
Context-Aware Design of Semantic Web Services

to Improve the Precision of Compositions

Angelo Furno and Eugenio Zimeo

University of Sannio, Department of Engineering, Benevento 82100 Italy
{angelo.furno,eugenio.zimeo}@unisannio.it

Abstract. Service-based systems are usually conceived and executed in
highly dynamic environments. To support their automatic adaptation to
this variability, execution context should be considered as a first-class
concept during their design.

This paper proposes a design approach that exploits semantics for
modeling contexts and related systems’ behaviors. The context model
extends the OWL-S ontology to enrich the expressiveness of each section
of an OWL-annotated service, by means of conditions and adaptation
rules. These additional descriptions can be exploited by a discovery/-
composition tool to automatically find the services better-tuned to the
requestor’s behaviors and the particular situations of the environment.

Keywords: Context-aware Computing, Context Modeling, Semantic
Web Services, Service Design, Service Discovery, Service Composition.

1 Introduction

A characterizing feature of service-based systems is their dynamicity in selecting
the functions satisfying user requirements. Service composition plays a funda-
mental role in this kind of software systems. So far, many researchers have inves-
tigated techniques to support automatic generation of service compositions from
a set of published services (domain), given a goal to reach (problem). In many
cases, composition techniques and related tools exploit IOPE (Input, Output,
Preconditions and Effects) predicates that characterize structural (WSDL [5])
and semantic (e.g. OWL-S [1]) service descriptions to generate the compositions.

However, the potential of SOA (Service Oriented Architecture) could be better
exploited if such ability of building an application by composing (even on the fly)
existing functions were augmented with the awareness of the surrounding context
where composition takes place. This way, services and related compositions could
be forged to adapt their malleable aspects to the specificity of the environment.
This impacts the design phase of the services, but also the definition of the
problem and the goal used to drive a specific composition.

Designing services with this new approach means to extend their semantic
descriptions with new attributes and rules that are able to slightly change the
structure and behavior of the services according to the needs emerging in the spe-
cific context where they will be used. This is a desirable property in SOA, where

P.C. Vinh et al. (Eds.): ICCASA 2012, LNICST 109, pp. 97–107, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



98 A. Furno and E. Zimeo

services, differently from components, should be implemented to be exploited in
contexts that could change even during the same execution.

This paper proposes an approach to design context-aware services by extend-
ing the OWL-S ontology with the context dimension. Services designed according
to the proposed model can be discovered and composed by dynamically tailoring
a service search space to the specific user needs or preferences and the current sit-
uation of the environment where the services have to be executed. In particular,
the paper presents a model for context representation and its implementation in
OWL [2] and an extension of OWL-S for allowing context-awareness in semantic
service descriptions and their adoption during composition.

The rest of the paper is organized as follows. In Section 2, an application
scenario is introduced to highlight the importance of context-awareness in Web
Service composition. Section 3 reports on related work about context-awareness.
In Section 4, the conceptual model for context representation is described, while
in Section 5, the OWL-Ctx ontology based on that model is detailed, together
with the extension of the OWL-S ontology for service description. Section 6
describes our context-aware service composition system and discusses it by using
an example. Section 7 concludes the paper.

2 Motivating Scenario

Bob likes TV-Shows. He wants his home media server to automatically check the
availability of new episodes every day, by connecting to the websites of the major
broadcast companies or authorized external media providers. When download is
not possible, since the provider only allows for streaming, or disk space is limited,
only minimal information about the show (e.g. title, air date, stream URI, etc.)
is available for selection, while playing has to be performed by connecting to the
stream when required. For each retrieved TV show, if the language is different
from Bob’s native one, subtitles for that episode should be retrieved. Bob wants
his media-player to prompt the list of available new TV-Show episodes, allowing
him to choose the one to play. He prefers subtitles to be shown in a large font
size. Also, blinds and artificial lights in Bob’s TV room should be automatically
adjusted to guarantee the best light conditions for watching TV.

A single service could not satisfy Bob’s complex goals, but they may be
achieved by composing some of the services available. Current context (e.g. time,
location, profile information, etc.) and user preferences (subtitle language or font
size, favorite TV-Shows, lighting levels, etc.) have to be taken into account to
fully implement the scenario above.

3 Related Work

Context-awareness in information systems represents an enabling solution for
handling adaptation [6, 14] and it is crucial in service-based systems [13, 18].

In [19], the authors propose a context modeling approach based on ontologies
to dynamically handle context types and values. Ontologies enhance the meaning



Context-Aware Semantic Service Design and Composition 99

of user’s context values and allow for automatically retrieving relations among
them. However, context-aware service composition is not addressed in the paper.

The authors of [11] propose meta-models and an aspect-based pattern for
context-awareness of services. A Context is a set of Parameters and Entities
that can be structured in SubContexts. ContextAwareServices are services with
associated ContextViews, containing adaptation rules and actions. Based on this
model and the Aspect-Oriented Paradigm (AOP), context-aware adaptations can
be dynamically performed by means of adaptation aspects dynamically woven
into the core services. Despite some similarities with our model, their focus is on
AOP in service modeling and implementation, instead of semantic composition.

AOP is also exploited in [12] to support context-aware semantic service com-
position, by weaving context aspects, defined by means of ontology concepts,
within plain compositions. Weaving is performed statically, before starting the
execution of the main service. However, automatic composition is not considered:
plain compositions already exist and are modified by adding context services.

Exploiting context is also essential in pervasive environments [17, 20], where
most service discovery or composition requests are implicitly driven by state
changes. In [20], the authors introduce a design process and an architecture
for building context-aware pervasive service compositions, while, in [17], an ap-
proach for personalized service discovery in pervasive environments, based on a
multi-dimensional context space (Hyperspace Analogue to Context), is proposed.
The approach is only limited to event-driven service discovery.

4 Context Model

By the term application state we mean the set of variables and corresponding
values the application is able to access or modify. We distinguish between internal
and external application state.

The internal state is the set of variables only visible to the application itself.
They are created, used and eventually destroyed by the application and are
not accessible outside it. Besides input and output parameters, the application
may have predicates to be satisfied in order to execute it (pre-conditions) and
predicates that are satisfied after the application is executed (post-conditions).

The external state is the set of variables accessible also outside the application.
They can be read or modified by users, devices or applications other than the
one the state is referred to. This set of variables represents the context in our
model: it includes every attribute that characterizes a user and/or the (smart)
environment a distributed application interacts with.

Context-Aware Applications may exhibit dependencies from the context. They
may interestbothapplicationpre- andpost- conditions.When theproperties above
apply to Web Services, we call them Context-Aware Web Services (CAWS).

5 Context-Aware Semantic Service Design

To support design and composition of context-aware services we propose: an
OWL ontology (OWL-Ctx), supporting the description of sets of contexts in



100 A. Furno and E. Zimeo

specific domains (sub-section 5.1) and an extension of the OWL-S ontology for
services (OWL-SC, sub-section 5.2), allowing for the specification of OWL-Ctx-
based context adaptation rules.

Context-aware descriptions can be exploited during service composition to
automatically generate compositions better-tuned to the requestor’s behaviors
and preferences and to the particular situations of the surrounding environment.

5.1 OWL-Ctx: An OWL Ontology for Modeling Context

Fig. 1 shows OWL-Ctx, an extensible OWL ontology for describing contexts
according to our model (Section 4).

(a) (b)

Fig. 1. OWL-Ctx: ontology language (a) and (partial) middle ontology (b)

The Context related to a software system is composed of a set of ContextDi-
mensions, each describing one relevant aspect, or dimension, of the environment
enclosing the particular software system. Each dimension can be modeled at
different level of abstractions, according to the specific requirements in the con-
sidered application domain. In this sense, we distinguish between composite or
atomic ContextDimensions.

Differently from an AtomicContextDimension, a CompositeContextDimension
can be further decomposed in one or more sub-dimensions (hasSubdimension
property), helpful for a better characterization of the associated context aspect.
A ContextDimensionValue can be defined for each ContextDimension to de-
scribe complex values. Otherwise, if a concrete XML-Schema built-in datatype
(e.g. string, int) is sufficient for representing the context dimension values, the
hasValue datatype property (not shown in the figure) can be used, by introducing
a sub-property having the required xsd type as range. ContextDimensionCon-
straints allow for specifying constraints applying to ContextDimensions.

In the partial middle ontology of Fig. 1(b), Time, Agent, Location, Preferences,
Role and PhysicalEnvironment describe generic context dimensions, typically
relevant in many application domains.

Considering the scenario illustrated in Section 2, a designer could specify the
properties of possible contexts in a Media ontology as follows:



Context-Aware Semantic Service Design and Composition 101

1 <owl:Class rdf:about ="&Media ;MediaContext ">
2 <rdfs:subClassOf rdf:resource ="&OWL -Ctx;Context"/> ...
3 <owl:equivalentClass ><owl:Class ><owl:intersectionOf rdf:parseType ="Collection ">
4 <rdf:Description rdf:about ="&OWL -Ctx;Context"/>
5 <owl:Restriction ><owl:onProperty rdf:resource ="&OWL -Ctx;hasDimension "/>
6 <owl:someValuesFrom ><owl:Class ><owl:unionOf rdf:parseType ="Collection ">
7 <rdf:Description rdf:about ="&OWL -Ctx;Agent "/>
8 <rdf:Description rdf:about ="&Media ;MediaContent "/>
9 <rdf:Description rdf:about ="&OWL -Ctx;PhysicalEnvironment "/> ...

MediaContext is a specialization of OWL-Ctx:Context, with a restriction over
the range of the hasDimension property to Agent, PhysicalEnvironment and
MediaContent (a concept from the Media ontology), since the user (Bob), the
devices (Bob’s TV, Bob’s PC), the media content (TV-Shows) and the location
(TV-Room) represent the relevant context dimensions.

5.2 OWL-SC: An OWL-S Extension for Context-Aware Service

The OWL-Ctx ontology is exploited by the OWL-SC ontology, our extension of
the OWL-S service ontology for describing context-aware semantic services. The
most relevant elements extending OWL-S are reported in Fig. 2(a).

Each of the three OWL-S core concepts for describing a Service (i.e. Profile,
Process and Grounding) can be associated (Fig. 2(b)) to a context adaptation
rule (CtxAdaptationRule), by means of the proper has*AdaptationRule object
property.

(a) (b)

Fig. 2. OWL-SC: ontology language (a) and (partial) middle ontology (b)

A service designer may be aware of a set of contexts or context dimension
values, which can be used to specify at design-time conditions for the service
to change its basic features (i.e. profile, process or grounding properties). A ref-
erence to the current context may be used to relate context conditions to the
situation at the moment the extended service description will be analyzed (rela-
tionship executesIn between Service and Context) for discovery or composition.

A CtxAdaptationRule (and its sub-concepts) is defined by means of a context
condition (CTX-Condition) and a context adaptation action (CtxAdaptation). It
prescribes the context-dependent condition to be satisfied in order to apply the
associated adaptation to the specific section of the OWL-S description. If at least
one ProfileAdaptationRule, ProcessAdaptationRule or GroundingAdaptationRule
is specified in the description, the service is a CAWS.



102 A. Furno and E. Zimeo

The main context adaptations over OWL-S sections currently supported are:

– Defaulting an input/output parameter;
– Nulling a parameter, not applicable for a specific context condition;
– Changing the owls <process:parameterType> of an input/output parameter

to a different ontology concept;
– Replacing pre-conditions or effects of the basic OWL-S service description;
– Changing the WsdlAtomicProcessGrounding input/output section of an

atomic Process with a new Wsdl MessageMap;
– Changing the WsdlAtomicProcessGrounding section of an atomic Process

with a new WSDL operation and/or WSDL portType.

Context conditions, supported by our OWL-SC ontology, include:
– current ctx matches ref ctx
– current ctx includes "concept hasValue individual"
– current ctx includes "concept.datatype property = value"
– current ctx includes "concept.object property hasValue individual"

where current ctx is the context reference for the context at the moment in
which the composition domain is explored for finding a solution to the submitted
problem. Both current ctx and ref ctx specifications can be verified according
to an approach like the one used in [9].

Currently, we are using the Semantic Web Rule Language [3] (SWRL) to
express the last three kinds of condition. An example of SWRL context condition,
related to the Media context specialization previously defined, is given:

OWL-Ctx:hasDimension(current ctx, ?hwAgent) ∧ Media: HWAgent(?hwAgent) ∧
OWL-Ctx:hasSubdimension(?hwAgent, ?role) ∧ OWL-Ctx:Role(?role) ∧ sameAs(?role,

Media:DownloadServer) ∧ OWL-Ctx:hasSubdimension(?hwAgent, ?disk) ∧ Media:Disk(?disk) ∧
Media:diskMBSpace(?disk, ?avSpace) ∧ swrlb:lowerThanOrEqual(?avSpace, 500)

The condition verifies whether the disk of a media server has not enough space
(≤ 500MB) to download some file.

6 Context-Aware Service Composition

Context-aware compositions are supported by a semi-automatic tool, the com-
poser (Fig. 3), presented in [7] and extended in order to support context-aware
semantic descriptions of services and problems. Part of a more complex system,
namely Semantic Autonomic Workflow Engine (SAWE) [16], the composer can
be used either for the initial definition (plan) of a service composition or for
re-planning an already defined composition, to be changed completely or in part
in order to react to external events.

A traditional composition process consists of exploring a set of candidate Web
Services (the service domain) in order to find a flow of activities (a plan) that,
starting from the provided description of the initial state (i.e. predicates true
before the task beginning), is able to reach the goal state (i.e. predicates to be
true at the end of the service chain).

When performing context-aware composition, the set of semantically described
candidate services may include CAWSs (the OWL-SC domain) and is provided as



Context-Aware Semantic Service Design and Composition 103

Fig. 3. Composer Architecture

an input to the system (manually or automatically via a matchmaking process),
together with the semantic description of the initial state of the environment
and the goal. OWL input files are analyzed and used by the OWL Analyzer to
build the internal representation of the composition problem. Then, context is
exploited for preparing the planning phase. The Context-aware Domain Builder
evaluates the context dependencies in pre-conditions, effects and adaptation rules
of service descriptions with respect to the current context and generates a contex-
tualized instance of the domain, suited to be converted into the planner language
(PDDL [10]). Similarly, the Context-aware Problem Builder augments the prob-
lem representation given by the user, by injecting relevant context information
derived from our SAWE monitoring support.

The Planner is the component deputed to the processing of contextualized
domain and problem for producing an action plan satisfying the problem. The
current implementation of the tool uses PDDL4J [15], based on the Graphplan
algorithm [8]. The Context-aware Process Generator generates a concrete (WS-
BPEL [4]) representation of the plan (binding phase), executable on a process
engine, by exploiting the available contextualized grounding information.

It is worth to note that, in general, the context can be extremely dynamic,
evolving so rapidly that it could be not possible to complete the composition
process without taking into account the mutated environmental conditions. How-
ever, in the present work, we assume context variations to be reasonably slower
than the time required for a typical composition problem to complete. By this
assumption, composition may be completed in relation to the contextualized do-
main and problem, being the final composition still meaningful. Also, in the cur-
rent SAWE implementation, context changes, following the composition process,
may be addressed by re-planning, according to a reactive approach to adapta-
tion. Alternatively, a proactive strategy, based on probabilistic techniques (e.g.
Bayesian networks, Markov processes), might be used for learning context transi-
tion probabilities from past experience. This way, alternative compositions could
be computed in advance for highly probable context transitions, minimizing
(with respect to reactive strategies) the time the running system is unavailable
when context actually changes.



104 A. Furno and E. Zimeo

6.1 Example

A synthetic version of the scenario described in Section 2 has been considered
in order to evaluate our context-aware composer.

In Fig. 4(a), a user requests an abstract service for retrieving and playing
the last episode related to some specified TV-Show; subtitles are requested to
be superimposed to the video. Besides the desired service IOPE description,
our composer is fed with the OWL-Ctx current context representation as input,
which can be automatically acquired and updated by our SAWE system. In Fig.
4(b), a subset of the OWL-SC service domain is shown together with the relevant
dependencies on the context, used in the adaptation rules.

(a)

(b)

Fig. 4. Problem description: current context, goal IOPE (a) and domain (b)

The OWL-SC service for retrieving a TV-Show episode provides the effect
newEpisodeAvailable(TV-ShowEpisode) and, in the basic case, the download of
the last TV-Show episode file (effect downloaded(TV-ShowEpisode)).

The profile and its service atomic process have been extended with a context
adaptation rule, changing the process result in case the download server has not
enough space to store the episode file. The context condition used to control this
profile/process adaptation in the OWL-SC description is the SWRL condition
reported at the end of Section 5.2. The adaptation replaces the downloaded result
with the effect streamDataAcquired(TV-ShowEpisode). The same condition also
controls a grounding adaptation rule, changing the concrete service from the one
used to download the file to the one for retrieving the stream information.

Since the disk space amounts to 120.5 MB in the current context of Fig. 4(a),
the rule is activated and the adaptation applied by the Context-aware Domain
Builder. The stream retrieval service (i.e. RetrieveTV-ShowEpisodeStreamData
in Fig. 4(b)) is included within the contextualized domain, while the download
one is not. When converting to PDDL, the stream retrieval service is the only to
appear as a PDDL domain action, thus reducing the actual size of the domain,
with benefits over composition performances.

The PlayTV-ShowEpisode service contains pre-condition newEpisodeAvail-
able(TV-ShowEpisode) and parameter TV-ShowEpisode as an input. The effect
playing(TV-ShowEpisode) is provided. A context-dependent adaptation is in-
cluded in the OWL-SC description for the grounding section: depending on the
streamDataAcquired(TV-ShowEpisode) or downloaded(TV-ShowEpisode) condi-
tion a different concrete service will be grounded to the service process. The



Context-Aware Semantic Service Design and Composition 105

grounding adaptation rule does not generate different services in the domain.
Instead, two groundings are stored for being later used by the Process Genera-
tor when the final WS-BPEL process has to be created. The profile and atomic
process sections of the PlayTV-ShowEpisode service contains an adaptation rule
for subtitle rendering. Depending on the availability of subtitles, they have to
be considered as an additional input and their superimposition as an additional
effect. Since at the moment of domain building it is not known whether the
subtitles are going to be available or not, the Context-aware Domain Builder
includes both the two services to the domain (the one including subtitles as in-
put and the one not including them). Also, since view preferences are another
input of the service and part of the context, the Context-aware Problem Builder
expands the set of known inputs for problem solution with them.

The RetrieveSubtitles service only downloads English subtitles and a Translate
service to the user’s language (i.e. Italian) is also available in the domain.

After contextualized domain and problem conversion to PDDL, the Graph-
plan planner generates an abstract PDDL plan, containing the sequence of
RetrieveSubtitles and Translate in parallel with RetrieveTV-ShowEpisodeStream-
Data. The parallel is in sequence with the PlayWithSubs service. The translate
service appears because the user’s preference about subtitle language (Italian)
has been added to the goal of the problem by exploiting available context knowl-
edge. Without context-awareness, the composer would have not been able to find
such a suitable composition, according to the assumption that RetrieveSubtitles
only retrieves English subtitles and the user has not explicitly indicated the
Italian language preference in his/her goals.

Fig. 5. Resulting concrete service composition

The WS-BPEL generator produces the resulting concrete process of Fig. 5
from the abstract plan, using the available grounding and context knowledge.

7 Conclusion

The paper has presented a model to design context-aware services that can be
exploited as a flexible domain to automatically generate context-aware com-
positions by means of a specific tool. Besides extending the services, the tool
exploits an extension of the problem definition that includes also the context
representation (defined by designers or implicitly inferred by the system).

The analysis conducted during the definition of the model has highlighted a
further problem to address: by exploiting context for problem expansion and
evaluation of adaptation rules before planning, valid composite solutions might



106 A. Furno and E. Zimeo

be indirectly excluded during domain construction if, for an abstract service,
more than one post-condition may fit the context, but only one of them satisfies
the pre-conditions of the next services (e.g. there is disk space for retrieving a
HD file but the player is not able to play it). This requires the contextualized
expansion of services to be performed during planning to take into account the
state dependencies when context rules are applied.

References

1. OWL-S: Semantic Markup for Web Services,
http://www.w3.org/Submission/OWL-S/

2. OWL: Web Ontology Language Overview, http://www.w3.org/TR/owl-features/
3. SWRL: A Semantic Web Rule Language Combining OWL and RuleML,

http://www.w3.org/Submission/SWRL

4. Web Services Business Process Execution Language Version (WS-BPEL) 2.0.,
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

5. Web Services Description Language (WSDL) 1.1., http://www.w3.org/TR/wsdl
6. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards

a Better Understanding of Context and Context-Awareness. In: Gellersen, H.-W.
(ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999)

7. Bevilacqua, L., Furno, A., di Carlo, V., Zimeo, E.: A tool for automatic generation
of ws-bpel compositions from owl-s described services. In: 2011 5th International
Conference on Software, Knowledge Information, Industrial Management and Ap-
plications (SKIMA), pp. 1–8 (September 2011)

8. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artificial
Intelligence 90(1), 1636–1642 (1995)

9. Bolchini, C., Curino, C.A., Orsi, G., Quintarelli, E., Rossato, R., Schreiber, F.A.,
Tanca, L.: And what can context do for data? Commun. ACM 52(11), 136–140
(2009)

10. Ghallab, M., Isi, C.K., Penberthy, S., Smith, D.E., Sun, Y., Weld, D.: PDDL - the
planning domain definition language. Tech. rep., CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control (1998)

11. Hafiddi, H., Baidouri, H., Nassar, M., Kriouile, A.: An aspect based pattern for
context-awareness of services. International Journal of Computer Science and Net-
work Security 12(1), 71–78 (2012)

12. Li, L., Liu, D., Bouguettaya, A.: Semantic based aspect-oriented programming for
context-aware web service composition. Information Systems 36(3), 551–564 (2011)

13. Maamar, Z., Benslimane, D., Narendra, N.C.: What can context do for web ser-
vices? Commun. ACM 49(12), 98–103 (2006)

14. Pascoe, J.: Adding generic contextual capabilities to wearable computers. In: Sec-
ond International Symposium on Wearable Computers, Digest of Papers, pp. 92–99
(October 1998)

15. Pellier, D.: PDDL4J (2011), http://sourceforge.net/projects/pdd4j/
16. Polese, M., Tretola, G., Zimeo, E.: Self-adaptive management of web processes.

In: 2010 12th IEEE International Symposium on Web Systems Evolution (WSE),
pp. 33–42 (September 2010)

http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/owl-features/
http://www.w3.org/Submission/SWRL
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.w3.org/TR/wsdl
http://sourceforge.net/projects/pdd4j/


Context-Aware Semantic Service Design and Composition 107

17. Rasch, K., Li, F., Sehic, S., Ayani, R., Dustdar, S.: Context-driven personalized
service discovery in pervasive environments. World Wide Web 14, 295–319 (2011)

18. Truong, H.L., Dustdar, S.: A survey on context-aware web service systems. Inter-
national Journal of Web Information Systems 5(1), 5–31 (2009)

19. Xiao, H., Zou, Y., Ng, J., Nigul, L.: An approach for context-aware service discovery
and recommendation. In: 2010 IEEE International Conference on Web Services
(ICWS), pp. 163–170 (July 2010)

20. Zhou, J., Gilman, E., Palola, J., Riekki, J., Ylianttila, M., Sun, J.: Context-aware
pervasive service composition and its implementation. Personal Ubiquitous Com-
put. 15(3), 291–303 (2011)


	Context-Aware Design of Semantic Web Services to Improve the Precision of Compositions
	Introduction
	Motivating Scenario
	Related Work
	Context Model
	Context-Aware Semantic Service Design
	OWL-Ctx: An OWL Ontology for Modeling Context
	OWL-SC: An OWL-S Extension for Context-Aware Service

	Context-Aware Service Composition
	Example

	Conclusion
	References




