
Mapping Objective-C API to Java

Arno Puder and Spoorthi D’Silva

San Francisco State University
Department of Computer Science

1600 Holloway Avenue
San Francisco, CA 94132

{arno,spoorthi}@sfsu.edu

Abstract. Apple champions the use of Objective-C for iOS develop-
ment and has prohibited the use of virtual machines in the past. In
previous work we have shown how Java can be used as an alternative
programming language for iOS applications. We described a byte code-
level cross-compiler that translates Java-based applications to portable
C code to circumvent this legal restriction. A major challenge not ad-
dressed in our previous work pose the significantly growing size of the
iOS API, since every Objective-C based API needs to be exposed in Java.
So far we required the necessary Java skeletons to be written by hand.
Since its introduction in 2007, the iOS API has nearly doubled in size.
Considering the size of the iOS API this approach does not scale. In this
paper we describe an API mapping tool that can generate the required
Java skeletons by parsing Objective-C header files. Emphasis is placed
on mapping Objective-C’s dynamically typed API to strongly typed API
in Java.

Keywords: API Mapping, Objective-C, Java, iOS.

1 Introduction

With the introduction of the iPhone in 2007 the smartphone market has wit-
nessed significant growth, slowly cutting into the traditional cell phone business.
Apple has created an immensely successful ecosystem around iOS with the App-
Store. Apple offers an Objective-C based development environment for iOS apps.
The tremendous growth of the iOS platform is reflected by the size of its API
(Application Programming Interface). Table 1 gives a quantitative comparison
on the number of classes and methods between different versions of iOS. It should
be noted that iOS still exposes a significant amount of C API via functions and
structs besides the Objective-C based API. As can be seen, the iOS API has
nearly doubled in size since its first public release.

Apple has long resisted the use of programming languages other than
Objective-C. Amongst others, Apple forbade the use of virtual machines on
iOS. In a previous project, we designed and implemented a byte-code level cross-
compiler to translate Java classes to portable C code, thus circumventing Apple’s
restrictions regarding virtual machines [12]. Cross-compilation is necessary but

D. Uhler, K. Mehta, and J.L. Wong (Eds.): MobiCase 2012, LNICST 110, pp. 21–43, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

22 A. Puder and S. D’Silva

not sufficient for developing Java-based iOS applications. An application also
depends on the rich iOS API that must be exposed in Java.

In the past, we have manually designed and written Java skeletons to provide a
Java API for iOS. Considering the substantial size of the iOS API, the process of
manually writing these skeletons does not scale. As a continuation of our previous
work, we describe a API mapping tool in this paper that parses Objective-C
header files to generate Java skeletons. Doing so requires to solve two major
issues: firstly, mapping API based on a dynamically-typed language (Objective-
C) to a statically-typed API (Java). Secondly, creating “glue code” that bridges
between the different object models of the two languages at runtime.

Table 1. iOS API statistics

iOS 3.2 iOS 4.2 iOS 5.0

Classes 282 423 503

Protocols 63 93 112

Instance Methods 4357 5756 7021

Static Methods 470 637 759

Functions 2041 2484 2714

Structs 236 289 426

This paper is organized as follows: Section 2 provides a brief overview of
Objective-C and iOS. Section 3 discusses related work. In Section 4 we give a
detailed overview of our API mapping tool. Section 5 provides a side-by-side
comparison of a simple application written in Objective-C and the same appli-
cation written in Java using our generated API. Finally, in Section 6 we give a
brief conclusion and an outlook to future work.

2 Background

In this section we provide a very high-level overview of Objective-C and iOS.
It is not meant as an exhaustive introduction to either topic which is out of
scope for this paper. The purpose of this section is to give sufficient background
information on both Objective-C and iOS to motivate the challenges mapping
Objective-C API to Java. The examples given in the following highlight the
corner cases that must be dealt with during the API mapping. A subsequent
section will describe our solutions to the various challenges.

2.1 Objective-C

Objective-C was initially designed by Brad Cox in the early eighties. It is in-
spired by Smalltalk basing its object model on dynamic typing. NeXT Software
licensed the Objective-C language in 1988 and developed its operating system
called NEXTSTEP. In the mid-nineties, Apple acquired NeXT Software and the

Mapping Objective-C API to Java 23

language became the language of choice for application development. With the
introduction of iOS in 2007 the language has seen a renaissance and has become
the main development language for iOS app development. Apple offers its own
integrated development environment based on Objective-C through Xcode.

Similar to C++, Objective-C is a strict superset of the C programming lan-
guage adding object oriented features [7]. Any legal C program is also a legal
Objective-C program. All C libraries are available in Objective-C and the entry
point of an Objective-C program is defined via the usual main() function. The
following code excerpt shows how to define a class in Objective-C:

Objective-C class declaration and definition

1 @interface Fraction: NSObject {

2 int numerator;

3 int denominator;

4 }

5 -(void) setNumerator:(int)n;

6 -(void) setDenominator:(int)d;

7 -(int) numerator;

8 -(int) denominator;

9 @end

10

11 @implementation Fraction

12 -(void) setNumerator:(int)n { numerator = n; }

13 -(void) setDenominator:(int)d { denominator = d; }

14 -(int) denominator { return denominator; }

15 -(int) numerator { return numerator; }

16 @end

17

18 // Using class Fraction

19 Fraction* frac = [[Fraction alloc] init];

20 [frac setNumerator:3];

21 [frac setDenominator:5];

22 printf("Numerator: %d", [frac numerator]);

Just like C++, Objective-C distinguishes between a declaration (denoted by
the keyword @interface) and a definition (denoted by the keyword
@implementation) of a class. Class NSObject serves as a base class, similar
to java.lang.Object. The prefix “NS” is common for many Objective-C class
names and is a relict of the origins of the class library developed by NeXT Soft-
ware. Fields are declared within curly brackets followed by the methods of the
class. Instance methods are prefixed with a “-” while class methods are prefixed
with a “+” followed by the return type of the method. Lines 19–22 show the use
of an Objective-C class. The square brackets denote a method invocation where
the first argument is the target followed by the message being sent to that tar-
get. Creating a new instance requires to send the class object the alloc message
(which only allocates sufficient memory for the instance) followed by the init

message that serves as a constructor. Objective-C supports the notion of named
arguments. Unlike other programming languages such as C, C++, or Java, in

24 A. Puder and S. D’Silva

Objective-C every argument is named as shown in the following addition to class
Fraction:

Named Arguments

1 // ...

2 -(void) setNumerator:(int)n andDenominator:(int)d

3 { numerator = n; denominator = d; }

4

5 // ...

6 [frac setNumerator:3 andDenominator:5];

Named arguments support the notion of fluent interfaces that
make it easier for a programmer to associate semantics with a method [4].
The concatenation of the argument names setNumerator:andDenominator:

is referred to a selector in Objective-C. Method dispatch is solely based on
the selector. Since formal parameter types play no role in method dispatch,
Objective-C does not support overloading. Mapping a selector to a Java method
name would therefore be valid mapping. However, selectors in iOS tend to
be lengthy, such as tableView:willDisplayCell:forRowAtIndexPath: from
UITableViewDelegate. Exploiting Java’s capability for method overloading leads
to more poignant method names as shown in a subsequent section.

Although Objective-C is dynamically typed, it is possible to define interfaces
to allow for better checks at compile time. Interfaces are defined via so-called
protocols. While Objective-C only supports single inheritance for classes, it sup-
ports multiple inheritance for protocols. The following code excerpt shows the
declaration of the protocol Printing that is implemented by class Fraction:

Objective-C protocols

1 @protocol Printing

2 -(void) print;

3 @end

4

5 @interface Fraction: NSObject <Printing>

6 // ...

7 @end

8

9 @implementation Fraction

10 -(void) print

11 { printf("%d/%d", numerator, denominator); }

12 @end

13

14 // Call print method

15 id<Printing> obj = ...;

16 [obj print];

The protocols that a class implements are listed between < and > in the
class declaration. Protocols are not first class types, i.e., they cannot be used as

Mapping Objective-C API to Java 25

type names. The declaration in line 15 above tells the Objective-C compiler that
variable obj is a reference to an object supporting the Printing protocol. It is
important to note that true to its dynamic nature, a class may not implement
all methods declared in a protocol. Invoking an unimplemented optional method
leads to a runtime error. iOS is making liberal use of optional methods. Since
Java does not support optional methods in interfaces, this will be a challenge
for the API mapping.

Objective-C supports the notion of class mix-ins through categories [13]. A
category can add methods to an existing class. The name of the category is
mentioned between round brackets:

Objective-C categories

1 @implementation Fraction (FractionCategory)

2 -(void) multiplyWith:(Fraction*)f

3 {

4 numerator *= f->numerator;

5 denominator *= f->denominator;

6 }

7 @end

Although categories cannot add additional fields, they can add one or more
methods to an existing class, even to classes for which the source code is not
available. In the example above, instances of class Fraction can respond to
the message multiplyWith:. iOS makes use of categories which will need to be
mapped to Java.

2.2 iOS

Since its introduction in 2007, the iOS API is largely based on Objective-C.
Common to many GUI frameworks, iOS supports the Model/View/ Controller
paradigm through various classes [8]. Common UI elements are defined by classes
such as UILabel (labels), UIButton (buttons), or UITextView (input fields).
Complex widgets such as UIAlertView, UITableView or UIDatePicker have
become the trademark look-and-feel for iOS-based apps. The following excerpt
from the iOS SDK shows the API to create a new UIButton via the static method
buttonWithType::

Objective-C: UIButton

1 typedef enum {

2 UIButtonTypeCustom = 0,

3 UIButtonTypeRoundedRect,

4 //...

5 } UIButtonType;

6

7 @interface UIButton : UIControl

8 +(id) buttonWithType:(UIButtonType)buttonType

9 //...

10 @end

26 A. Puder and S. D’Silva

From an API mapping perspective there are two points worth mentioning
in this example. For one, even though method buttonWithType: returns a
UIButton instance, the return type is declared as the generic id type. For a
strongly typed language such as Java it would be more appropriate to map the re-
turn type to UIButton. Furthermore, the formal type of parameter buttonType is
based on an enum. Even though the compiler treats the enum as an int, the Java
API should offer identifiers for constants such as UIButtonTypeRoundedRect.

iOS makes heavy use of Objective-C protocols, especially to define the inter-
face of delegates that serve as callbacks. Much of the behavior of UI widgets
is driven by delegates that define different aspects of a widget. E.g., protocol
UITableViewDelegate features 18 callback methods that control the look-and-
feel of a UITableView. All but one of these callbacks are optional and need not
be implemented. Mapping an Objective-C protocol to a Java interface would
therefore incur an inconvenience to a Java developer as all 18 methods would
need to be implemented.

iOS offers several classes to support various data structures. Class NSArray

manages an array while NSDictionarymaintains a set of key-value pairs. These
classes are used by iOS GUI classes. E.g., the UIView class that represents
the base class of the view hierarchy has a method getSubviews that returns
a NSArray instance with a list of all child views. When mapping this method
to a Java API the question arises if the Java counterpart should also offer Java
versions of classes NSArray and NSDictionary or use the more familiar Java
interfaces java.util.List and java.util.Map.

As already mentioned in the introduction, a significant portion of the iOS
API is not defined through Objective-C classes but C functions. In particular
the low-level graphic drawing functions of the Quartz framework are exclusively
defined via C functions. As an example, consider the following iOS API part of
the core graphics framework that defines a rectangular region on the screen:

C: CGRect

1 struct CGRect {

2 CGPoint origin;

3 CGSize size;

4 };

5 typedef struct CGRect CGRect;

6

7 CGRect CGRectIntersection (

8 CGRect r1,

9 CGRect r2

10);

A struct in Objective-C retains its original semantics of the C programming
language and can be viewed as a value type. A set of C functions perform var-
ious operations on CGRect instances such as computing the intersection of two
rectangles. As Java does not support functions or value types, special mapping
rules must be devised to yield a natural Java API. The iOS API also makes
use of features typically found in C programs. The following code excerpt shows

Mapping Objective-C API to Java 27

the use of a pointer-to-a-pointer argument to mimic call-by-reference which also
needs to be handled specially in Java:

Call-by-reference

1 // Objective-C

2 @interface AVAudioSession : NSObject

3 -(BOOL) setActive:(BOOL)beActive

4 error:(NSError**)outError;

5 //...

6 @end

Objective-C categories are used in iOS to define so-called additions that add fea-
tures to existing classes. E.g., iOS’s UIKit adds several methods to class NSString
that are specific to UI programming. As shown below, the UIKitAddition cate-
gory adds a method to NSString to determine the width and height in pixels of a
string given a particular font:

UIKit addition to NSString

1 @interface NSString (UIKitAddition)

2 -(CGSize) sizeWithFont:(UIFont*)font;

3 //...

4 @end

Finally we want to mention the memory management model of iOS applica-
tions that has no impact on the generated Java API, but has significant conse-
quences of the underlying JNI implementation. Apple has opted not to include
a garbage collector in iOS. Instead, memory management is handled via refer-
ence counting [6]. Base class NSObject offers methods retain and release to
increase and decrease the reference count of an object respectively:

Reference counting

1 Fraction* frac = [[Fraction alloc] init];

2 printf("Retain count: %d", [frac retainCount]);

3 [frac retain]; // 2

4 [frac release]; // 1

5 [frac release]; // 0. Object will be deleted

Proper memory management is one of the most difficult aspects of iOS pro-
gramming. While iOS 5 has introduced ARC (Automatic Reference Counting)
where the compiler automatically inserts retain/releasemethods, this feature
is not supported by the core framework and it will also not work for multi-
threaded applications. Making Java’s garbage collector work in conjunction with
reference counting is a major challenge of the cross-compiled Java application.

In this section we have highlighted various features of the Objective-C pro-
gramming language and the iOS API that have impact on the design of a cor-
responding Java API. After discussing some related work, we will describe our

28 A. Puder and S. D’Silva

mapping tool that can generate a Java API taking C/Objective-C features such
as structs, categories or named parameters into account.

3 Related Work

API mapping from one language to another is not new. There are several ongoing
efforts in this area. In this section we will discuss some prominent examples, some
of which are not in the mobile space. One example is SWIG (Simplified Wrapper
and Interface Generator) that is used to bind the code written in C/C++ to a
variety of languages like Tcl, Perl, Java, C#, etc [3,1]. SWIG does this by auto-
matically generating the code required for the binding using a simple interface
file as input. It tries to provide a complete mapping for the APIs exposed in this
interface file that needs to be provided by a developer. Since SWIG does not
have a memory manager of its own, special care needs to be taken in SWIG to
avoid releasing the associated C++ objects that still might be used. SWIG pro-
vides directives to handle special cases but does not make use of any heuristics
for mapping the API.

Similar to SWIG, CORBA (Common Object Request Broker Architecture)
helps with mapping API of remote objects in a distributed environment [11].
CORBA makes use of a specialized language called IDL (Interface Definition
Language) that can be used to define the interface of remote objects. IDL is not
tied to a specific programming language and the CORBA specification defines
mapping rules from IDL to various high-level languages. An IDL compiler creates
stubs and skeletons from a specific IDL file that are used to carry out the client
server communication. Stubs are generated in the same language as the client
while the skeletons are generated in the same language as the server. Client and
server do not need to be implemented in the same language.

While the tools discussed so far do not directly relate to mobile applications,
there are tools such as MonoTouch that allow developers to create iOS applica-
tions using C# and .NET [14]. MonoTouch uses a so-called API Definition file
that consists of C# interfaces with special annotations and attributes for the
binding purpose. These special annotations handle the exceptional cases for the
API mapping such as static methods, binding rules for properties and so on.
MonoTouch has its own garbage collector and also provides users with options
to release resources explicitly before the garbage collectors collects them.

While MonoTouch concentrates on offering a binding between the C# and
Objective-C, there are tools that try to provide cross-platform support. One
such tool is PhoneGap that supports JavaScript API that acts as the bridge to
the native platform [2]. PhoneGap provides functionality to develop more than
just a web app in the sense that the JavaScript APIs also provide access to the
phone’s hardware such as accelerometer, camera, etc.

PhoneGap provides a generic interface across multiple platforms using HTML,
JavaScript and CSS. By default, the API support is only for certain hardware
functions and and does not cover a 1:1 mapping of the various mobile plat-
form APIs. One thing to note is that PhoneGap does support a wide range of

Mapping Objective-C API to Java 29

mobile platforms like iOS, Android, Blackberry to name a few. In order to per-
form complex tasks, a developer can write custom plugins by writing custom
JavaScript APIs and custom native components so that JavaScript invocations
can be delegated to the native code.

While PhoneGap and MonoTouch provide native API access in a different pro-
gramming language, JamVM, a light-weight implementation of the Java Virtual
Machine enables developers to run Java programs on iOS [10]. JamVM for iOS
uses reflection in Objective-C to extract API information from the binary iOS
libraries. Based on that information, JamVM for iOS generates JNI code that
a Java application needs to make calls to iOS. Since JamVM for iOS effectively
parses API from a binary library, it is impossible to extract symbolic information
such as type identifiers resulting in unnatural looking Java API. Furthermore,
JamVM for iOS is not capable of generating Java API from C functions.

Unlike some of the tools mentioned above that only map a subset of the
native APIs, our tool tries to provide complete mapping for all the APIs that
are available in iOS. Our tool automates the process of generating the API
mappings. It not only handles exceptions by providing special hints but also
tries to create more natural looking APIs to support Java-ism by using special
heuristics. The application developer need not take special care for releasing
the resources while using our tool since our API mapping tool provides its own
memory management mechanism.

Table 2 summarizes the features of the various tools discussed above and
compares them to our API mapping tool.

Table 2. Comparison of related work

SWIG
CORBA

IDL
MonoTouch PhoneGap

JamVM
for iOS

Our API
mapping

tool

Input Arti-
fact

Header IDL Header n.a
Binary
Library

Header

API mapping
mechanism

Automated Automated Automated Manual Automated Automated

Language
Association

1:n m:n 1:1 n:1 1:1 1:1

Memory
Management

Manual Manual Automatic Automatic Automatic Automatic

Handling
Anomalies

Directives n.a Annotations n.a Not Present Advisor

Scope Complete Complete Complete Subset Subset Complete

Heuristics for
natural look-
ing API

✗ ✗ ✗ n.a ✗ ✔

4 API Mapping

This section introduces our API mapping tool. Section 4.1 will first discuss the
design goals and the architecture of our tool. Section 4.2 describes the Java API
that our tool generates. The Java API needs to be complemented by match-
ing JNI code that acts as a bridge between the Java application and iOS.

30 A. Puder and S. D’Silva

The generation of the JNI code is described in Section 4.3. In Section 4.4 we
give a brief overview of the external advise needed by our tool.

4.1 Overview

Before giving an in-depth overview of our API mapping tool, we first need to
establish the goals of its design. Ultimately the purpose of the tool is to avoid
having to manually implement the Java API whenever Apple releases a new
version of iOS. At the same time, Java and Objective-C are quite different lan-
guages in the way they implement their respective object model. When deriving
a Java API from its Objective-C original, one should take those differences into
account. Specifically, our mapping tool strives to fulfill the following design goals:

1. Automate API mapping.
2. Map all relevant iOS API.
3. Keep naming conventions.
4. Support Java-isms.

First and foremost the API mapping should be automated. Given the fact that
iOS evolves rapidly from version to version manually mapping new Objective-C
API to Java does not scale. Our second goal is to map all relevant iOS API to
increase coverage. This implies that we not only map Objective-C API but also
the significant number of C functions part of the iOS API. Our third goal is to
make the transition from Objective-C to Java as seamless as possible. By keeping
naming conventions it will be easier to transition to Java for iOS development
as the original documentation from Apple can serve as a reference even for the
Java API.

The most important goal is to support conventions that Java developers have
become accustomed to. For one, the API should make use of strongly typed
interfaces where appropriate. Due to the nature of Objective-C’s dynamic typing,
the API is often less specific compared to an equivalent Java API. Furthermore,
we try to make use of familiar J2SE API instead of iOS specific data structures.
Last but not least, Java developers expect the presence of a garbage collector
that will need to interface with the reference counting mechanism used by iOS.

Figure 1 gives an overview of the architecture of our API mapping tool. Com-
mon to any compiler, the mapping tool can be divided into a frontend and a
backend. The frontend reads and parses the original iOS SDK header files to
scan it for relevant API. As mentioned earlier, not all required information can
be derived from those header files (such as the specific types of arguments). In
these cases, external advise needs to be provided to the mapping tool. Based
on the header files and the advise, the backend generates two kinds of artifacts:
the Java API that can be used by an iOS app developer and the JNI code that
acts as a bridge between the Java application and iOS. All aspects of the API
mapping tool are discussed in detail in the following sections.

Mapping Objective-C API to Java 31

Fig. 1. API Mapping Tool

4.2 Generating Java API

In the following we focus on how a Java API can be derived from the original
C/Objective-C API. As C is the foundation of Objective-C, we first discuss how
to map certain features of C to Java followed by a description of the mapping
of Objective-C API.

Mapping of C API. Primitive types are mapped to their natural counterparts.
It is common in C to typedef names for commonly used primitive types since
their size is not defined by the C standard (e.g., sizeof(int) depends on the
underlying architecture). iOS has typedefs for various primitive types such as
BOOL, int8 t, int16 t, and int32 t that are mapped to their Java counterparts
boolean, byte, short, and int. Signed and unsigned integer values have to be
treated the same as Java does not offer support for unsigned values. Defining
a platform-independent type such as int32 t is usually done by #ifdefs that
check for different architectures. In order to avoid parsing preprocessor directives,
we provide this knowledge via external advise.

Many iOS data structures are defined via C structs such as CGRect introduced
in Section 2.2. A CGRect defines a 2-dimensional region in the iOS core graphics
framework. Its members are based on two other structs, CGPoint and CGSize,
for the position and the size of the region. Since Java does not offer support
for value types, structs are mapped to Java classes, making the members of the
struct public fields of these classes.

The iOS API uses very regular and dependable naming conventions. In Section
2.2 we mentioned function CGRectIntersection that computes the intersection
of two CGRect instances. The name of all C functions that operate on a partic-
ular struct are always prefixed with the name of that struct in iOS. The first
argument is an instance of that struct. We take advantage of these regular nam-
ing conventions by making these C functions the methods in the generated Java
class. The first parameter becomes the implicit this-parameter. The following
code excerpt shows the generated Java version of CGRect:

32 A. Puder and S. D’Silva

Java version of CGRect

1 public class CGRect {

2 public CGPoint origin;

3 public CGSize size;

4

5 native public CGRect intersection(CGRect r2);

6 //...

7 }

We take advantage of similar naming conventions when mapping enums. The
common prefix of enum members is removed since Java enums define a scope in
contrast to C enums. The following code shows the mapping of UIButtonType
introduced in Section 2.2:

Mapping of an enum

1 // Objective-C

2 typedef enum {

3 UIButtonTypeCustom = 0,

4 UIButtonTypeRoundedRect,

5 //...

6 } UIButtonType;

7

8 // Java

9 public enum UIButtonType {

10 Custom(0),

11 RoundedRect,

12 //...

13 };

It should be noted that the rules to take advantage of naming conventions
are hard-coded heuristics and not part of the advise used by our tool. If an API
does not make use of those naming conventions, functions are mapped to static
methods of a global class.

Mapping of Objective-C API. By default, an Objective-C class is mapped
to a Java class of the same name. A selector in Objective-C is mapped to a Java
method. While it would be possible to use the selector as the name of a Java
method, it would result in unnatural names. Since Java does not support named
arguments, using the selector as the name for a method could be confusing. We
use various heuristics to generate more Java-like method names taking advantage
of method overloading in Java. By default, the first component of a selector is
used as the name of the method. As an example, consider the following methods
of class NSString:

Mapping of NSString

1 // Objective-C

2 - (int)compare:(NSString *)string;

3 - (int)compare:(NSString *)string

Mapping Objective-C API to Java 33

4 options:(NSStringCompareOptions)mask;

5 - (int)compare:(NSString *)string

6 options:(NSStringCompareOptions)mask

7 range:(NSRange)compareRange;

8 - (int)compare:(NSString *)string

9 options:(NSStringCompareOptions)mask

10 range:(NSRange)compareRange

11 locale:(id)locale;

12

13 // Generated Java methods

14 public int compare(NSString string);

15 public int compare(NSString string, int mask);

16 public int compare(NSString string, int mask,

17 NSRange compareRange);

18 public int compare(String string, int mask,

19 NSRange compareRange,

20 Object locale);

Class NSString features four different methods to compare two strings. In-
stead of using the selector as a method name only the first component of the
selector is used. For this reason selector compare:options: is mapped to method
name compare in Java. This is possible because the formal parameter types are
different for all four selectors and one can rely on Java’s method overloading to
distinguish among them. If the formal parameter types are identical for different
selectors, our heuristic will append the second component of the selector to the
generated method name until the Java methods are distinguishable again.

Parameter types are mapped to their counterpart. The Objective-C header
parser resolves typedefs to determine the underlying type. Since Java does not
support typedefs, the original type is used when generating the Java API. This
can be seen in the example above where NSStringCompareOptions is a typedef
for an int.

Various other heuristics determine the mapping for formal parameter types.
E.g., the generic Objective-C type id is mapped to java.lang.Object. For
parameters whose type is a pointer-to-a-pointer we assume that it is an output
argument. In this case a so-called holder class is generated that acts as a wrapper
for the actual output value. We make use of Java generics to create a type-safe
parameter type. As an example, NSError** in the Objective-C API would be
mapped to Reference<NSError> on the Java side.

As expressed in the design goals for the API mapping, we strive towards nat-
ural looking Java APIs. For this reason Objective-C data structures are mapped
to their J2SE counterpart. E.g., NSArray will be mapped to java.util.List

and NSDictionary will be mapped to java.util.Map. There are three main
reasons for doing so:

Usability: Java programmers know how to deal with Java data structures. They
know the API and are good at using it. Using the original Objective-C

34 A. Puder and S. D’Silva

requires to learn new API. Furthermore, making use of J2SE API has the
benefit of being able to use Java-isms such as for-each loops.

Performance: Cross-compiling a Java implementation for java.util.List to
C code is more efficient than having a wrapper for NSArray where each
method invocation on the Java side has to be forwarded to an appropri-
ate method of NSArray. The one extra level of indirection incurs avoidable
overhead.

Scope: The question arises where to draw the line. E.g., using a Java version
of NSString instead of java.lang.String would result in unnatural Java
programs, especially since Java string literals are of type java.lang.String.

For those reasons we have opted to map Objective-C classes to their natural J2SE
counterpart. Java versions of classes such as NSArray and NSString are avail-
able, however, if used as formal argument types in method signatures they are
mapped to the equivalent J2SE type. Mapping of generic parameter types such
as NSArray and NSDictionary leads to another challenge. Due to Objective-C’s
support for dynamic typing those data structures can hold objects of arbitrary
type. This would be equivalent to List<Object> and Map<Object, Object>
in Java. However, in many cases the type of the objects held in a container
is restricted. E.g., the getSubviews method of class UIView returns a list of
children of a particular UIView instance. As per iOS documentation each child
must be an instance of a subclass of UIView. Objective-C is not capable of ex-
pressing this restriction in a method’s signature. However, in Java it would be
possible to restrict the return type of getSubviews by making use of generics to
List<UIView>. We have opted to make use of Java generics and support the
mapping of restricted container types. Since this information is not discernable
from the Objective-C header files of iOS, it must be provided externally as an
advise to the API mapping tool.

Categories were introduced as a mechanism in Objective-C to add methods
to existing classes and as was shown in Section 2.2, iOS makes use of this in
the UIKit Additions. Since Java does not support mix-in classes, the way we
handle additions is by inlining the methods to the class to which they are added
via a category. Another challenge is the mapping of Objective-C protocols. By
default, an Objective-C protocol is mapped to a Java interface. This requires an
app developer to implement all methods of the interface. Since many methods
are often optional in iOS, we also emit an adapter class in Java that implements
the interface [5]. Optional methods are given a default implementation in the
adapter class and only mandatory methods are left abstract.

4.3 Generating Java JNI

The previous section discussed the mapping of Objective-C API to Java. The
result is a natural looking Java API for iOS that can be used by an app devel-
oper. Methods of the Java skeleton classes are labeled as native and running
a Java-based iOS app requires JNI code that acts as a bridge between the Java
application and iOS [9]. Our mapping tool also generates the necessary JNI code
automatically. The details are discussed in the following.

Mapping Objective-C API to Java 35

Wrapping. When a Java application uses a class from the iOS library, it in-
advertently needs to use a native Objective-C object. As an example, consider
class UIAlertView. In iOS, this class is used to pop open an alert view as a
modal dialog, often presenting the user with several options. Instantiating the
Java class UIAlertView must lead to an instantiation of the Objective-C class
UIAlertView. Subsequent method invocations on the Java object need to be
forwarded to its Objective-C counterpart. The following code shows the effect of
executing Java code in relationship to what needs to happen on the native layer:

Effects of Java method invocations

1 // Java (Configuration of UIAlertView not shown here)

2 UIAlertView alert = new UIAlertView();

3 alert.show();

4

5 // Objective-C

6 UIAlertView* alert = [[UIAlertView alloc] init];

7 [alert show];

The Java object can be seen as a wrapper or proxy for the underlying native
Objective-C object. Method invocations on the Java object are forwarded to
the wrapped Objective-C object. This happens transparently to the app devel-
oper. Figure 2 illustrates the notion of a wrapper. White circles represent pure
Java objects. Those objects are part of the application and have no relationship
with iOS. Objective-C objects are represented by black dots. Some Objective-
C objects exist only inside iOS and are not visible to the application. Other
Objective-C objects such as the UIAlertView instance are exposed to the Java
application via a wrapper.

Fig. 2. Wrapping native Objective-C objects

It should be obvious that there needs to be a tight association between a
wrapper object and the wrapped native Objective-C object. This association is
bijective and it must be possible to access the native object from the wrapper
and vice versa. We make use of JNI to forward an invocation to a Java method to
the underlying Objective-C object. All methods in the generated Java API are
declared as native to allow the injection of Objective-C code. The following code
excerpt shows the native implementation of the two methods of UIAlertView
used in the example earlier:

JNI implementation

1 void UIAlertView___INIT___(JAVA_OBJECT me)

2 {

36 A. Puder and S. D’Silva

3 UIAlertView* obj = [[UIAlertView alloc] init];

4 ASSOCIATE(me, obj);

5 }

6

7 void UIAlertView_show__(JAVA_OBJECT me)

8 {

9 UIAlertView* thiz = GET_ASSOCIATED_NATIVE(me);

10 [thiz show];

11 }

The JNI code shown here deviates from the official JNI specification in or-
der to simplify the example. Note that JNI requires C functions for native Java
methods, however, it is possible to make use of Objective-C for the implementa-
tion of those functions. Instantiating class UIAlertView yields in the invocation
of UIAlertView INIT via JNI where the corresponding Objective-C ver-
sion of UIAlertView is created via the usual alloc/init messages. Function
ASSOCIATE is part of our runtime library and its purpose is to create the afore-
mentioned bijective link between the Java object and the wrapped Objective-C
instance. When the Java application invokes a method on the UIAlertView

instance later, helper function GET ASSOCIATED NATIVE is used to retrieve the
associated Objective-C object. It should be emphasized again that the JNI code
shown above was also generated by our mapping tool.

Upcalls. The previous section dealt with the case where the application is
making a downcall to iOS. In some instances the opposite happens: iOS makes
an upcall to the application. This occurs frequently when iOS delivers events
such as touch, timer, or sensor events. E.g., the UIAlertView calls the application
whenever the user tapped on a button. In order to receive events, the application
needs to register an appropriate callback, commonly referred to as a delegate.
iOS makes use of Objective-C protocols for this purpose. Using the UIAlertView
as an example again, iOS defines the protocol UIAlertViewDelegate that allows
an application to respond to button-tap events.

What makes upcalls different from downcalls is the fact that for protocols the
application needs to provide an implementation, not iOS. Mapping an Objective-
C protocol to a Java interface lets the developer implement the interface, how-
ever, the resulting implementation only exists in Java space. As iOS has no
knowledge of Java, a different kind of wrapper is needed. In the previous sec-
tion we introduced a Java wrapper for an Objective-C object. Now it is just the
reverse: what is needed is an Objective-C wrapper for a Java object. Figure 3
illustrates the reversal of roles.

From the perspective of iOS, a delegate needs to be an Objective-C object.
The purpose of the delegate wrapper is to forward calls made by iOS to the
Java application. The mapping tool can automatically generate these delegate
wrapper for each Objective-C protocol based on the protocol’s declarations.
The following code excerpt shows the code generated for the declaration of
UIAlertViewDelegate:

Mapping Objective-C API to Java 37

Fig. 3. Delegates in iOS

Objective-C wrapper for UIAlertViewDelegate

1 @interface UIAlertViewDelegateWrapper :

2 NSObject <UIAlertViewDelegate> {

3 JAVA_OBJECT* delegate;

4 }

5

6 -(void)alertView:(UIAlertView *)alertView

7 clickedButtonAtIndex:(NSInteger)buttonIndex;

8 //...

9 @end

Class UIAlertViewDelegateWrapper is created by the mapping tool and con-
forms to the UIAlertViewDelegate protocol. The field delegate is a reference
to the Java implementation of UIAlertViewDelegate. When the Java applica-
tion sets a delegate, the above Objective-C class will be instantiated and regis-
tered with iOS. iOS will send the message alertView: clickedButtonAtIndex:

whenever the user taps on a button. Not shown here is the implementation of
UIAlertViewDelegateWrapper that is also created by the mapping tool. The
implementation uses JNI to make the upcall to the corresponding Java method
with delegate as the target.

A related problem occurs with upcalls made to regular iOS classes. E.g., class
UIView offers a method called drawRect:. This method will be called by iOS
whenever the surface of the UIView needs to be redrawn. An application can
subclass UIView and override drawRect: to redraw itself. Here the situation
is related to protocols in the sense that the subclass will be implemented in
Java by the developer. As iOS has no knowledge of Java, a wrapper needs to
intercept calls made by iOS to drawRect: and forward it to the corresponding
Java implementation. The following code fragment shows the wrapper generated
by our API mapping tool for class UIView:

Class Callbacks

1 // Objective-C wrapper

2 @interface UIViewWrapper : UIView

3 -(void) drawRect:(CGRect)rect;

4 @end

5

6 // JNI constructor for UIView

7 void UIView___INIT___(JAVA_OBJECT me)

38 A. Puder and S. D’Silva

8 {

9 UIView* obj = [[UIViewWrapper alloc] init];

10 ASSOCIATE(me, obj);

11 }

Class UIViewWrapper is derived from UIView to allow it to override method
drawRect:. Not shown here is the implementation of UIViewWrapper that for-
wards calls to the corresponding Java implementation of method drawRect() via
JNI. When a Java application instantiates a UIView, the JNI implementation
of the UIView constructor will instantiate a UIViewWrapper instead. Wrapper
classes will need to be generated by our mapping tool whenever a class fea-
tures a callback such as drawRect:. This knowledge cannot be derived from the
Objective-C header files and consequently needs to be provided via an external
advise.

Memory Management. Earlier we mentioned the bijective relationship be-
tween the wrapper object and the native Objective-C object. In the following
we focus on memory management issues as iOS and Java are governed by differ-
ent memory management mechanisms. As explained earlier, iOS uses reference
counting while Java makes use of a garbage collector. In terms of object life-
cycle, a wrapper object cannot exist without the Objective-C object it wraps.
Assume the example from the previous section. The application instantiates class
UIAlertView that triggers the creation of an Objective-C object. iOS expects
the application to release the Objective-C object in order to signal that it no
longer needs the UIAlertView instance. This can be accomplished by registering
a finalizer for the wrapper object. In Java, overriding method finalize() will
cause the garbage collector to invoke this method just before the object will get
collected. Making this method native allows again to inject code on the native
level via JNI:

Finalization

1 // Generated Java

2 class UIAlertView {

3 //...

4 native protected void finalize();

5 };

6

7 // Generated JNI

8 void UIAlertView_finalize__(JAVA_OBJECT me)

9 {

10 UIAlertView* thiz = GET_ASSOCIATED_NATIVE(me);

11 [thiz release];

12 }

Function UIAlertView finalize will be called by the garbage collector just
before the wrapper object is being collected. The associated native Objective-
C object is retrieved via GET ASSOCIATED NATIVE followed by sending it the

Mapping Objective-C API to Java 39

releasemessage. Note that the latter will not necessarily destroy the Objective-
C object. If iOS itself holds a reference to the same object the reference count
would not drop to zero therefore keeping the object alive. Whenever iOS no
longer needs the object, it will send it the release message as well eventually
destroying it. Therefore, an Objective-C object can outlive its wrapper but not
vice versa.

So far we have discussed the relationship between a wrapper and the wrapped
native Objective-C object. However, in terms of memory management one needs
to consider relationship between wrapper objects as well. The unfortunate fact
is that iOS will not always retain objects where one would expect. As an ex-
ample, consider the protocol UIAlertViewDelegate that defines the API for
a delegate used by UIAlertView. The UIAlertView allows the setting of a
UIAlertViewDelegate instance that acts as a callback that iOS will invoke
once the user has tapped on a button. Even though the UIAlertViewDelegate

is set via a setter on the UIAlertView, the latter will not retain the delegate.
This is the applications responsibility in iOS. Without arguing the merit of such
an API design, the problem is that the following Java code using the Java-based
iOS API would not work:

Setting a UIAlertViewDelegate

1 UIAlertView alert = //...

2 alert.setDelegate(new UIAlertViewDelegate() {

3 // React to button click of the UIAlertView

4 });

In Java it is common to use anonymous classes in these cases as shown in
the code excerpt above. A Java programmer would expect that the delegate is
saved internally. However, since UIAlertView is merely a wrapper that passes
the invocation of setDelegate to the native Objective-C object, this will not
happen in this particular case. The consequence is that the garbage collector will
eventually reclaim the Java wrapper for UIAlertViewDelegate whose finalizer
will release the underlying Objective-C instance. Since the UIAlertView did not
retain the delegate, it will effectively be deleted even though it might still be
needed. The result will be a segmentation fault since an invocation will be made
on an object that does not exist anymore.

Parsing the Objective-C API one cannot identify such cases. The fact that
an UIAlertView does not retain its delegate can only be known by studying the
documentation. For the purpose of the API mapping, this knowledge needs to
be passed to the mapping tool via an external advise.

4.4 Handling Exceptions

Although our API mapping tool tries to derive all necessary information from the
Objective-C header files, in some cases this is not sufficient in order to generate
the Java API and JNI code. Throughout the previous sections we gave several
examples. The knowledge of such details is only contained in the documentation

40 A. Puder and S. D’Silva

that cannot be parsed by an automated tool. For this reason we have introduced
the notion of advise that can be given to the mapping tool (see Figure 1 in Section
4.1). Someone familiar with the iOS API has to update the advise whenever a
new version of iOS is released.

Advise can be provided to different components of our API mapping tool: the
frontend that parses the header files as well as the two backends that generate
code for the Java API and the necessary JNI code. During each stage of the
translation process the relevant sections of the advise is consulted. The format
of the advise is XML that complies to a particular schema. The following excerpt
shows some of the information contained in the advise:

Advise

1 <replace pattern="//.*"/>

2 <replace pattern="__BEGIN_DECLS"/>

3 <replace pattern="__END_DECLS"/>

4 <!-- ... -->

5

6 <typedef java="boolean" c="BOOL"/>

7 <typedef java="byte" c="int8_t"/>

8 <typedef java="List" c="NSArray"/>

9 <typedef java="Map" c="NSDictionary"/>

10 <!-- ... -->

11

12 <class name="UIApplicationDelegate">

13 <selector

14 name="-application:didFinishLaunchingWithOptions:">

15 <arg position="1" type="Map<String,String>"/>

16 </selector>

17 </class>

18

19 <class name="UIView">

20 <selector name="-drawRect:" delegate="true"/>

21 </class>

22

23 <class name="UIAlertView">

24 <selector name="-setDelegate:" retain="true"/>

25 </class>

26

27 <class name="NSString">

28 <injected-method name="toString" modifier="public">

29 <signature>

30 <return type="String"/>

31 </signature>

32 <code language="c">

33 <![CDATA[

34 NSString* thiz = GET_ASSOCIATED_NATIVE(me);

35 return CONVERT_TO_STRING(thiz);

36]]>

37 </code>

Mapping Objective-C API to Java 41

38 </injected-method>

39 </class>

40 <!-- ... -->

The <replace> tags help the frontend to clean up the Objective-C header
files before parsing further information (lines 1-3). These tags define regular ex-
pressions such as comment markers (line 1) that will be removed. The <typedef>
tag defines basic type mapping rules. It can be used to define mappings for prim-
itive types (lines 6 and 7) as well as class types (lines 8 and 9).

Advise that relates to a particular class is grouped with the help of the
<class> tag. The methods for which advise is given are identified by the
<selector> tag that references the usual Objective-C selector (lines 13, 20, and
24). Various XML attributes provide specific information about the method that
cannot be derived by parsing the Objective-C header files. Attribute delegate

(line 20) will trigger the generation of a delegate wrapper as explained in Section
4.3. Attribute retain (line 24) will make sure that a Java reference is held to
the argument to prevent the garbage collector from reclaiming it as explained in
Section 4.3.

The advise given for UIApplicationDelegate specifies that the type of the
second argument can be narrowed to Map<String, String> (line 15). An ex-
ample for code injection is shown for class NSString (line 27). This class is the
iOS counterpart to java.lang.String. In order to easily convert a NSString

instance to a String, the advise injects an additional Java method toString().
As can be seen in the advise above, besides the Java signature of the injected
method the advise also provides the necessary JNI implementation. The latter
is necessary since the knowledge of how to convert a NSString instance is out
of scope for the mapping tool.

5 Example

In this section we make a side-by-side comparison of an iOS version of “Hello
World” implemented in Objective-C and in Java using the API generated by our
mapping tool. Xcode offers a tool called InterfaceBuilder that allows to define
a UI using drag-and-drop through a graphical tool. InterfaceBuilder can also be
used to create a boiler-plate iOS application with one click. The following code
shows a programmatic version of “Hello World” to illustrate the API mapping:

iOS Hello World (Objective-C)

1 @implementation HelloWorldAppDelegate

2

3 -(BOOL) application:(UIApplication*)application

4 didFinishLaunchingWithOptions:(NSDictionary*)opts

5 {

6 CGRect r = [[UIScreen mainScreen] applicationFrame];

7 UIWindow* window =

8 [[UIWindow alloc] initWithFrame:r];

42 A. Puder and S. D’Silva

9 [window setBackgroundColor: [UIColor whiteColor]];

10 r.origin.x = r.origin.y = 0;

11 UILabel* label = [[UILabel alloc] initWithFrame:r];

12 [label setText:@"Hello World"];

13 [label setTextAlignment:UITextAlignmentCenter];

14 [window addSubview:label];

15 [window makeKeyAndVisible];

16 return YES;

17 }

18

19 @end

Below is the same application now implemented in Java using the Java API
for iOS generated by our mapping tool:

iOS Hello World (Java)

1 public class HelloWorld extends UIApplicationDelegate {

2

3 public boolean didFinishLaunchingWithOptions(

4 UIApplication app, Map<String,String> opts) {

5 CGRect r =

6 UIScreen.mainScreen().getApplicationFrame();

7 UIWindow window = new UIWindow(r);

8 window.setBackgroundColor(UIColor.whiteColor());

9 r.origin.x = r.origin.y = 0;

10 UILabel label = new UILabel(r);

11 label.setText("Hello World");

12 label.setTextAlignment(UITextAlignment.Center);

13 window.addSubview(label);

14 window.makeKeyAndVisible();

15 return true;

16 }

17 }

As can be seen by direct comparison of the Objective-C and the Java ver-
sion of the application, someone knowledgeable with the iOS API will immedi-
ately understand the Java implementation. Besides retaining naming conventions
from the iOS Objective-C-based API, the Java version also demonstrates sev-
eral mapping challenges discussed earlier: mapping of structs (CGRect), protocols
(UIApplicationDelegate), and mapping of data structures to their strongly-
typed J2SE counterpart (Map<String,String>).

6 Conclusion and Outlook

Apple favors the use of Objective-C for developing iOS applications. The purpose
of our work is to give developers more freedom by offering Java as an alternative
programming language. This paper focuses on the API mapping that is necessary

Mapping Objective-C API to Java 43

to expose the native Objective-C-based API in Java. Because of the sheer size of
the iOS API our goal is to automate this process as much as possible. The ideas
introduced in this paper have been implemented and released under an Open
Source license. iOS app developers have successfully used our tool to develop
Java-based apps and publish them on the Apple AppStore.

In the future we plan to focus more attention on the heuristics that lead to
natural looking Java API. The heuristics currently used in our tool are based
on the way Apple has designed its API (e.g., the fact that function names that
operate on certain structs are prefixed with the name of that struct). We plan
to investigate API outside the iOS ecosystem to derive a more general set of
heuristics. Ultimately our tool should be able to create Java API for other third-
party libraries.

Acknowledgements. We are greatly indebted to Paul Poley and Panayotis
Katsaloulis for their invaluable insights and support.

References

1. SWIG - Simplified Wrapper and Interface Generator, http://www.swig.org
2. Adobe Systems. PhoneGap, http://wiki.phonegap.com
3. Beazley, D.: SWIG: An easy to use tool for integrating scripting languages with C

and C++. In: Proceedings of the 4th Conference on USENIX Tcl/Tk Workshop,
vol. 4, p. 15. USENIX Association, Berkeley (1996)

4. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional (October
2010)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional (October 1994)

6. Hudak, P.: A semantic model of reference counting and its abstraction. In: Pro-
ceedings of the 1986 ACM Conference on LISP and Functional Programming, pp.
351–363. ACM, New York (1986)

7. Kochan, S.: Programming in Objective-C, 4th edn. Addison-Wesley Professional
(December 2011)

8. Krasner, G., Pope, S.: A Description of the Model-View-Controller User Interface
Paradigm in the Smalltalk-80 System (1988)

9. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn.
Addison-Wesley Pub. Co. (April 1999)

10. Lougher, R.: JamVM, http://jamvm.sourceforge.net/
11. Object Management Group. Common Object Request Broker Architecture,

CORBA/IIOP (2004), http://www.omg.org/technology/documents
12. Puder, A.: Running Android Applications without a Virtual Machine. In: Venkata-

subramanian, N., Getov, V., Steglich, S. (eds.) Mobilware 2011. LNICST, vol. 93,
pp. 121–134. Springer, Heidelberg (2012)

13. Smaragdakis, Y., Batory, D.: Implementing Layered Designs with Mixin Layers.
In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 550–570. Springer, Heidelberg
(1998)

14. Xamarin. MonoTouch, http://docs.xamarin.com/ios

http://www.swig.org
http://wiki.phonegap.com
http://jamvm.sourceforge.net/
http://www.omg.org/technology/documents
http://docs.xamarin.com/ios

	Mapping Objective-C API to Java
	Introduction
	Background
	Objective-C
	iOS

	Related Work
	API Mapping
	Overview
	Generating Java API
	Generating Java JNI
	Handling Exceptions

	Example
	Conclusion and Outlook
	References

