
Automatic Annotation of Daily Activity
from Smartphone-Based Multisensory Streams

Jihun Hamm1, Benjamin Stone2, Mikhail Belkin1, and Simon Dennis2

1 The Ohio State University, Dept. Computer Science and Engineering,
Columbus, OH 43210, USA

2 The Ohio State University, Dept. Psychology, Columbus, OH 43210, USA

Abstract. We present a system for automatic annotation of daily experience
from multisensory streams on smartphones. Using smartphones as platform fa-
cilitates collection of naturalistic daily activity, which is difficult to collect with
multiple on-body sensors or array of sensors affixed to indoor locations. How-
ever, recognizing daily activities in unconstrained settings is more challenging
than in controlled environments: 1) multiples heterogeneous sensors equipped in
smartphones are noisier, asynchronous, vary in sampling rates and can have miss-
ing data; 2) unconstrained daily activities are continuous, can occur concurrently,
and have fuzzy onset and offset boundaries; 3) ground-truth labels obtained from
the user’s self-report can be erroneous and accurate only in a coarse time scale.
To handle these problems, we present in this paper a flexible framework for incor-
porating heterogeneous sensory modalities combined with state-of-the-art classi-
fiers for sequence labeling. We evaluate the system with real-life data containing
11721 minutes of multisensory recordings, and demonstrate the accuracy and ef-
ficiency of the proposed system for practical lifelogging applications.

Keywords: mobile computing, lifelogging, activity recognition, automatic an-
notation.

1 Introduction

With an ever increasing number of smartphones today which are capable of recording
motion, location, vision and audio, there are numerous applications that can make use
of the multisensory data, such as context-aware services, health monitoring, augmented
memory, and lifelogging. Lifelogging refers to a long-term process of automatically
collecting sensory data using wearable devices, and storing the data into a personal
multimedia form for browsing, annotating, and searching [14,20,39,7,10]. A lifelog-
ging system will be particularly useful if it is capable of recognizing high-level expe-
riences of users from low-level sensory streams without requiring the user to manually
annotate the huge amount of data. In this paper, we present a lifelogging system for
capturing a user’s daily experience by collecting multisensory streams on a smartphone
and automatically annotating the daily activity with high-level tags.

Automatic annotation is closely related to activity recognition, which has a rich lit-
erature across various fields including embedded and mobile systems, pervasive and
ubiquitous computing, sensor networks, multimedia, intelligent systems, and machine

D. Uhler, K. Mehta, and J.L. Wong (Eds.): MobiCase 2012, LNICST 110, pp. 328–342, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



Automatic Annotation 329

learning. (We refer the reader to [22,23] for a survey.)1 The majority of previous re-
search on activity recognition used custom on-body sensors and embedded systems
[3,25,32,48,8,17,1,26,10,24,36], or used external sensors such as surveillance cam-
eras/microphones, object-attached sensors, and RFID tags [27,42,43,34,16,19].

Recently, some researchers have focused on using smartphones as a platform
[4,7,12,44,49], which allows them to collect naturalistic data from a user who carries
out everyday activity without interruption. The range of activities resulting from such a
setting is much broader that atomic sets of actions performed by a user in a controlled
setting such as postures/locomotion-types (sitting, lying, walking, running, standing up,
sitting down, up/down the stairs, etc), and opens up new opportunities for studying ev-
eryday human behavior.

However, recognizing daily activities in unconstrained settings is more challenging
than in controlled environments in two aspects – sensory data and activity labels. Firstly,
various sensors equipped in generic smartphones are noisier and have to operate under
a limited battery capacity, resulting in sparser samples than those from a surveillance
system for example. More importantly, multisensory streams from heterogeneous sen-
sors can be asynchronous, vary in sampling rates and have missing data occasionally.
In this work, we propose a multisensory bag-of-word representation to handle these
problems. The bag-of-words model, originally used for document analysis, has proven
useful in other domains such as visual scene analysis [13] and activity recognition in
particular [17,7,44]. We build on the previous work and present our multisensory bag-
of-word framework that can be combined with various classification algorithms in the
subsequent stage.

The second challenge with unconstrained daily activities is that they are continu-
ous, can occur concurrently, and have fuzzy onset and offset boundaries. Furthermore,
since the ground-truth labels for activities cannot be acquired on the fly but only af-
ter the collection by the user who reviews the logged images at the end of each day,
the resultant ground-truth labels are prone to errors and are accurate only in a time
scale of minutes rather than seconds or milliseconds. Various classifiers have been
used for activity recognition including Fuzzy Logic, Neural Network, Naive Bayes,
Bayesian Network, Nearest Neighbor, Decision tree, Support Vector Machines, boost-
ing and bagging (refer to [23]). More recently, continuous recognition of activity was
posed as a sequence labeling problem [37,41,46,9,45,31], using temporal models such
as Hidden Markov Model [35]), Conditional Random Field (CRF)[21], and structured
Large-Margin classifiers[2,40]. The continuous nature of daily activity makes the tem-
poral models potentially more appropriate for handling noisy multisensory streams and
labels from smartphones.

In this paper, we describe our system for acquiring naturalistic data from smart-
phones, and present the multisensory bag-of-words framework combined with state-of-
the-art classifiers for automatic annotation of daily activity. We evaluate our approach
using 42 days (corresponding to 11721 minutes) of recordings from a volunteer by com-
paring the performance of various classifiers that represent temporal vs non-temporal
and generative vs discriminative approaches, and demonstrate the feasibility of auto-
matic annotation of unconstrained daily activity.

1 We omit the discussion of activity recognition approaches based on continuous videos.
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The rest of the paper is organized as follows. In Section 2, we describe our lifelog-
ging system and its components. In Section 3, we present our framework for handling
multisensory streams. In Section 4, we introduce several generative and discriminative
approaches for activity recognition. In Section 5, we describe the experiments and re-
port evaluation results, and conclude the paper in Section 6.

2 System

Our system consists of a mobile app, a server infrastructure, and a user interface. We
describe them in the following sections.

2.1 Mobile Application and Server

We developed a Java app that acquires multisensory data on Android-based smart-
phones. The app acquires image, audio, GPS, accelerometer, and other information in
regular but changeable time intervals, and stores them until it connects to the server.
It runs in the background as a service so as not to disturb normal usage of the phone,
although we used the smartphones only for data acquisition purposes in this paper.

Users carried the phone daily from morning till evening. The phone was carried
inside a pouch attached to a neck strap to allow an unobstructed view for the camera.
The app runs continuously on a standard Android phone for six hours before running
out of battery, and it can last much longer with an extended battery. The collected data
is sent automatically to a remote server, usually once a day in the evening, when the
phone detects WiFi and is connected to a charger. The data is sent in batch mode via
SFTP protocol for added security and remains inaccessible to other users in the system.

2.2 Sensory Data and Raw Features

Accelerometer. We use a tri-axial accelerometer with a maximum sampling of 16 Hz.
The actual sampling rate obtained from the phone varies over time, so we took only
contiguous samples whose actual rates are within a tolerable range. In the literature,
simple time-domain features (mean, variance, zero-crossing rate, autocorrelation, etc)
and especially frequency-domain features (FFT, spectral entropy, etc) are used for activ-
ity recognition [3,25,26,16]. We also perform 16 sample-long FFT on the accelerometer
signals from each axis to get a sequence of 27-dimensional raw features.

GPS. The 2D GPS coordinates are obtained after a picture is taken from the camera,
and therefore have a similar sampling rate as the images (∼ 1 per minute). The GPS unit
is turned off after acquiring the coordinates to preserve battery life and has to lock-on
to satellite signals each time. The coordinates are often unavailable due to the failure to
lock on inside a building, and they are treated as missing data.

Image. We use 24-bit color JPEG images of size 480 x 640, although much higher reso-
lution is available in current phones. To handle a large amount of data per day, we took a
sparse number of pictures (∼ 1 per minute). Original images are stored in the server for
lifelogging purpose, but they cannot not be used directly in analysis for privacy reasons.
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Table 1. List of 30 tags in three categories describing daily activity

Category Tags
Activity other activity, walk, drive/inside a vehicle, eat/drink, talk/chat/discuss, chores

(cook/clean/laundry/etc), exercise/play sports, listen to a lecture, give a lecture,
shop in a store, tend to baby, use a computer, watch tv/movie, pick up/drop off,
read/write on paper/board

Place other place, my home, my office, classroom/meeting room, other’s office, restau-
rant/cafe, store, public places, outdoor

People other people, my family, friend(s), colleague(s), stranger(s), crowd

A simple feature extraction can be performed to remove identity-revealing information
from the images. Kim et al [20] used CIELAB-space color map and orientation map to
find salient regions, and then computed SIFT features [28] as visual descriptors. Do-
herty et al [11] used scalable color and edge histogram, which is a subset of MPEG-7
feature descriptors [5]. We opt for the latter approach, and use 64-bin HSV-space color
histogram and 80-dimensional edge histogram, which leave us with 144-dimensional
raw features per image.

Audio. Audio is recorded with a 11,025 Hz sampling rate in 16 bits PCM format.
Various audio features have been used for activity recognition. Lester et al [25] used
linear and log-scale FFT frequency coefficients, cepstral coefficients, spectral entropy,
band-pass filter coefficients, correlations, integrals, means, and variances. Pärkkä et al
[32] used a speech/music discriminator [33] to detect speech from the audio. Kim et al
[20] used 26-dim MFCC features along with zero crossing rate, linear predictive coding,
volume standard deviation, non-silence ratio, and spectral centroid and pitch, which are
a subset of MPEG-7 audio descriptors [29]. Here we use MFCC with 20 filter banks
and 13 cepstral coefficients with a 25 ms time window.

Although spectral features such as MFCC are popular in audio processing, they con-
tain enough information to partially reconstruct the speech contents, and cannot be con-
sidered as privacy-protecting. One solution to the problem is to use summary features
from further processing, such as spectral entropy or energy [47]. In [8], these features
were computed on-the-fly on a dedicated device. Our solution to the privacy issue is to
use a sparse, short-duration sampling of audio. We sample 250 ms audio fragments for
every 5 seconds, effectively discarding 95% of the data before we compute features.
The 250 ms fragment, which is shorter than the typical duration of a word, and the
sparse sampling together make the overall speech unreconstructible. To get the final
feature, we stack MFCC coefficients from non-overlapping windows, which results in
126-dimensional raw features for each audio fragment.

2.3 User Segmentation and Annotation

Through a visual user interface, a user reviews his or her visual log of daily recordings,
segments each day into a few (∼10) meaningful events, and annotates each event with
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Fig. 1. The figure exemplifies several difficulties of handling heterogeneous multisensory data.
(Top) Arrival times of multisensory streams for one day. The figure shows chunks of data are
missing for all or some of the sensors. (Bottom) A one-minute portion of the streams around 2
PM, which shows asynchronous arrival times from different sensors. Also images arrive at one
sample per minute, while accelerometer and audio samples arrive in higher and more irregular
rates.

multiple tags. We use high-level tags that can cover a wide range of daily events, catego-
rized into activity, place, and people (see Table 1). The tags are not mutually exclusive,
e.g., a user can select [“eating” and “talking”] in a [“restaurant”] with [“friend” and
“family”], or any combination of tags that best describe the event. In our experience,
manual annotation of one day by segmentation followed by tagging can be performed
in about ten minutes per day, which makes it practical to collect long-term annotated
data from non-expert users.

3 Multisensory Bag-of-Words

Processing multisensory data streams in real-life recordings from a smartphone poses
several difficulties: 1) samples of different modalities arrive at different times with dif-
ferent rates, e.g.,∼1/60 Hz for images vs∼12 Hz for audio fragments; 2) sampling rates
of a single modality can change over time, e.g., when other processes on the phone are
taking up the CPU resources; 3) chunks of data can be randomly missing for some dura-
tion, e.g., when the GPS fails to lock-in indoors, or the camera view is obstructed inside
a pocket. Figure 1 shows an example of a day’s recording demonstrating the problems.

These problems can be efficiently handled by the bag-of-words representation. The
bag-of-words model assumes that a datum(=document) is a bag of unordered symbols
(=words), and that the information about the data is contained fully in the frequency of
symbols. Our motivation for the sensory bag-of-words representation is explained by
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Fig. 2. Multisensory bag-of-words feature representation. Multisensory streams from a smart-
phone are processed into raw features, quantized into symbolic sequences, and represented as the
intermediate bag-of-words features for a given time window.

the following example: during an event in which a person is “eating lunch at a restau-
rant”, it is unrealistic to assume the existence of a single low-level “eating feature”
or a “restaurant feature” that can uniquely and reliably identify eating or restaurant.
Rather, it is more reasonable to assume that “eating” is a unique distribution of multiple
low-level features such as walking to the place, standing in line, sitting at a table, and
moving upper body; similarly, “restaurant” is also a distribution of low-level features
such as a certain location, ambient sounds, and images of people and tables. Therefore,
the distribution(=frequency) of low-level features in the bag-of-words representation
serves as an intermediate feature that links the raw sensory features with high-level
concepts of events. There is also an ample evidence of the utility of the bag-of-words
model for activity recognition. Huynh et al. [17] used the bag-of-words representa-
tion of accelerometery with a probabilistic topic model, where the frequency of sensory
symbols in a 30 minute window was viewed as a document. The authors used the model
to classify daily routines such as {dinner, commuting, lunch, office work}. Chennuru
et al. [7] introduced an analogy between natural language and ‘activity language’, and
used n-gram statistics of the symbol sequences as intermediate features. The approach
was demonstrated with accelerometer data in a classification problem of three activi-
ties {walking, running, and cycling}. Wu et al. [44] further extended the approach to
symbol-level fusion of GPS and accelerometer, and applied it to classification of 13
activities from a 5 day recording.

In this work, we further promote the multisensory bag-of-word representation as a
general framework for transforming any number of heterogeneous sensory streams into
homogeneous and normalized features at any desired times scale, that can be combined
with any subsequent classification stage (see Figure 2 for illustration.)

To use the model, we first build sensor-specific codebooks (=vocabularies) of K
words from the unlabeled collection of data in the training phase. We use K-means
clustering to find K dominant modes of low-level features. In the testing phase, raw
features are discretized to a symbolic sequence using the codebook of K words. We used
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K = 50 for all modalities, but it is possible for different modalities to have different
values of K . We create one bag-of-words feature for every minute – which we will call
a frame – which is the sampling rate of the slowest modality (=image). Missing data
can be handled by two ways – by imputing the missing portion from a modality with
unbiased prior values (=mean histograms), or by assigning special ‘missing’ classes to
the missing portion of data. Here we use the former approach.

4 Algorithms

We consider automatic annotation as the problem of predicting the presence or absence
of each tag at each time frame. The presence or absence of a tag such as an activity or a
location likely to be persistent in time rather than changing for every minute. This moti-
vates the use of temporal models for capturing the temporal dependency of nearby states
and treating the prediction problem as a sequence labeling problem. In this section, we
review several state-of-the-art classifiers that we compare during evaluation.

4.1 Generative Models

Multinomial Naive Bayes. A Multinomial Naive Bayes (MNB)[30] classifier assumes
a generative bag-of-words model. Here we adapt the model to our multisensory case.
Assume that the data consist of T data frames W1:T = {W1, ...,WT } and the cor-
responding T labels y1:T = {y1, ..., yT }. Each frame Wt consists of a collection of
observed words from M sensory vocabularies. In MNB, the probability of observing a
word v from m-th sensory modality given the state y is

p(wm = v|y = s) =
expφm

v,s∑
v expφ

m
v,s

.

Under the ‘naive’ assumption, the probability of observing all words fromM modalities
in frame t is

p(Wt|yt = s) =

M∏

m=1

Km
∏

v=1

{
expφm

v,s∑
v expφ

m
v,s

}Nm
v

, (1)

where Km is the size of vocabulary for modality m, and Nm
v is the count of word v

from modality m in the frame. The model is trained by finding the maximum likelihood
estimates of the parameters φm

v,s and the prior probability of a frame belonging to state
s: p(yt = s) = πs. Using p(W |y) and p(y), the classification of a test frame W is
performed by calculating the posterior probability of each state given the data dictated
by the Bayes’ rule

p(y = s|W ) =
πs · p(W |y = s)

∑
W πs · p(W |y = s)

,

and by selecting the state with the highest probability argmaxs p(y = s|W ).
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Hidden Markov Model. A Hidden Markov Model (HMM) assumes that 1) the hidden
label state of a frame is conditionally independent of the state of other labels given the
state of the preceding frame (a first-order Markov assumption), and 2) the observed
feature at a frame is conditionally independent of other states or observations given the
state of the frame. The joint probability of a HMM under these assumptions is

p(W1:T , y1:T ) = p(y1)
T∏

t=1

p(Wt|yt) ·
T∏

t=2

p(yt|yt−1).

The model is specified by the three probabilities: initial probability of the state p(y1),
probability of transition p(yt|yt−1), and emission probability p(Wt|yt) which models
the probability of observing multisensory words in a frame given its state in Eq. 1. Note
that if we assume that the state of a frame is independent of the state of any other frame,
then HMM simply reduces to MNB.

The parameters of HMM are also learned from maximum likelihood estimation.
When the hidden states of the training data is known, as in our case, the optimal pa-
rameters of the model can be computed in a closed form. In testing, the most likely
sequence of hidden states y1:t of a new sequence x1:t, is efficiently found by Viterbi
decoding ([35]).

4.2 Discriminative Models 1

Logistic Regression. A Logistic Regression (LogReg) is a log-linear model for dis-
criminative classification of vector data. Let the data consist of T real-valued feature
vectors x1:T = {x1, ..., xT } and T labels y1:T = {y1, ..., yT }, where each feature
vector is a concatenated normalized histogram of multisensory words of the frame:

xt =

[
N1

1

N1
, ...,

N1
K1

N1
, ... ,

NM
1

NM
, ...,

NM
KM

NM

]′
, (2)

where KM and Nm
v are defined the same as in Eq. 1, and NM is the count of all words

for modality m in the frame. Using this feature, the probability of the frame xt belong-
ing to state s is p(yt = s|xt) = exp(w′

sxt)/
∑

s exp(w
′
sxt), where ws is the vector

parameter for state s. For a two-class problem, only one vector w1 is needed. Training
involves learning the parameter ws that maximizes the conditional log-likelihood of the
T training data:

log p(y1:T |x1:T ) =
∑

t

w′
sxt −

∑

t

log
∑

s

exp(w′
sxt).

Classification of a test data x is performed by evaluating the conditional likelihoods and
selecting the most likely state: argmaxs p(y = s|x).

Conditional Random Field. A Conditional Random Field (CRF)[21] is also a log-
linear model for discriminative learning of arbitrary undirected graphical models, which
was originally proposed to overcome the label-bias problem of HMMs for sequence
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labeling. In a (linear chain) CRF, the conditional probability of a state sequence y1:T
given a data sequence x1:T is

p(y1:T |x1:T ) =
1

Z(x1:T )
exp(

∑

j,t

wjfj(yt, yt−1, x1:T ))

whereZ(·) is the partition functionZ(x1:T ) =
∑

y1:T
exp(

∑
j,t wjfj(yt, yt−1, x1:T )).

Note that fj(yt, yt−1, x1:T ) generalizes the emission probability log p(xt|yt) and the
transition probability log p(yt|yt−1) from an HMM, in that it need not be a normalized
probability, and that it can use data from all frames x1:T and not just the features of the
same frame xt. In the case where the features depend only on the state and the data of
the same frame, that is, fj(yt, yt−1, x1:T ) = fj(yt, xt), then CRF is similar to LogReg.
We use two types of features: the multisensory histogram (Eq. 2) and the persistence of
neighboring labels I(yt−1 = yt), where I(·) is an indication function.

For a linear chain CRF, training involves direct maximization of the conditional like-
lihood over the parameters wj . In testing, the most likely sequence of the states y1:t of a
new sequence x1:t is efficiently found by either an exact or approximate inference [21].

4.3 Discriminative Models 2

Support Vector Machine. A Support Vector Machine (SVM) is a discriminative,
large-margin classifier which finds the separating hyperplane {w′x + b = 0} for two
classes of data. Assume we have the same T feature vectors x1:T and labels y1:T as in
LogReg.

The optimization problem for a (linear, soft margin) SVM is to find a maximum
margin solution

min
w,b,ξ

1

2
w′w + C

∑

i

ξi subject to

yi(w
′xi + b) ≥ 1− ξi, ξi ≥ 0, ∀i,

where C is a parameter that allows one to manipulate the relative importance of in-
creasing the margin versus classifying the training examples correctly, and ξ is the
slack variable for allowing non-separability of classes. During training, the vector pa-
rameter w is found by the optimization, and C is determined by cross-validation. In
testing, the state of the given frame x is predicted by the sign of the decision function
f(x) = w′x+ b. A nonlinear version of the SVM is obtained with a nonlinear mapping
of samples x �→ φ(x) via a reproducing kernel.

Hidden Markov Support Vector Machine. A Hidden Markov Support Vector Ma-
chine (SVM-HMM) [2] is an example of a large-margin discriminative classifiers of
structured data [40], with an HMM-like feature space.

Suppose the data is a collection of features sequences X = {x̃1, ..., x̃N} and the
corresponding collection of label sequences Y = {ỹ1, ..., ỹN}, where a single feature
sequence and a single label sequence are x̃i = xi

1:T = {xi
1, ..., x

i
T } and ỹi = yi1:T =

{yi1, ..., yiT } as before.
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The optimization problem for a (linear, soft margin) SVM-HMM is to find a maxi-
mum margin solution

min
w,ξ

1

2
w′w + C

∑

i

ξi subject to

w′Φ(x̃i, ỹi)− w′Φ(x̃i, ỹ) ≥ 1− ξi, ξi ≥ 0, ∀i, ỹ �= ỹi,

where Φ(x̃i, ỹi) is a joint feature-output vector, and C is again a regularization param-
eter. In SVM-HMM, the joint feature-output vector captures the dependency between
feature and label, and between labels of contiguous frames, such as those used in CRF:
the multisensory histogram (Eq. 2) and I(yt−1 = yt).

The training and testing procedures are similar to SVM but they require evaluation of
argmaxỹ w′Φ(x̃, ỹ), which can be done efficiently with a Viterbi-like algorithm from
HMM.

5 Experiments

5.1 Lifelogging Data

We collected lifelogging data from a volunteer, who carried the smartphone during
daytime in weekdays and in weekends and provided segmentation and annotation of
the data. We discarded segments with only private images or segments with less than 5
images, and finally collected 195 hours or 11721 minutes of continuous multisensory
recordings of 42 days. The total number of user-defined segments in 42 days was 390,
with an average of 9.3 segments per day. Out of the 30 tags (Table 1) that the user used,
several tags occurred too infrequently to train and test classifiers reliably. We therefore
collapsed those 11 tags that occurred less than 10 times into “other ...” tags, and used
the remaining 19 tags in the experiments.

5.2 Comparison of Algorithms

We compare the classification accuracy of the six algorithms: MNB, LogReg, SVM,
HMM, CRF, and SVM-HMM. For all algorithms, nearly the same features are used:
multisensory word counts for generative models (MNB, HMM), and normalized multi-
sensory histograms for discriminative models (LogRg, SVM, SVM-HMM). Although
discriminative models can use more general features than generative models (e.g., his-
tograms from overlapping time windows), we keep the features the same for comparison
purposes. We used the packages LIBSVM [6] and the SVMhmm[18], and in-house li-
braries for the other algorithms. Additional parameters for MNB and HMM are smooth-
ing (=Dirichlet) hyper-parametersα and β for word emission and state prior parameters,
which are set to 1. LogReg and CRF use additional regularization (=Gaussian) hyper-
parameters, which we set to λ = 10−12. SVM and HMM-SVM require selection of the
coefficient C, which are chosen by five-fold cross-validation within the training data.

Performance is measured by leave-one-day-out classification accuracy for each tag,
that is, a model is trained using 41 days and is used to predict the remaining one day.
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Table 2. Per-frame classification accuracy of six algorithm for each tag. (mean and s.d. over 42
days.) Boldface means the best result.

Non-temporal Temporal
Tag MNB LogReg SVM HMM CRF SVM-HMM

A
ct

iv
ity

other activity 0.774±0.177 0.804±0.168 0.806±0.173 0.784±0.204 0.769±0.230 0.801±0.225
walk 0.941±0.058 0.968±0.037 0.969±0.040 0.943±0.060 0.950±0.061 0.973±0.042

drive/inside a vehicle 0.904±0.091 0.966±0.055 0.973±0.049 0.883±0.151 0.972±0.045 0.977±0.047
eat/drink 0.837±0.100 0.896±0.081 0.895±0.082 0.845±0.150 0.857±0.137 0.921±0.094

talk/chat/discuss 0.726±0.106 0.797±0.112 0.798±0.113 0.771±0.139 0.824±0.155 0.870±0.120
chores (cook/clean/laundry/etc) 0.846±0.150 0.981±0.039 0.984±0.039 0.772±0.222 0.947±0.097 0.985±0.039

tend to baby 0.798±0.200 0.946±0.091 0.954±0.089 0.747±0.275 0.893±0.150 0.955±0.089
use a computer 0.798±0.113 0.873±0.099 0.875±0.100 0.826±0.144 0.837±0.164 0.905±0.108

read/write on paper/board 0.782±0.168 0.934±0.121 0.937±0.127 0.703±0.272 0.885±0.147 0.940±0.129

Pl
ac

e

other place 0.838±0.138 0.940±0.092 0.941±0.093 0.815±0.177 0.913±0.134 0.942±0.099
my home 0.866±0.105 0.898±0.117 0.898±0.123 0.891±0.115 0.890±0.161 0.935±0.139
my office 0.837±0.097 0.891±0.088 0.894±0.089 0.883±0.127 0.908±0.123 0.941±0.079

classroom/meeting room 0.850±0.103 0.930±0.081 0.930±0.083 0.837±0.150 0.903±0.163 0.928±0.104
other’s office 0.834±0.143 0.937±0.104 0.939±0.099 0.777±0.229 0.902±0.137 0.947±0.089

restaurant/cafe 0.929±0.062 0.954±0.053 0.958±0.049 0.976±0.032 0.948±0.093 0.985±0.025
outdoor 0.945±0.053 0.971±0.033 0.972±0.034 0.946±0.061 0.951±0.064 0.978±0.028

Pe
op

le other people 0.685±0.136 0.728±0.131 0.729±0.133 0.732±0.187 0.731±0.178 0.763±0.175
my family 0.778±0.173 0.827±0.199 0.825±0.206 0.768±0.180 0.840±0.193 0.835±0.227

colleague(s) 0.767±0.114 0.812±0.102 0.812±0.100 0.816±0.137 0.867±0.130 0.894±0.100
Average 0.828±0.070 0.898±0.072 0.899±0.073 0.827±0.077 0.884±0.063 0.920±0.063

This process is repeated for 42 times with a different held-out day. The presence or
absence of 19 tags at each frame of the test day is predicted by a binary classifier for
each tag instead of a multiclass classifier for all tags, since an arbitrary combination of
multiple activities, places, and people can occur concurrently at each time frame.

5.3 Results

The per-frame classification rates of six classifiers are summarized in Table 2. The table
shows the following trends:

– Accuracy-wise, MNB ∼ HMM < CRF ∼ LogReg ∼ SVM < SVM-HMM.
– Certain tags, such as “walk” and “drive” in activity, and “restaurant/cafe” and “out-

door” in places, are recognized very accurately (> 0.95) for all algorithms.
– Recognition of people is understandably more difficult than activity and place, since

we have not used face-related visual features.

It is interesting to see that the two non-temporal models (MNB, LogReg) are not nec-
essarily worse than their temporal counterparts (HMM, CRF). However, it is seen that
discriminative models outperform generative models, which is a common observation
across different problem domains, and that SVM-HMM outperforms HMM and CRF
by a large margin, similar to the results from smart-home data [45].

Lastly, Figure 3 shows predicted tags from SVM-HMM during the course of a day.
The predictions are overall satisfactory except for the middle section of the day.

6 Discussion

In this paper, we present a system for collecting and automatically annotating daily ex-
perience from multisensory streams on a smartphone. We use a flexible multisensory
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other activity
drive/inside a vehicle eat/drinktalk/chat/discuss talk/chat/discuss

use a computer use a computer
other place my home my office my office

other’s office restaurant/cafe
other people other people other people other people

colleague(s) colleague(s) colleague(s)

True Annotations

50 100 150 200 250 300

drive/inside a vehicledrive/inside a vehicle eat/drinktalk/chat/discuss

use a computer use a computer use a computer
other placeother place my home my office my office my office

restaurant/cafe
other people other people other people other people

colleague(s) colleague(s) colleague(s)

SVM−HMM (0.967)

50 100 150 200 250 300

Fig. 3. True vs automatic annotations from data during one sample day. The x-axis is the time in
minutes and y-axis is the 19 tags. The yellow dots indicate the positive prediction for each tag at
each frame. To reduce visual clutter, we only show tags that last longer than 10 minutes.

bag-of-words representation for incorporating multiple heterogeneous streams, along
with state-of-the-art classifiers to predict the tags with real-life data acquired with our
system. In the evaluation of algorithms, we compared the performance of various clas-
sifiers, and achieved accurate predictions (>0.9) in the majority of tags (15 out of 19)
with the SVM-HMM, which outperformed other algorithms by a large margin in almost
all tags. The proposed system and algorithms can be immediately used for personal
lifelogging applications. For example, using tags as keywords, frames of interest can
be retrieved automatically from the vast amount of personal logs. For another example,
personal statistics such as the amount of “walking”, “driving”, or “using a computer”
can be calculated from the the predicted labels and provide the user with life-style re-
lated feedbacks.

There are several directions to improve the accuracy of automatic annotations with
the proposed system. This includes extraction of better features from raw data, and
adding more information such as time, Wi-Fi signals, assisted-GPS, ambient light, or
proximity. The proposed multisensory framework can elegantly accommodate these
inhomogeneous sensory data without modifying the system. The classifiers may also
benefit from incorporating a longer-range label dependency or dependency among tags
with Factorized HMM [15] or Dynamic CRF [38], as demonstrated in [46]. However,
increased model complexity does not always translate to a better performance, and of-
ten results in inefficient model learning and inference, in contrast to the models in this
paper for which only global optimization is required. While these improvements re-
main to be explored further, the current work represents a state-of-the-art system in
collecting and annotating naturalistic daily experience with multisensory streams from
smartphones.
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