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Abstract. This paper describes a metric-based model for event segmen-
tation of sensor data recorded by a mobile phone worn around subjects’
necks during their daily life. More specifically, we aim at detecting human
daily event boundaries by analysing the recorded triaxial accelerometer
signals and images sequence (lifelog data). In the experiments, different
signal representations and three boundary detection models are evalu-
ated on a corpus of 2 subjects over total 24 days. The contribution of this
paper is three-fold. First, we find that using accelerometer signals can
provide much more reliable and significantly better performance than
using image signals with MPEG-7 low level features. Second, the models
using the accelerometer data based on the world’s coordinates system
can provide equally or even much better performance than using the
accelerometer data based on the device’s coordinates system. Finally,
our proposed model has a better performance than the state of the art
system [1].
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1 Introduction and Motivation

Lifelogging, as a growing interest, is a term referring to people digitally capturing
all the information produced by them in daily life. Lifelog is a data collection of
records of an individual’s daily activities in one or more media forms. This may
contain huge volumes of data from different sensor sources. For example, in the
study of [2], an average collection of 1,900 images per day per person leads to
approximate 700,000 images per year per person. Hence, a main challenge is how
to add utility to this huge and complex collection that is continuously captured
and accumulated from multiple sensors [3].

Peoples’ daily lives consist of different events that come in many varieties.
An event is an organization of human experience, such that a dynamic and
continuous experience is divided into stable entities, providing a structure for
attention, memory and learning [4]. Event segmentation, as one of the most
fundamental intelligent mechanisms that a human possess, is a process where
people segment a continuous stream of experience into meaningful events [5].
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Recently, event segmentation [6,1] has been suggested as a method to organize
lifelogs where an event boundary occurs when there is an end of one meaningful
event and another event begins.

There are several psychologic foundations for using the event segmentation
as a methodology for organizing lifelogs. First, supported by behavioral [7] and
neuro-imaging data [8,9], it has been suggested that event segmentation is au-
tomatic [10,11], even as observers passively view activities. Second, segmenting
activity into meaningful events is indicated as a core component of perception
[12] and has consequences for memory and learning [13,14]. For example, first,
[5] show that individuals who are better able to segment ongoing activity into
events are better able to remember it. Second, by event segmentation, a terrific
economy of representation for perception and memory can be achieved. Hence,
organizing lifelogs into events will provide a more natural and pellucid way for
organizing lifelogs, retrieval and interpretion.

However, several related and crucial questions for event segmentation still
remain. First, are the event boundaries consistent across different people? In
other words, is there good inter-subjective agreement on the event segmentation
boundaries? Although the event boundaries can be fuzzy [12] indicating there
is inevitable variability when and where a boundary occurs, they are remark-
ably consistent across participants [15] with good reliability among the same
participants in test-retest [7].

Second, what kind of features are needed? [5] show that event boundaries
can be identified by tracking significant changes in physical and social features.
[12] indicates that the critical features may include sensory features, such as
color, sound and movement, and conceptual features, such as cause-and-effect
interactions and actors’ goals. Evidences [12] are shown to demonstrate that
both physical-movement features (such as change in location) and changes in
actor’s goals play strongly important roles in the segmentation of activity into
events.

Finally, since previous studies [10,16,17] only study the movement features on
event segmentation for the short time records which last only for a few seconds to
several minutes, the final question is - What is the impact for movement features
for event segmentation for long time records (which last more than 2 hours or
even longer)?

In this paper, our study on natural and realistic daily event segmentation
shows that, for daily event segmentation on long time records, the movement fea-
tures can also play an important role and are important cues for event boundary
detection. More specifically, our study focuses on the impact of movement fea-
ture and visual feature characterized by two independent sensor sources, namely,
accelerometer and image on event segmentation. Furthermore, we will also fol-
low the same way [1] to construct the ground truth boundaries, that is asking
people to segment their events by viewing and marking event boundaries on
their corresponding image records. But instead of associating the sensor data
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to images [1] to evaluate performance, we suggest a performance measure which
is well developed from audio segmentation for daily event segmentation using
sensor data. This measure considers the “fuzzy” effect [12] of event boundaries
by assuming that the event boundary can have a small continuous time interval
and evaluates the F-score (a measure of a test’s accuracy based on precision and
recall) directly on event boundaries. This is different from [1] which evaluates F
score on images and [18] which evaluates F score on events (activities).

The specific contributions of this paper are the following:

1. Accelerometer signals can provide much more reliable and significantly better
performance than using images signal with MPEG-7 low level features.

2. For the accelerometer signal, our proposed model using the Fourier Trans-
form feature has a better performance than the state of the art system [1]
using “the rate of change in motion” ([6,19]) feature for accelerometer signal
and also their fusion method.

3. Using the “Behavior Text” [20] feature suggested by Carnegie Mellon Uni-
versity group doesn’t give us a better performance than using the traditional
Fast Fourier Transform (FFT) feature for event segmentation under our pro-
posed model.

2 Related Work

In one of the early studies, by using a mobile phone equipped with a sensor box,
[21] investigated several time series segmentation methods for segmenting con-
text data sequences into discrete, non-overlapping and internally homogeneous
segments. A cost function is defined for any segments on the time series. Hence,
the segmentation problem has been converted into an optimization problem. In
their particular study, they define the segmentation cost as a sum of the vari-
ance of the components of the segment. However, there are two drawbacks here.
First, they don’t have any detailed ground truth boundaries to compare with
their methods. In other words, they lack some systematic metric to evaluate
the performance. Second, the number of events needs to be predefined and they
don’t show how to get the optimal number.

An algorithm based on a hidden Markov model (HMM) is proposed by [22]
for unsupervised clustering of free-living human activities on accelerometry. This
algorithm iteratively trains the HMM whose state is a sub-HMM with minimum
duration constraint using the Expectation-Maximisation (EM) algorithm. The
topology of the HMM changes during the cluster merging step with a merging
criterion. However, this model suffers from two main limitations as mentioned in
the paper [22]. First, the varied durations of different activities complicates the
selection of features and hyper-parameters. Second, only one hour data sequences
have been tested in the experiments instead of a full range of daily human
activities.
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By using the SenseCam1, [6] investigated 5 different sources of information,
which are low-level image descriptors, audio, temperature, light and accelerom-
eter readings and their combinations to segment the SenseCam images into dis-
crete events. Their method mainly involves two steps. The first step is called
score assignment. Generally, the computation of the score involves the distance
computation between every pair of contiguous windows which contains a fixed
number of data units (e.g. images) and slides along the data sequence ordered by
time. In this step, only the time break which has an image timestamp associated
with it has a score. A high score will indicate an event boundary. Since differ-
ent types of data may have different captured times, interpolation techniques
are used to get the score for the image capture time. For example, a Gaussian
window centred at the capture time of the images is used for the sensor values.
For the audio data, a linear interpolation is applied. The second step is about
score normalization and threshold. That after score normalization, the segmen-
tation algorithm determines a threshold in order to get 20 events for each day.
Generally, the time breaks of the 20 top scorings are considered to be the event
boundaries.

In their follow up works, [1] introduces a performance metric by providing
ground truth boundaries such that some images are selected as event boundaries.
Their performance measure is the F1 score (a measure of a test’s accuracy based
on precision and recall) between ground truth boundaries and algorithm outputs.
In this study, they focus on the segmentation of images in conjunction with
accelerometer readings and suggest to use “the rate of change in motion” [6,19]
feature for accelerometer data representation.

More recently, [18] propose a framework of the lifelog system by using a smart
phone. They investigate the activities segmentation and activities recognition on
data collected from 2 users wearing the phone for 5 days. They propose a novel
method called “behaviour text” [24,20] to represent the sensory data through
quantizing them. In this method, a K-means clustering algorithm is applied to
the raw sensor data as the first step. Each sensor record is then assigned a
unique symbol sequence presenting its nearest cluster. After converting the raw
sensor data into this “behaviour text”, they proposed two different methods,
namely, top-down activity segmentation through activity change detection for
event segmentation and smoothed Hidden Markov Model (HMM) for activities
segmentation and annotation. By average over all activity types, the authors
find that the top-down activity segmentation approach performs better than the
smoothed HMM [18].

3 Smart Phone and Data Collection

Several research groups [25,26,3,20,18] have developed personal Lifelog systems
to capture personal experiences by wearing various sensors and a wearable

1 SenseCam [23] is a small device that people can wear around their neck. It has a
digital camera and multiple sensors equipped, including: a light sensor, a thermome-
ter, an accelerometer to detect motion and a passive infra-red sensor to detect the
presence of a person.
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computer. However, most of them need multiple devices to be carried around
user’s body. In our study, only a smart phone is needed for data collection which
makes it more comfortable for users and encourages more natural interactions
with them.

Generally, an Android smart phone contains a variety of sensors including
a 3-axis accelerometer, a 3-axis orientation sensor, an light sensor, a magnetic
field sensor, a temperature sensor, a pressure sensor or even gyroscope sensor
and gravity sensor. It also has the function to take images, videos and record
audio. Furthermore, an Android phone can also track the user’s location by using
a GPS device when the user is outdoors.

In this study, we collect data from 2 subjects who use an Android phone to
capture images, audio, GPS locations and some sensor data as they engage in
their every day activities. The phone is worn around their neck and is positioned
in a case with a strap as shown in Figure 1. They are free to turn the application
off when they want to protect their privacy. However, they are instructed to
provide at least 6-7 hours worth of data each day.

Fig. 1. Smart phone and software for collecting activity data

4 Metric-Based Event Segmentation

Generally, this model involves three steps, namely, “Feature Extraction”, “Dis-
tance Metrics” and “Event Boundary Detection”. The overall procedure for sen-
sor data is depicted in Figure 2, the procedure for the image data is similar.

4.1 Feature Extraction

Sensor Data

1. Fast Fourier Transform (FFT) feature: The signal is first divided into a
series of consecutive overlapping frames where each frame is a fragment of
the signal - a fixed size of samples. At a sampling frequency of 15HZ, a sample
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Fig. 2. Metric-based Event Segmentation for Sensor Data

size of 30 samples represents 2 seconds. FFT features are then extracted for
each frame. In the experiment, the sample size is empirically set to 30 and
the overlapping size is 10.

Suppose x is the input signal and y is the output features, the function
implementing this transform is as follows,

yk =
N∑

j=1

xjω
(j−1)(k−1)
N

where ωN = e(−2πi)/N is an Nth root of unity and the length of x is N .
And

Yk = |yk|
where | · | is the complex magnitude.
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Since Yn
2
−k = Yn

2
+k, we can just keep half of the FFT features. Further-

more, the DC feature (the first one Y1) is the total acceleration value of
the signal over the window and is discarded in this study since from the
experiment results we find excluding it can achieve a better performance.
This (Excluding the DC component) is similar to how [27] handles activity
recognition. Hence, the selected FFT features for each frame are {Yk} where
k ∈ {2, 3, 4, · · · , n

2 }. Finally, since the accelerometer has three axis, the final
feature vector is the concatenation of the FFT features for each axis.

2. Motion Change Rate (MCR) feature: “The rate of change of motion” is first
introduced by [19] and suggested by [6,1] for accelerometer data captured by
SenseCam on event segmentation.

3. “Behaviour Text” feature: This feature is suggested by [24,20,18] to represent
the sensory data for event segmentation and activity recognition. A k-means
clustering method is applied on the raw sensor data that results a sequence
of symbols representing the cluster centres for each sample.

Image Data. The images are represented by MPEG-7 descriptors. The de-
scriptors we select are following what [1] suggest which are: color layout, color
structure, scalable color and edge histogram.

4.2 Distance Metrics

The distance metrics results in a curve of dissimilarity called “distance curve”
with respect to time.

Sensor Data

1. For Fast Fourier Transform (FFT) feature: Feature vectors are grouped into
a series of non-overlapping consecutive windows (sliding windows) whose size
is fixed. A dissimilarity measure is then applied on pairwise sliding windows.
The step length is one frame which means after the dissimilarity measure
on two non-overlapping consecutive windows, we move both windows one
frame in the direction of increasing time and compute the new dissimilarity
and so on. In the experiment, we test different window sizes and show their
corresponding performances.
– For the model-based approach, a multivariate Gaussian distribution is

applied for each window to describe the data. Several distance measure-
ments between these two Gaussians are used to measure the dissimilar-
ity of neighboring non-overlapping windows and the windows are then
shifted by a fixed step (about 1 frame) along the whole signal. This pro-
cess leads to the final distance curve. The following are several optional
distance measurements:
Kullback-Leibler diatance (KL):

dKL =
1

2
(μ1 − μ2)

T (Σ−1
1 +Σ−1

2 )(μ1 − μ2) +

1

2
tr(Σ−1

1 Σ2 +Σ−1
2 Σ1 − 2I) (1)
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Bhattacharyya distance (BHA):

dBHA =
1

4
(μ1 − μ2)

T (Σ1 +Σ2)
−1(μ1 − μ2) +

1

2
log

|Σ1 +Σ2|
2
√|Σ1||Σ2|

(2)

Bayesian Information Criterion (BIC)[28]:

dBIC = Nlog|Σ| −N1log|Σ1| −N2log|Σ2| − λP (3)

where Σ is the sample covariance matrix from samples of two windows
and P = 1

2 (d + 1
2d(d + 1))logN . d is the dimension of the space, the

penalty weight λ is equal to 1, N is the total number of samples in two
windows and μ is the mean vector and I is identity matrix.

– For the non-model-based approach, we introduce the following method:
Average Euclidean Distance (AED):

dAED =
1

|A||B|
∑

u∈A,v∈B

dist(u, v) (4)

where dist(u, v) is a Euclidean distance between vector u and vector v.
Set A andB represent two sliding windows and |·| denotes the cardinality.
Mean Vector Distance (MVD):

dMV D = dist(μ1, μ2) (5)

where dist(μ1, μ2) is a Euclidean distance between the mean vector μ1

and μ2 for sliding windows.
2. For the Motion Change Rate (MCR) feature: In order to compare the system

performance suggested by [6,1], the sensor motion values are associated with
an image using a Gaussian window centred at the time the image is captured.
The distance curve is then formed from a series of motion values where
large motion values indicate event boundaries. A Min-Max normalisation
technique [29] is applied followed by the event boundary detection [1]. In
the experiment, we test different Gaussian window widths and show their
corresponding performances.

3. For the “Behaviour Text” feature: Behaviour text string is grouped into a
series of non-overlapping consecutive windows (sliding windows) whose size
is fixed. A dissimilarity measure [20,18] is then applied on pairwise sliding
windows. In the experiment, we test different window sizes and show their
corresponding performances.

Image Data. Suggested by [1], images are grouped into a series of
non-overlapping consecutive windows (sliding windows) whose size is fixed. An
“average image representation” is derived for each window, histogram inter-
section is then applied on pairwise “average image representation”. Since the
histogram intersection results a similarity, the dissimilarity is derived by sub-
tracting the similarity from 1. In the experiment, we test different window sizes
(different number of images) and show their corresponding performances.
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4.3 Event Boundary Detection

This step involves two sub steps, namely “Smoothing” and “Peak Selection”.

Smoothing. Since the event boundaries are “fuzzy”[12] and the distance curve
may contain noise and events may have different levels of granularity or scale,
it is necessary to smooth the curve to identify robust event boundaries that are
invariant with respect to granularity or scaling, and are minimally affected by
noise and small distortions. Suggested by [30], Gaussian kernel is used to handle
these considerations. The following is the description:

To smooth the curve by the convolution of a variable-scale Gaussian, G(t, σ),
with an input curve, I(t) :

L(t, σ) = G(t, σ) ∗ I(t), (6)

where ∗ is the convolution operation in t, and

G(t, σ) =
1

2πσ2
e−

t2

2σ2 (7)

The smoothing level for Gaussian kernel is denoted by parameter σ. In the
experiment, the σ for cross validation is from {1, 2, 3, ..., 90}.
Peak Selection. Three different peak selection models are proposed in this sec-
tion, namely, “All peak”, “Tall peak” and “Significant peak”. In the experiments,
their corresponding free parameters are selected by cross validations.

Firstly, for the “All peak”, this model simply selects all the peaks (potentional
boundaries) to form the final event boundaries. Since peaks can be selected from
different smoothing levels, there is only one free parameter in this model - the
smoothing level σ in “Gaussian Convolution”.

Secondly, a peak is “tall” when its height is greater than some threshold as
Figure 3 depicts. In this model, all the boundaries corresponding to tall peaks are
selected as the final event boundaries. In this model, besides the σ in “Gaussian
Convolution”, there is another free parameter - the threshold. In the experiment,
the σ we select for cross validation is from {1, 2, 3, ..., 90} and the threshold is

i× (max−min)
50 +minwhere i ∈ {1, 2, 3, ..., 50} andmax andmin are the maximum

and minimum values for all the distance curves.
Finally, a peak is “significant”[31] if

|d(max) − d(minleft)| > ασ′

or |d(max)− d(minright)| > ασ′ (8)

where α is a parameter, σ′ is the standard deviation of the distance curve. And
minleft and minright are the left and right minimas around the peak “max” as
Figure 4 depicts.

This model selects all the “significant peak”. The boundaries associated to
these peaks are selected to form the final event boundaries. This model involves
two free parameters, σ in “Gaussian Convolution” and α in detecting the “sig-
nificant peak”. In the experiment, the α we selected for cross validation is from
{0.1, 0.2, 0.3, ..., 2.0} and the σ for cross validation is from {1, 2, 3, ..., 90}.
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Fig. 3. Tall Peak: Peak 2 is tall peak since
its height is greater than the threshold

Fig. 4. Significant Peak: The middle peak
is “Significant”

5 Segmentation Quality Measure

5.1 Evaluation Reference

In order to evaluate performance, subjects manually segment their daily expe-
rience into different events by viewing their corresponding sequential images.
The timestamps of the images they choose are marked as ground truth bound-
aries. Hence, the ground truth event boundaries for daily experience is a set of
timestamps.

5.2 Evaluation Metrics

An event segmentation system tries to detect changes in the sensor signals where
the changes correspond to boundaries of different events. Such a system may have
two possible types of error. Type− 1 errors occur if a true boundary is not hit
within a certain range in time (3 minutes either side in our case). Type−2 errors
occur if a detected change does not correspond to any ground truth boundary
(false alarm). Type 1 and 2 errors are also referred to as precision (PRC) and
recall (RCL), respectively [32].

Let Nhit be the number of boundaries correctly detected (hit), Nref be the
total number of boundaries in the reference and Nf be the number of detected
boundaries (system outputs).

The precision (PRC) and recall (RCL) can be defined as follows:

PRC =
Nhit

Nf
, RCL =

Nhit

Nref
(9)

Generally, the F-measure is often used to compare the performance of different
algorithms as follows:

F =
2× PRC ×RCL

PRC + RCL
(10)
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The range of the F-measure is from 0 to 1 where a higher F-measure indicates a
better performance.

5.3 Hits Counting: Search Region

In order to determine the number of hits, a fixed-size search region around each
reference boundary is placed and verified whether there are some boundaries
produced by a segmentation algorithm in these regions as Figure 5 shows.

Fig. 5. In this example, for reference boundary l1, there is an algorithm output m2 in
its search range (colored region with dotted lines as its both sides), hence, boundary
l1 is hit by output m2. For boundary l3, there are two outputs in its search range, and
l3 is also hit. The number of boundaries correctly detected is 3 in this case (Nhit=3).
And the total number of boundaries in the reference is 4 (Nref=4). Total number of
detected boundaries (algorithm outputs) is 6 (Nf=6).

However, if there is some overlapping search region, this will cause an am-
biguous situation in evaluation. This problem can be solved by removing the
overlapping region by asymmetrically shrinking the search regions of its two
sides to a common mid-point [33] (see Figure 6).

In the experiments, since we don’t study segmentation of the events which
last less than 3 minutes, the total search region is set to 6 minutes.

6 Experiments

6.1 Dataset

Sensor Data. Unlike [6] whose sensor data is captured every 2 seconds (0.5HZ),
the sampling rate of our smart phone sensor is from 15HZ to 20HZ. This sample
rate is sufficient for detecting human daily physical activity [34]. Since the raw
accelerometer data is recorded using the device’s coordinate system, we
convert it into world’s coordinate system (see Figure 7) by eliminating the
force of the gravity and with the assistance of the magnetometer sensor. We call
this converted data (which is also gravity eliminated) adjusted accelerome-
ter data. In the experiments, we investigate the performance difference between
these two different representations by using different distance measures and dif-
ferent models.
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Fig. 6. The first plot shows an example of an overlapping search region causing a
ambiguous situation in evaluation, namely a problem of how to define a matching
boundary for each reference boundary. It is not clear whether l1 or l2 is hit by m2

or both. The second plot removes the overlapping by asymmetrically shrinking the
search regions of its two sides to a common mid-point. Hence, the matching becomes
straightforward so that m2 is only contributed to the hit of l1.

Fig. 7. The left figure indicates the device’s coordinate system and the right figure
represents the world’s coordinate

Ground Truth Boundaries. In this experiment, we ask the wearers to manu-
ally create a ground truth of segmentations for all his/her own recorded images.
There are several reasons that we ask the wearers to segment their own records.
First, event segmentation has subjective and individual differences and is hard to
characterize by normative criteria [9]. Second, we believe that the wearers have
the best knowledge of their own intentions and goals for what they did when
viewing their own image records. Third, considering the privacy issues with data
highly personal to the user, it is desirable to mark event boundaries according
to each wearers’ own judgements suggested by [1].
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6.2 Experimental Setup

In the experiments, the data set is first grouped into continuous chunks in time.
Then all the chunks are divided into training chunks and test chunks. Each
chunk represents records of activities per person per day. We leave one chunk
out to select the parameters and test it on the test chunk. By grouping the data
into chunks during the testing, this can guarantee that the models are tested on
completely different days.

6.3 Understanding of the Performance Measure

In order to have a better intuition of the performance measure - F values, we
do some experiments based on random boundary generation and ground truth
boundary replacement.

Random Boundary Generation. Without knowing the number of event
boundaries for each chunk, we use a fixed number to generate the random
boundaries from a uniform distribution. Fig 8 shows the results, the number
of boundaries range from 1 to 200 for all chunks. The F values come from the
average results on 100 simulations (random boundary generation). Furthermore,
knowing the number of event boundaries for each chunk, we can get a F value
that is 0.22 ± 0.026, where 0.22 is the average and 0.026 is the standard devi-
ation. The average suggests a “chance segmentation” and can be counted as a
baseline.

Ground Truth Boundary Replacement. In this experiment, different pro-
portion of ground truth boundaries are replaced by equal number of random
boundaries with 100 different simulations. Fig 9 shows the results. For example,
a F value of 0.65 indicates that nearly 38% of the ground truth boundaries are
placed by random boundaries. 0.60 indicates 44%, 0.55 indicates 51% and 0.5
indicates 59%.
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Fig. 8. F values for different number of
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6.4 Experimental Results and Analysis

In the experiments, we are going to answer the follows: 1. How well can our
proposed model do comparing with other systems on the event segmentation?
2. Which modality is better? Image data or accelerometer data? 3. What is the
impact for movement features for event segmentation on long time records?

1. Our Proposed Models: Fig 10 and Fig 11 show the results. By using the
“Tall Peak Detection” on adjusted accelerometer, the “BHA” and “BIC”
distance measures can give us the best average F value around 0.65 using
the window size in the range from 50 frames (equivalent to 75 seconds) to
90 frames (equaling 135 seconds) 2.
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Fig. 10. Event segmentation on accelerometer data using our proposed model

The “Histogram Intersection” distance suggested by [35] is used in the dis-
tance curve computation for image signals with different representations. By
the comparison of the event segmentation results between using accelerome-
ter data (Fig 10) and image data (Fig 11), it is clear, the event segmentation
performance from using accelerometer data is much higher than using image
data.

2. Dublin City University’s System: The Motion Change Rate (MCR) feature
is used in this system. Since the performance measures are different, in order
to make a fair comparison, the distance curves are processed with/without
“Peak Scoring” technique before peak detection. Furthermore, a data nor-
malisation method “Sum” is used for different signals before fusion. A fusion

2 Although different models would prefer different window sizes, we would like to
report the average F value in a reasonably good range instead of reporting the best
one. Since the best one associated with a particular window size may be sensitive to
the data and model.
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Fig. 11. Event segmentation on image data using our proposed model

method “CombMIN” suggested by [1] is used for different signals. For this
fusion method, different distance curves are multiplied by different weights.
For each time step, the minimal among these weighted distance curves is
selected as the output. The weights we used in the fusion are suggested by
[35].
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Fig. 12. Event segmentation using Dublin City University’s System - Accelerometer
Data Only

Fig 12 shows the results for accelerometer data using the “Mean Thresh-
old” method suggested by [1] for peak detection. The best performance using
the accelerometer data is around 0.53.

The early fusion method is suggested by [35] (left panel in Fig 13) so that
different image representations are concatenated into a signal representation,
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Fig. 13. Event segmentation using Dublin City University’s System - Fusion

then a distance curve computed on that representation is fused with distance
curve of the accelerometer signal later. The weight for the image distance
curve is 0.65 and the weight for the accelerometer distance curve is 0.35.
Furthermore, we suggested a completely late fusion method (right panel in
Fig 13) where this fusion is on distance curves of different image represen-
tations and distance curves of accelerometer signal with equal weights. And
it is clear, when using raw accelerometer data without “peak scoring”, this
method can achieve an F score which is around 0.58. Finally, with a com-
parison between Fig 13 and Fig 12, the fusion of image and accelerometer
data can give us a better result than using accelerometer data only.

3. Carnegie Mellon University’s system: The “Behaviour Text” feature is used
in this system. In this experiment, in order to make a fair comparison3 for
the study of the “Behaviour Text” feature for event segmentation, we use
our proposed peak detection methods to find the event boundaries. The
hyper parameters for the feature extraction and dissimilarity measure are
set empirically [24,20] according to the experimental results. Fig 14 shows
the results. Using “Significant Peak Detection” on adjusted accelerometer
data, the best average F values are around 0.60 whose window sizes are from
1 minute length to 2 minute length. And it is clear that the performances
using adjusted accelerometer data are much better than the performances
using raw accelerometer data.

3 The papers [24,20] lack enough details for replicating their hierarchical segmenta-
tion method and through some email contacts with the main author, our attempt
for replicating their hierarchical segmentation method still gives us some low perfor-
mance.
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Fig. 14. Event segmentation using “Behaviour Text” feature

7 Conclusion and Discussion

The automatic event segmentation using accelerometer data appears to be more
reliable than that using image data. This was somewhat unexpected considering
the ground-truth boundaries were created by subjects from imagery. The main
reason may be due to the fact that the camera can capture a totally differ-
ent image signal with slightly different device orientation even within a similar
context. Humans can understand the semantic meaning of these images and
recognize that they have a similar context even though they may look very dif-
ferent. However, the distance measure using MPEG-7 low level features will tell
the difference in vision and the metric based model with these features fails to
understand the similarity in context.

Second, according to the comparison between our proposed model and the
Dublin City University System [1] on event segmentation using accelerometer
data, we find it is necessary to have a high sampling rate to capture the change
of daily human activity. One reason that our proposed model can have a higher
performance than the Dublin City University System may be due to their low
sampling rate - sensor data is captured every 2 seconds (0.5HZ). We think such
low sampling rate may be insufficient for detecting daily human physical activity
[34] and may fail to detect some event boundaries.

Third, our proposed peak selection methods using the bag of feature repre-
sentation such as “Behavior Text” [20] suggested by Carnegie Mellon Univer-
sity group has a much better performance on the adjusted accelerometer data
than the raw accelerometer data. Furthermore, the best performance from our
proposed model is also from the adjusted accelerometer data. All these may
suggest that, for the accelerometer data, the gravity impact combined with the
orientation of the phone (implied by the accelerometer data based on a de-
vice’s local coordinate system) is useless or even harmful for event segmentation.
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Since the gravity can be decomposed as adding numbers into the three axis of
the accelerometer data, they vary with different phone’s positions. This usually
overwhelm the acceleration introduced by activity change and make what the
algorithm detected majorly becomes the change of the device’s position.

Finally, we believe that the movement features can play an important role for
event segmentation on the long time records.
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