
The webinos Architecture:

A Developer’s Point of View

Paolo Vergori1, Christos Ntanos2, Marco Gavelli1, and Dimitris Askounis2

1 Istituto Superiore Mario Boella, MultiLayer Wireless solutions (MAIN)
Turin, Italy

{vergori,gavelli}@ismb.it
2 National Technical University of Athens,

Electrical and Computer Engineering Department
Athens, Greece

{cntanos,askous}@epu.ntua.gr

Abstract. This work describes the architecture proposed by the webi-
nos EU project, which aims at developing software components for the
future Internet, in the form of Web Runtime Extensions. It discusses
the webinos architecture from a developer’s point of view, presenting an
overview of its main advantages, such as context-awareness capabilities
and distributed APIs in an intrinsic secure environment. It also shows
how these features can in practice prove beneficial to the development of
ubiquitous and secure web applications based on standard technologies
like HTML, CSS and JavaScript.

Keywords: webinos, mobile applications, middleware, developers,
framework, architecture, context, context awareness, distributed apis.

1 Introduction

The world of web development is rapidly changing. Requirements for develop-
ers are more strict and involve scenarios that were not taken into account in the
past. These changes are mainly due to the steep increase of the range of available
devices, their features, their capabilities and the need for persistent network con-
nectivity. Furthermore, in this new world of distributed information, validating
the same user across diverse devices and Operating Systems can be challenging
with respect to security and privacy.

These factors are increasingly forcing developers into creating cross-platform
applications, with cross-service capabilities that are able to share information
among devices. Such features, though, introduce new security requirements that
need to be addressed. In the end, the aim is to provide appropriate tools for the
development of web applications that augment the user experience, while at the
same time, relying on sand-boxed environments, like browsers, and on Operating
Systems’ integrated security.

D. Uhler, K. Mehta, and J.L. Wong (Eds.): MobiCase 2012, LNICST 110, pp. 391–399, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



392 P. Vergori et al.

In this paper1 we aim to point out how the webinos consortium addresses
those needs and simplifies development tasks, by introducing an innovative,
open-source middleware, to the development process. The webinos framework
enhances application security, regardless of the Operating System on which the
framework is running, without requiring any additional effort from the developer.
In the following sections, we present an overview of other related solutions and
the current state-of-the-art for middleware web based applications and we follow
it with a brief breakdown of the webinos architecture. Next, we break down the
main strengths of the webinos approach, and point out some of the key findings
from the research on context-awareness, as it is implemented in webinos.

2 Background

As a cutting-edge middleware framework, webinos is closely related to the re-
search on the development of middleware for distributed applications, a topic
that is well document in literature. In general, middleware components aim to
be generic across applications and industries, run on multiple platforms, be dis-
tributed, and support standard interfaces and protocols.[1, p. 5]

It is widely suggested that ‘conventional binary programs will be limited to
system software, whereas the vast majority of end user software will be devel-
oped using web technologies’ [13]. Due to the already well established ubiquity
of web browsers, the webinos framework was steered early towards serving its
functionality through web content. Best practices from W3C [15] refer to a Web
Application as a ‘Web page (XHTML or a variant thereof + CSS) or collection
of Web pages delivered over HTTP, which use server-side or client-side process-
ing (e.g. JavaScript) to provide an ‘application-like’ experience within a Web
browser. Web applications are distinct from simple Web content, in that they
include locally executable elements of interactivity and persistent state.’

Despite the fact that numerous technologies that can be delivered through
HTML, such as JavaScript, CSS and DOMmodels, have enabled a more dynamic
environment for Web applications, web pages, in general, are still providing an
insufficient experience to nomad users. This is due to the fact that ubiquity of
information and functionality has not been taken seriously into consideration
yet, nor is data exchange aware of the context in which it is performed.

In order to enhance the already established specifications with an outlook
towards the future of computing, the webinos consortium quickly underlined
the importance of identifying user requirements that would cover present, but
more importantly, future needs. The result was a series of original use-cases and
scenarios, where the framework would play a key role in enabling developers
overcome hurdles associated with the diversity of the modern and future device
ecosystems.

1 The work reported in this paper was granted by the webinos project co-funded by
European Union Seventh Framework Programme.



The webinos Architecture: A Developer’s Point of View 393

Web Applications vs Widgets

The distinction between web applications and widgets has been thoroughly cov-
ered by a previous investigation from webinos partners [8], but it is equally
relevant from the application developer’s point of view. The W3C identifies[16,
p. 3] a widget as a pre-packaged, purpose-built web application. Moreover, in
this specification[16] it is explained that web applications and widgets ‘differ
from HTML5-style web applications in the sense that for web widgets, the instal-
lation formats and practices have been predefined specifically to resemble those of
traditional (native) applications. For instance, each W3C web widget is packaged
into a separate WGT (ZIP) file that is installed explicitly in the same fashion
as binary applications. This is different from HTML5 applications that run in a
web browser without explicit installation.’

It is clear that web applications are not prepackaged for installation, they
do not offer an automated installation procedure, nor a maintenance system,
and therefore they are static. Widgets can be more appealing for adoption by
web developers, especially in the case of distributed computing applications like
the ones that the webinos framework serves, because they provide a dedicated
distribution package that delivers contents to users, adding an intrinsic value to
the contents themselves.

3 Overview and Overall Architecture

The overall architecture of the framework that the webinos consortium is deliv-
ering is briefly depicted in the following section.

3.1 What Is webinos?

Webinos is an EU funded project aiming to deliver a platform for web applica-
tions across mobile, PC, home media and in-car devices. The webinos project
has over twenty partners from across Europe spanning academic institutions,
industry research firms, software firms, handset manufacturers and automotive
manufacturers. webinos is a ‘Service Platform’ project under the EU FP7 ICT
Programme. The main features of webinos are:

– webinos bases on the achievements of the web community and extends an
open source web runtime environment

– webinos offers a common set of APIs to allow easy access to cross-user cross-
service cross-device functionality in an open and secure manner

– webinos aims at easy programming of applications by offering a single virtual
device that can consist of all devices owned by a user

– webinos creates open specifications and open source reference implementa-
tions that show the feasibility of the specifications and simplify their adap-
tation by the industry [17].



394 P. Vergori et al.

3.2 The Concept of the Personal Zone

The Personal Zone concept stands on top of the webinos architecture. The Per-
sonal Zone Area (PZA) is delimited by the perimeter defined by the ownership of
devices. Each webinos-enabled device that belongs to the same user is considered
to be inside this perimeter.

Each PZA is defined by a single point of synchronization, which all devices
must authenticate against. This point is called a Personal Zone Hub (PZH) and
its aim is to provide attestation, authentication and to act as an enforcement
point for incoming requests. The actual implementation relies on a cloud posi-
tioning of the personal hub, assuming it is hosted securely, even if it’s on a third
party server. A set of available actions is provided to the PZH user, through a
dedicated web UI to which the user logs-in via a custom OpenID [11] authenti-
cation mechanism. The available actions through this interface include adding a
device to the Personal Zone Area, revoking certificates for every authenticated
device in that area and checking their authentication status. The certificate re-
vocation action is irrevocable and another certificate must be issued again from
the device itself, before being issued to the PZH again.

Figure 1 depicts the architecture of webinos and the components with which
an application can interact.

Every webinos-enabled device is running an instance of a Personal Zone Proxy
(PZP). The connection with the Personal Zone Hub is done through a secure
TLS channel that mutually authenticates both sides, but in case of out-of-band
communication, it can peer itself with an already authenticated PZP that be-
longs to the same PZA, maintaining security policies, due to the duplicated
nature of the Policy Enforcement Point and Policy Decision Point in both PZH
and PZP [7]. Its main role is to export device APIs as services in a completely
secure manner. Webinos Service Discovery allows these services to be discov-
ered and consequently be invoked using Remote Process Calls (RPCs) based
on the JSON-RPC 2.0 Specification [4]. The Personal Zone Proxy connects to
the Webinos RunTime (WRT) with a customized websocket implementation,
called secure channel. The WRT is the place where all the developed applica-
tions belong and run. It has a Widget Manager for the installation, deletion and
updating of applications that are packaged as widgets.

Making use of this architecture and the resulting development environment, the
software engineer has the opportunity to build applicationswith the significant ad-
vantage of having all the information and the webinos-enabled device features in a
distributed and secure overlay network.Moreover, all personal zones have context-
awareness features enabled and as it is explained in section 4, developers can create
advanced ubiquitous applications that can rely on the webinos framework.

3.3 Breakthroughs Introduced by webinos

Several similar frameworks have already been deployed in the past few years.
They all have tried to address the cross-device concept on a distributed envi-
ronment. Most, if not all, of these frameworks are missing one or more crucial



The webinos Architecture: A Developer’s Point of View 395

Fig. 1. The webinos architecture

functions that webinos aims to either ameliorate or introduce. PhoneGap [10]
provides a precompiled framework that serves a platform dependent API subset,
and runs on several Operating Systems. This approach lacks a pure multi-device,
platform-independent development concept. Moreover, the compatible OSes are
limited to the mobile device pool. Bondi is a web-based Operating System just
for mobile devices. It creates a secure environment, in which it allows access
to mobile functionality from a widget renderer. In July 2010, OMTP and the
BONDI initiative were subsumed into the Wholesale Applications Community
(WAC) [9]. The Wholesale Applications Community (WAC) is an organization
aiming to create a unified and open platform to help mobile software developers
easily write applications that can run on a variety of devices, Operating Systems
and networks [14]. Both Bondi and WAC are closely related to the webinos
Project. Nevertheless, webinos is more ambitious, due to its aim to overcome
the mobile barrier by aiming to reach a wide variety of devices, such as set-top
boxes, PCs, cars and, of course, tablets and smartphones as well.

The main goal of the webinos framework is to take computing to its next
logical step, that of ubiquity. In order to do so, knowing the state of the device
and the user at any given time, and making decisions based on that context
(section 4) is crucial.



396 P. Vergori et al.

Context awareness and true cross-platform and cross-device applications can-
not be achieved without the developer having access to a distributed API envi-
ronment. With the use of a framework that provides such access, together with
the context awareness capabilities of webinos, ‘everyware’ [3] applications are a
step closer to reality.

Applications operating within a webinos PZA can share the state of the same
application on any other device belonging to the same user, by seamlessly sharing
context and application data across the personal zone. Moreover, the use of
Remote Process Calls [4] from the Webinos Run Time to the exposed APIs of
other devices within the PZA, will allow the developers to limit the functionality
of their applications almost only my their own imagination.

4 Context and Distributed Information from Developers
POV

The webinos platform aims to provide appropriate tools for software engineers,
in order to enable and facilitate the development of cross-platform context-aware
applications. Context-aware computing is a term introduced by Bill Schilit in
1994 [12] and was later popularized by the advancements of mobile computing,
device, software and telecommunication interoperability. In computing, context
can be described by its three important aspects: where you are, whom you are
with, and what resources are nearby. Because of this, context is divided into
three parts, computing context (e.g. available processors, devices accessible for
user input and display, nearby resources) , user context (e.g. users location,
collection of nearby people, user profiles and social situation) and physical context
(e.g. lighting, temperature, noise and humidity level, traffic conditions).

4.1 Context-Aware Applications

A context-aware application either makes use of a single piece, a combination,
or a time series of context related data, for example, the current state of the
compass on a mobile phone, the current state of the ambient light sensor of a
laptop computer or the geographic location and the closest Wi-Fi networks, in
order to make an automatic contextual reconfiguration (e.g. increase the bright-
ness of the monitor, enable Wi-Fi connectivity) or enable a proximate selection
(e.g. highlight Points Of Interest geographically located near the user or print
a document on the closest printer). In order to take advantage of such func-
tionality, an application developer has to have access to means of acquiring
contextual data, storing them, filtering them, combining them and performing
commands based on the resulting information. For ubiquitous, distributed and
context-aware computing applications, the aim is to provide appropriate mid-
dleware that can perform Remote Process Calls (RPCs), while at the same time
introducing an abstraction layer that will facilitate the development process, by
hiding the heterogeneity of the networking environment, supporting advanced
coordination models among distributed entities and making as transparent as
possible the distribution of computation [5].



The webinos Architecture: A Developer’s Point of View 397

4.2 Context-Awareness in webinos

The webinos project aims to provide a cross-platform level of abstraction for
procedural calls, but at the same time, incorporate an additional data abstrac-
tion layer for use in third party context-aware and context-sharing applications
that are webinos-enabled. The main data construct relating to contextual infor-
mation in webinos is the Context Object. Inspired by the definition of a meme
[2], a Context Object is a unit for carrying data that uniquely defines a piece
of contextual information. For example, whereas a call to a GPS sensor will
return a number of outputs (latitude, longitude, heading, speed, accuracy and
altitude accuracy), one relevant Context Object that can be called MyLocation
will contain only the most relevant data that can define the unit, by excluding
some and/or adding others, in this case ending up with latitude, longitude, ac-
curacy, altitude accuracy and time. Context data collection can be performed
in three ways. First, there is an automatic mechanism that, with the permis-
sion of the user, can intercept RPCs made by webinos-enabled applications to
the various webinos APIs. Second, Context Objects can be registered for peri-
odic background data collection when the PZP is running and third, they can
be defined and stored independently by any application. Apart from the Con-
text Objects already defined for the webinos APIs in the webinos API Context
Vocabulary, a list of structures and rules for the automatic contextualization of
intercepted RPC messages, an application developer can make use of the webinos
Application Context Vocabulary to define custom rules and structures for storing
application-specific Context Objects, or ones that are derived by any process or
combination of preexisting or new contextual data. The database where these
objects are stored securely is located at the user’s PZH. The Context DB con-
tains data from across the devices and applications in a PZA and each database
is unique for that PZA. Querying the Context DB is achieved through a simple
to use dedicated query builder that allows the treatment of the Context DB
as an Object-Oriented Database, focusing in its main construct, the Context
Object. The developer can perform queries directly to the Context API, with
the prospect of acquiring any type of Context Objects, created by any API, any
application and any device across the user’s PZA.

4.3 Contextual Information and Privacy in webinos

It is very clear that users are not very good at understanding the future value
of keeping personal information private [6] and are often quick to share the
ownership of such information without evaluating the impact of its possible
uses. With this in mind, the webinos platform ensures that the ownership of
contextual information stays with the user, while access rights to applications to
store, extract or query context data can be given by the user to the application
and not the application developer. This allows the developer to build applications
that can utilize Context Objects that are stored by the webinos platform or other
applications in the same PZA. In order to further secure the privacy of personal
data, all transactions with the Context DB are monitored by the webinos policy



398 P. Vergori et al.

manager and specific access rights to read/write, to and from the Context DB
are provided per application and per type and per source of Context Objects.

5 Conclusions

It is becoming increasingly apparent that in order to open the gates of the Future
Internet era, applications will be required to be mobile, secure, platform inde-
pendent and context-aware. Practical and unrestricted ubiquitous computing is
gradually leaving the theoretical sphere and is becoming a tangible requirement
from end-users. Application developers that need to address these requirements
do not have the resources to provide cross-platform implementations of their
software or even different builds per Operating System and/or device. Han-
dling cross-device communications, security, privacy, hardware changes, Operat-
ing System updates and advanced features, such as context-awareness is next to
impossible in most cases. The innovative, open-source and holistic solution that
is introduced by webinos is a significant step towards real ubiquity of computing,
where the software developer will not have to worry about any of these issues,
but rather focus on what is really important in developing unique and useful
applications: his own ingenuity.

Acknowledgments. The research included in this work has been co-founded
by the European Union Seventh Framework Programme (FP7-ICT-2009-5 Ob-
jective 1.2) [17].

The researchers that with their work have made this paper possible
and deserve a special mention are: Riccardo Scopigno (scopigno@ismb.it),
Michele Morello (morello@ismb.it), Nadir Raimondo (raimondo@ismb.it), En-
rico Baccaglini (bac-caglini@ismb.it), Andreas Botsikas (abot@epu.ntua.gr) and
the rest of the webinos team.

References

1. Bernstein, P.A.: Middleware: a model for distributed system services. Commun.
ACM 39(2), 86–98 (1996)

2. Dawkins, R.: The Selfish Gene. Oxford paperbacks. Oxford University Press (2006)
3. Greenfield, A.: Everyware: The Dawning Age of Ubiquitous Computing. Peachpit

Press, Berkeley (2006)
4. JSON-RPC Working Group. Json-rpc 2.0 specification,

http://www.jsonrpc.org/specification

5. Issarny, V., Caporuscio, M., Georgantas, N.: A perspective on the future of
middleware-based software engineering. In: 2007 Future of Software Engineering,
FOSE 2007, pp. 244–258. IEEE Computer Society, Washington, DC (2007)

6. Jedrzejczyk, L., Price, B.A., Bandara, A.K., Nuseibeh, B.: On the impact of real-
time feedback on users’ behaviour in mobile location-sharing applications. In: Pro-
ceedings of the Sixth Symposium on Usable Privacy and Security, SOUPS 2010,
pp. 14:1–14:12. ACM, New York (2010)

http://www.jsonrpc.org/specification


The webinos Architecture: A Developer’s Point of View 399

7. Lyle, J., Monteleone, S., Faily, S., Patti, D., Ricciato, F.: Scross-platform access
control for mobile web applications. In: IEEE International Symposium on Policies
for Distributed Systems & Networks (2012)

8. Lyle, J., Faily, S., Fléchais, I., Paul, A., Göker, A., Myrhaug, H., Desruelle, H.,
Martin, A.: On the Design and Development of webinos: A Distributed Mobile
Application Middleware. In: Göschka, K.M., Haridi, S. (eds.) DAIS 2012. LNCS,
vol. 7272, pp. 140–147. Springer, Heidelberg (2012)

9. Open Mobile Terminal Platform organisation. Bondi website,
http://bondi.omtp.org/

10. PhoneGap. Phonegap website, http://www.phonegap.com
11. Recordon, D., Reed, D.: Openid 2.0: a platform for user-centric identity manage-

ment. In: Proceedings of the Second ACM Workshop on Digital Identity Manage-
ment, DIM 2006, pp. 11–16. ACM, New York (2006)

12. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In:
First Workshop on Mobile Computing Systems and Applications, WMCSA 1994,
pp. 85–90 (December 1994)

13. Taivalsaari, A., Mikkonen, T.: The web as an application platform: The saga con-
tinues. In: 2011 37th EUROMICRO Conference on Software Engineering and Ad-
vanced Applications (SEAA), August 30-September 2, pp. 170–174 (2011)

14. Tanner, J.: Cellcos get wac on os fragmentation (March 2011)
15. The W3C. Mobile Web Application Best Practices. Technical report (2010)
16. The W3C. Widget Packaging and XML Configuration. Technical report (2011)
17. The webinos Consortium. The webinos consortium website (2012),

http://webinos.org

http://bondi.omtp.org/
http://www.phonegap.com
http://webinos.org

	The webinos Architecture: A Developer’s Point of View
	Introduction
	Background
	Overview and Overall Architecture
	What Is webinos?
	The Concept of the Personal Zone
	Breakthroughs Introduced by webinos 

	Context and Distributed Information from Developers POV
	Context-Aware Applications
	Context-Awareness in webinos
	Contextual Information and Privacy in webinos

	Conclusions
	References




