already have a basic under-
standing of P2P networks and are now ready to know the novel approach for
formalizing context-awareness process on such P2P networks using coalgebraic
language.

Formalization is presented in a straightforward fashion by discussing in detail
the necessary components and briefly touching on the more advanced compo-
nents. The notion of functional stream derivatives, including justifications needed
in order to achieve the particular results, is also presented.

The rest of this paper is organized as follows: Section 3 briefly describes re-
lated work and existing concepts. P2P networks and context-awareness are the
subjects of Section 4. Section 5 presents functional stream derivatives of context-
awareness. Finally, Section 6 is a brief summary.

3 Related Work and Existing Concepts

In our previous paper [15], we have rigorously approached to the notion of
context-awareness in context-aware systems fromwhich coalgebraic aspects of the
context-awareness emerge. The coalgebraic model is used to formalize the unify-
ing frameworks for context-awareness and evolution of the context-awareness pro-
cesses, respectively.

Most notions and observations of this paper are instances of a theory called
universal coalgebra [10,4]. In [9,11], some recent developments in coalgebra are
presented.

The programming paradigm with functions called functional programming
[1,5,2,3,7] treats computation as the evaluation of mathematical functions. Func-
tional programming emphasizes the evaluation of functional expressions. The
expressions are formed by using functions to combine basic values.

The notion of bisimulation is a categorical generalization that applies to many
different instances of infinite data structures, various other types of automata,
and dynamic systems [10,9,4]. In theoretical computer science, a bisimulation
is an equivalence relation between abstract machines, also called the abstract
computers or state transition systems (i.e., a theoretical model of a computer
hardware or software system) used in the study of computation. Abstraction
of computing is usually considered as discrete time processes. Two computing



162 P. Cong Vinh et al.

systems are bisimular if, regarding their behaviors, each of the systems “simu-
lates” the other and vice-versa. In other words, each of the systems cannot be
distinguished from the other by the observation.

Homomorphism is one of the fundamental concepts in abstract algebra [8],
which scrutinizes the sets of algebraic objects, operations on those algebraic ob-
jects, and functions from one set of algebraic objects to another. A function
that preserves the operations on the algebraic objects is known as a homomor-
phism. In other words, if an algebraic object includes several operations, then all
its operations must be preserved for a function to be a homomorphism in that
category [13,6].

4 P2P Networks and Context-Awareness

4.1 P2P Networks

A network, which consists of the set of peers (considered as nodes) together
with morphisms ‖ in the set of parallel compositions (considered as edges),
generates P2P structure [14]. The P2P structure is dynamic in nature because
peers can be dynamically added to or dropped from the network. For such every
action, context-awareness for the P2P structure occurs.

4.2 Context-Awareness

Let PEER be the set of peers and SYS= {‖i∈N0 ai with ai ∈ PEER} be the set
of parallel compositions on the P2P network.
Let T = {add, drop} be the set of actions making a P2P structure on the network
change, in which add and drop are defined as follows:

add is a binary operation

add : SYS× PEER �� SYS (1)

(sometimes specified as SYS
add(PEER) �� SYS or add(PEER) : SYS �� SYS)

obeying the following axioms: For all i ∈ N0,

add(‖i ai, b) =
{
(‖1�i�n ai) ‖ b for i � 1
(‖0) ‖ b = skip ‖ b = b when i = 0

(2)

or, also written as⎧⎨
⎩

‖1�i�n ai
add(b) �� (‖1�i�n ai) ‖ b for i � 1

‖0 add(b) �� (‖0) ‖ b = skip ‖ b = b when i = 0

or {
add(b) : ‖1�i�n ai �� (‖1�i�n ai) ‖ b for i � 1
add(b) : ‖0 �� (‖0) ‖ b = skip ‖ b = b when i = 0



Functional Stream Derivatives of Context-Awareness on P2P Networks 163

Example:

add(‖0, a) = a
add(a, b) = a ‖ b
add(a ‖ b, c) = a ‖ b ‖ c

drop is also a binary operation

drop : SYS× PEER �� SYS (3)

(sometimes specified as SYS
drop(PEER) �� SYS or drop(PEER) : SYS �� SYS)

obeying the following axioms: For all i ∈ N0,

drop(‖i ai, b) =
{‖1�i�(n−1) ai when there exists ai = b
‖1�i�n ai for all ai �= b

(4)

or, also written as

⎧⎨
⎩

‖1�i�n ai
drop(b)�� ‖1�i�(n−1) ai when there exists ai = b

‖1�i�n ai
drop(b)�� ‖1�i�n ai for all ai �= b

or {
drop(b) : ‖1�i�n ai �� ‖1�i�(n−1) ai when there exists ai = b
drop(b) : ‖1�i�n ai �� ‖1�i�n ai for all ai �= b

It follows that drop(‖0, b) =‖0= skip.

Example:

drop(a, a) = ‖0
drop(a ‖ b ‖ c, b) = a ‖ c
drop(a ‖ b ‖ c, d) = a ‖ b ‖ c

A context-awareness process is completely defined when actions add and drop
are executed on a P2P network as illustrated in the following diagram:

(‖0)
�� ��

add

��
���� �	

drop

drop�� (a1)
�� ��

add

��
���� �	

drop

drop�� (a1 ‖ a2)
�� ��

add

��
���� �	

drop

drop�� (a1 ‖ a2 ‖ a3)
�� ��

add

��
���� �	

drop

drop�� · · · (5)

In consideration of P2P networks, context-awarenesses are known as homo-
morphisms from a P2P network to another P2P network to preserve the P2P
structure. In other words, context-awareness is a map from a set of parallel com-
positions to another set of parallel compositions of the same type that preserves
all the P2P structures.



164 P. Cong Vinh et al.

Definition 1 (Context-Awareness). Let T = {add, drop} be a set of actions.
A context-awareness with set of actions T is a pair 〈SYS, 〈oSYS, eSYS〉〉 consisting
of

– a set SYS of P2P networks,

– an output function oSYS : SYS −→ (T −→ 2), and

– an evolution function eSYS : SYS −→ (T −→ SYS).

where

– 2 = {0, 1},
– oSYS assigns, to a network c, a function oSYS(c) : T −→ 2, which specifies

the value oSYS(c)(t) that is reached after an action t has been executed. In
other words,

oSYS(c)(t) =

{
1 when t becomes fully available, or
0 otherwise

– Similarly, eSYS assigns, to a network c, a function eSYS(c) : T −→ SYS,
which specifies the network eSYS(c)(t) that is reached after an action t has

been executed. Sometimes c
t−→ c′ is used to denote eSYS(c)(t) = c′.

Generally, both the network space SYS and the set T of actions may be infinite.
If both SYS and T are finite, then we have a finite context-awareness, otherwise
we have an infinite context-awareness.

5 Functional Stream Derivatives of Context-Awareness

The notion of functional stream derivative is Rutten’s new contribution in [12].
This concept is defined for functions on streams over arbitrary inputs. Hence
if the operators of any algebra of stream functions can be defined by notion of
stream differential equations then all of them are available to apply Rutten’s
functional stream derivative.

Here the application of this functional stream derivative is found in our algebra
of context-awareness involving two actions: add and drop. Therefore, a network
can be changed to become another one in the set of parallel compositions SYS=
{‖i∈N0 ai} (see diagram 5). In other words, the set of parallel compositions
SYS is closed under the actions in T . Below are some basic Rutten’s stream
concepts [12] manipulated on context-awareness.

– A stream over a set of actions T is an infinite sequence of consecutive actions
in T , obtained by repeatedly applying the evolution function eSYS. Let σ
denote a stream that is described as

σ = (σ(0), σ(1), σ(2), ...) : {0, 1, 2, ...} −→ T



Functional Stream Derivatives of Context-Awareness on P2P Networks 165

– A set of streams, denoted by Tω, over a set of actions T is
determined by Tω = {σ | σ : {0, 1, 2, ...} −→ T } =
{(σ(0), σ(1), σ(2), ...) | (σ(0), σ(1), σ(2), ...) : {0, 1, 2, ...} −→ T }. Sim-
ilarly, another set of streams 2ω over the boolean set 2 = {0, 1}
is determined by 2ω = {σ | σ : {0, 1, 2, ...} −→ 2} =
{(σ(0), σ(1), σ(2), ...) | (σ(0), σ(1), σ(2), ...) : {0, 1, 2, ...} −→ 2}

– The stream derivative of a stream σ is defined by σ′ = (σ(1), σ(2), σ(3), ...)
and σ(0) is called the initial value of σ.

– A function f : Tω −→ 2ω is called causal if for any σ, τ ∈ Tω, i �
0, t0, ..., ti ∈ T , and with t0 : ... : ti : σ denoting (t0, ..., ti, σ(0), σ(1), ...),
then

f(t0 : ... : ti : σ)(i) = f(t0 : ... : ti : τ)(i)

That is, the ith element of the stream f(σ) depend only on the i elements
early in σ.

– For a causal function f : Tω −→ 2ω, action t ∈ T and σ ∈ Tω,

(i) The initial output of f is defined by f(t : σ)(0) and denoted by f [t].

(ii) The functional stream derivative of f , denoted as ft : Tω −→ 2ω, is
defined by a causal function ft(σ) = f(t : σ)′. That is, ft acts as f on
the rest of σ after the first t.

Let f be causal and Γ = {f | f : Tω −→ 2ω}. For f in Γ and t in T , the function
〈oΓ , eΓ 〉 : Γ −→ (2×Γ )T is defined by 〈oΓ , eΓ 〉 = 〈f [t], ft〉. This notion offers
a context-awareness process 〈Γ, 〈oΓ , eΓ 〉〉 with evolution as follows:

f
t|f [t]

−−−−−−→ ft

As mentioned in our other publication [15], a homomorphism between 〈SYS,
〈oSYS, eSYS〉〉 and 〈Γ, 〈oΓ , eΓ 〉〉 is any function h : SYS −→ Γ such that

c
t|oSYS(c)(t)−−−−−−→ eSYS(c)(t) =⇒ h(c)

t|oΓ (h(c))(t)−−−−−−→ eΓ (h(c))(t)

Theorem 1. The context-awareness 〈Γ, 〈oΓ , eΓ 〉〉 is final among all context-
awarenesses; i.e., for any context-awareness 〈SYS, 〈oSYS, eSYS〉〉, there exists a
unique homomorphism h : 〈SYS, 〈oSYS, eSYS〉〉 −→ 〈Γ, 〈oΓ , eΓ 〉〉.

Proof. For 〈SYS, 〈oSYS, eSYS〉〉, we define a function h : 〈SYS, 〈oSYS, eSYS〉〉 −→
〈Γ, 〈oΓ , eΓ 〉〉, whose commutative diagram is as follows:

SYS
f=〈oSYS,tSYS〉 � 	 SYS

Γ

h

�
ω=〈oΓ ,tΓ 〉 � 	 Γ

� h

�



166 P. Cong Vinh et al.

In other words, for c in SYS, we must define a function h(c) : Tω −→ 2ω by
considering, for σ in Tω and n � 0, a stream of consecutive actions in T obtained
by repeatedly applying the evolution function eSYS.

c
σ(0)|oSYS(c)(σ(0))−−−−−−→ c1

σ(1)|oSYS(σ(1))(t)−−−−−−→ ...
σ(n)|oSYS(cn)(σ(n))−−−−−−→ cn+1...

and assigning h(c)(σ(n)) = oSYS(cn)(σ(n)). In this way, h is a homomorphism
and unique. In addition, h(c) is also causal.

The stream function h(c) is called the context-awareness process of c. For a
causal function f in Γ , network c in SYS is called an implementation of f if
f = h(c) [12].

From the universal view, for a network c in SYS of 〈SYS, 〈oSYS, eSYS〉〉, 〈c〉 ⊆
〈SYS, 〈oSYS, eSYS〉〉 denotes the smallest subset containing c and closed under
evolutions for any actions in T . Hence 〈c〉 is also a subcontext-awareness of
〈SYS, 〈oSYS, eSYS〉〉 generated from c by applying its evolution function eSYS re-
strictively over the set 〈c〉.

As considered in [12], the two following corollaries are also true for our context-
awareness.

Corollary 1. Subcontext-awareness 〈f〉 ⊆ 〈Γ, 〈oΓ , eΓ 〉〉 implements any causal
function f in Γ .

Proof. As in [12], this is trivial because it follows that the inclusion function
i : 〈f〉 −→ Γ (i.e., i(f) = f) is homomorphism.

Corollary 2. 〈f〉 is a minimal context-awareness process containing the small-
est number of networks that implements f .

Proof. As in [12], for context-awareness 〈〈c〉, 〈o〈c〉, e〈c〉〉〉 and h in theorem 1, the
network c in 〈c〉 implements f ; therefore h(c) = f . Because h is a homomorphism,
it implies that h(〈c〉) = 〈h(c)〉 = 〈f〉. Hence the size of 〈h(c)〉 is the size of 〈f〉.

6 Conclusions

In this paper, the notion of Rutten’s functional stream derivatives is used to
formalize the evolution of the context-awareness process on P2P networks. In
addition, as our future work, based on functional stream derivatives, a coalge-
braic implementation procedure of context-awareness on P2P networks can also
be developed.

Acknowledgements. Thank you to NTTUFSTD1 for the constant support of
our work which culminated in the publication of this paper. As always, we are
deeply indebted to the anonymous reviewers for their helpful comments and valu-
able suggestions which have contributed to the final preparation of the paper.

1 The NTTU foundation for Science and Technology Development.



Functional Stream Derivatives of Context-Awareness on P2P Networks 167

References

1. Barbosa, L.S.: Components as Processes: An Exercise in Coalgebraic Modeling. In:
Smith, S.F., Talcott, C.L. (eds.) 4th International Conference on Formal Methods
for Open Object-Based Distributed Systems, IFIP TC6/WG6.1, Stanford, CA,
USA, September 6-8, pp. 397–417. Kluwer Academic Publishers (2000)

2. Cockett, R., Spencer, D.: Strong Categorical Datatypes I. In: Seely, R.A.G. (ed.)
International Summer Meeting on Category Theory, Montréal, Québec, Canada,
June 23-30, pp. 141–169. AMS Canadian Mathematical Society (1991)

3. Hagino, T.: A Typed Lambda Calculus with Categorical Type Constructors. In:
Pitt, D.H., Rydeheard, D.E., Poigné, A. (eds.) Category Theory and Computer
Science. LNCS, vol. 283, pp. 140–157. Springer, Heidelberg (1987)

4. Jacobs, B., Rutten, J.: A Tutorial on (Co)Algebras and (Co)Induction. Bulletin of
EATCS 62, 222–259 (1997)

5. Kieburtz, R.B.: Reactive Functional Programming. In: Gries, D., de Roever, W.P.
(eds.) Programming Concepts and Methods (PROCOMET), IFIP International
Federation for Information Processing, Shelter Island, NY, USA, June 8-12, pp.
263–284. Chapman and Hall (1998)

6. Levine, M.: Categorical Algebra. In: Benkart, G., Ratiu, T.S., Masur, H.A., Re-
nardy, M. (eds.) Mixed Motives. Mathematical Surveys and Monographs, vol. 57,
I, II, II, Part II, pp. 373–499. American Mathematical Society, USA (1998)

7. Meijer, E., Fokkinga, M., Paterson, R.: Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire. In: Hughes, J. (ed.) FPCA 1991. LNCS,
vol. 523, pp. 124–144. Springer, Heidelberg (1991)

8. Rotman, J.J.: Advanced Modern Algebra, 1st edn. Prentice Hall, USA (2002)
9. Rutten, J.J.M.M.: Automata and Coinduction (an Exercise in Coalgebra). In: San-

giorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218.
Springer, Heidelberg (1998)

10. Rutten, J.J.M.M.: Universal Coalgebra: A Theory of Systems. Theoretical Com-
puter Science 249(1), 3–80 (2000)

11. Rutten, J.J.M.M.: Algebra, Bitstreams, and Circuits. Technical Report SEN-
R0502, CWI, Amsterdam, The Netherlands (2005)

12. Rutten, J.J.M.M.: Algebraic Specification and Coalgebraic Synthesis of Mealy Au-
tomata. In: Barbosa, L.S., Liu, Z. (eds.) 2nd International Workshop on Formal As-
pects of Component Software (FACS), UNU/IIST, Macao, October 24-25, ENTCS
(2005)

13. van Oosten, J.: Basic Category Theory. Department of Mathematics, Utrecht Uni-
versity, The Netherlands (July 2002)

14. Vinh, P.C.: Formal and Practical Aspects of Autonomic Computing and Network-
ing: Specification, Development, and Verification. In: Formal Specification and
Verification of Self-Configuring P2P Networking: A Case Study in Mobile Envi-
ronments, 1st edn., pp. 170–188. IGI Global (2011)

15. Vinh, P.C., Tung, N.T.: Coalgebraic aspects of Context-Awareness. Mobile Net-
works and Applications (August 2012), doi:10.1007/s11036-012-0404-0


	Functional Stream Derivatives 
of Context-Awareness on P2P Networks
	Introduction
	Outline
	Related Work and Existing Concepts
	P2P Networks and Context-Awareness
	P2P Networks
	Context-Awareness

	Functional Stream Derivatives of Context-Awareness
	Conclusions
	References




