
D. Uhler, K. Mehta, and J.L. Wong (Eds.): MobiCase 2012, LNICST 110, pp. 314–327, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Context-Aware Mobile Power Management
Using Fuzzy Inference as a Service

Mohammad Moghimi, Jagannathan Venkatesh, Piero Zappi, and Tajana Rosing

University of California, San Diego, Computer Science and Engineering,
9500 Gilman Drive, La Jolla, CA, 92037. USA

{mmoghimi,jvenkatesh,pzappi,tajana}@ucsd.edu

Abstract. As smartphones become ubiquitous, their energy consumption
remains one of the most important issues. Mobile devices operate in a
dynamically changing context, and their embedded sensors can be used to
extract the relevant context needed for resource optimization. In this paper, we
present a context-aware power management system implemented as a widely-
applicable middleware application. Fuzzy inference is used to represent a high-
level description of context, which is provided as a service. We test our
approach using actual periodic and streaming applications on a mobile phone.
Our results show energy reduction of 13-50% for periodic applications, and 18-
36% for streaming applications.

Keywords: Context Awareness, Energy Efficiency, Mobile Systems, Fuzzy
Inference.

1 Introduction

Mobile devices such as smartphones have become ubiquitous. As a consequence, they
operate in a dynamically changing context, both in terms of user needs and
computational requirements. Context has been defined as "any information that can be
used to characterize the situation of an entity", and in mobile devices, it is obtained
from sensors, communication media, or locally available data [15]. Context awareness
in mobile devices has been proven useful when developing user interfaces [15][12],
proactive service provisioning [4][5], or efficient resource management [10]. The
concept has been explored in several comprehensive studies [2][8][21] over the past
decade, as new mobile technologies emerge. In general, previous work on context
aware systems focuses either on novel technique for context recognition, or on
efficient management of context knowledge. However, one area that has been largely
overlooked is leveraging context recognition methods to provide adaptive power
management as a service for mobile applications.

The rationale for power management in mobile devices stems from their growth in
computational complexity and power consumption with each process generation.
However, as mobile battery technology has not grown at the same rate, device
lifetimes are decreasing [19]. Subsequent work [3] analyzes power consumption in
Android-based smartphones during common tasks, noting the significant contribution

 Context-Aware Mobile Power Management Using Fuzzy Inference as a Service 315

of GPRS and Wi-Fi radios, graphics processors, and the CPU. Consequently,
substantial research has been devoted to leveraging context to reduce power
consumption or manage battery use. In [1] the authors aim to optimize the high
energy overhead in mobile networking by leveraging characteristics of typical mobile
applications, scheduling transfers in batches to reduce the overhead of each transfer,
and aggressively prefetching data for applications that can benefit from it. Similarly,
the work in [20] curbs the energy consumption of data transmission over Wi-Fi or
cellular networks by exploiting the complementary energy traces of each type of
connection. The application opts to use either Wi-Fi or cellular data transmission by
determining the lower-energy operation based on the current context. The authors
demonstrate an improvement in battery lifetime by up to 42%. The work presented in
[19] uses energy traces from applications and location information to determine when
and where phones can be charged, and how much remaining energy is available for
critical applications. Consequently, the energy manager allocates resources for non-
critical applications based on the time to the next predicted charging opportunity.
Musolesi et al [17] investigates the high energy consumption of continuous location
sensing applications which need to communicate GPS data with a backend server.
Using short-term prediction of movement based on context, the application duty-
cycles communication with the backend, demonstrating up to 60% communication
savings with limited impact on accuracy. Similarly, [13] and [24] leverage context to
determine how often to retrieve GPS location, opting instead to use the adaptive
frequency or other means of determining location for energy savings.

The related work above opts to exploit context awareness either in a limited
fashion, or for a specific application. However, mobile platforms such as Android,
Windows Phone, and iOS run many applications at a time. Competition among
running applications for access to sensor data in order to independently retrieve
similar context information is both inefficient and redundant. A better approach is an
intermediate, extensible layer which can retrieve input from the many sensors and
sources of raw context available on phones. In turn, it would consolidate the input
into higher-level, filtered, and processed context that is queryable and usable by all
applications.

The advantage of this approach is the elimination of redundancy in each
application, which would otherwise need to independently process context data, as
well as removing the constraint of sharing sensor access among applications. Previous
work approached the concept of context as a service for goals other than power
management. For example, the context manager designed in [15] retrieves raw
context information from sensors, offering high-level context aimed at providing an
adaptive UI. Similarly, [11] designs and implements a context delivery system for
Symbian devices. The end-to-end implementation provides context as a middleware
service, abstracting raw sensor input into usable context via fuzzy inference. The
resulting context is made available to applications as a query, via subscription to
specific updates, or through even higher abstracted services, which perform post-
processing using simple Bayesian networks for more complex context. The system
exemplifies the type of context management we aim to leverage in our work. We aim
to extend this approach further by providing context-aware actions to applications in a
power-aware, adaptive user experience.

316 M. Moghimi et al.

Typical context aware systems use decision tree-based methods in their inference
block [10] [20]. Decision trees are a generalization of IF-THEN-ELSE decisions,
whose outputs represent the actions to be taken. Rules can be as simple as a timeout
from the last screen interaction to more complex rules combining the interaction of
data from multiple sensors. This approach establishes crisp thresholds on context
variables, which can cause extreme or unintentional responses to complex input. In
contrast, fuzzy inference handles context in a more natural way. Since mobile system
context is derived in part from environmental behavior, it is inherently fuzzy:
described using degrees of confidence rather than absolutes [15]. Additionally, as
context recognition involves a degree of uncertainty due to sensor inaccuracies or the
variability in defining a context, the use of exact thresholds is not always reasonable.
As such, fuzzy logic variables have a truth value or a degree of confidence ranging
from 0 and 1, which is a more natural expression of typical context information.
Fuzzy inference provides an additional advantage: the aggregation of different rules
based on confidence values expressed in a continuous manner, which is difficult when
using a decision tree or discrete implementation. As higher abstractions of context can
determined by the correlation of variables with different, overlapping confidence
factors, fuzzy logic provides a natural means to aggregate raw input data into
appropriate context. Due to its advantages, fuzzy logic has been used extensively for
context detection in mobile devices as well as other embedded systems. Mäntyjärvi et
al. [11][15] design and implement a context manager based on fuzzy inference to
provide adaptive UI management for Symbian devices. Ciaramella et al. [4] develop
an application selection service using fuzzy logic that incorporates location, time, and
perceived task (based on applications running and preset situations). The contexts are
provided as a query to a backend service which returns the most recommended
application to achieve the perceived task. Martinez et al. [16] propose a fuzzy logic
system for energy management in hybrid vehicles, referencing the ability of fuzzy
systems to outperform their counterparts in embedded domains, as well as their
usefulness for energy management. Context variables represent battery state-of-
charge, supercapacitor state, terrain, and driving conditions, and use human
experience to determine which power subsystem should propel the vehicle at a given
time.

In this paper, we leverage such context managers to provide adaptive power
management for mobile phones. We design and implement a low complexity,
extensible framework that uses fuzzy inference of power-related context variables to
mitigate a significant problem in mobile devices: energy consumption. Applications
expose needed context parameters to the power manager and register rules for
adaptive behavior. In turn, the power manager tunes applications parameters based on
the rules and the available context. We test our power manager on two applications
that are representative of typical mobile tasks. The first represents applications that
run in the background, periodically retrieving data from a remote sever (e.g. RSS
feed, email). We define a cost function that models the trade-off between energy
consumption of the system and its performance (measured as delay in presenting the
user desired information) with which we can compare our approach to decision tree
systems. We also develop and test a representative of streaming applications

 Context-Aware Mobile Power Management Using Fuzzy Inference as a Service 317

(e.g. audio and video streaming), which require continuous, lossy data retrieval from a
backend server. We define a threshold for audible bitrates, and measure power
savings on the device under context-aware conditions in comparison to non-adaptive
conditions.

The rest of the paper is organized as follows. Section 2 describes the proposed
power management method. Section 3 outlines the applications developed, the
experiments performed, and their results. Section 4 concludes with possible future
directions.

2 System Design

In this section, we present an overview of the system, including the implementation of
fuzzy logic and exploring the major components of the power management system.

2.1 Fuzzy Inference

Fuzzy logic is a generalization of set theory, which, instead of binary membership,
uses functions that assign every input a value between 0 and 1. The outputs, or
context variables, can be used to provide a high-level abstraction of low level data.
For example, time contexts such as TimeOfDay = {Morning, Work Hours, Evening,
Night} represent a high-level abstraction of the low-level input of system time. Figure
1 depicts the member functions that are composed to form the fuzzy logic context for
TimeOfDay.

Fig. 1. Fuzzy membership functions for TimeOfDay. In our experiments, the values for
Morning, Work Hours, Evening, and Night, are determined statically, though this can be
determined through machine learning models and other methods as well.

Client applications can take advantage of the more gradual transitions in fuzzy

logic to develop more gradual control of system behavior. In the above example,

0

0.5

1

0:00 6:00 12:00 18:00 0:00

Morning Work Hours Evening Night

318 M. Moghimi et al.

Night is determined by the period in which night is detected with absolute confidence
(3 21) as well as a gradual threshold for when night begins (19 21)
and ends (3 5). , 21, 5, 21, 19 (1)

This example illustrates a fundamental advantage of fuzzy logic for use with context:
there is not necessarily a pure definition of Night, so instead of attempting to force
such an absolute definition, we instead define the boundary around night with a
growing confidence.

Defining the optimal thresholds for each member of TimeOfDay is highly
dependent on the behavior of the user. While in this case, these boundaries are
defined statically, the fuzzy context management systems explored in Section 1
defined thresholds statically or through learned behavior.

2.2 Context-Aware Power Manager

The power management system we develop is designed to be flexible and extensible,
providing context-aware, adaptive behavior, to applications. This approach strikes a
balance between individual applications retrieving sensor information independently
[2], and a central context management system that registers updates with every
application that requests it [11]. In both cases, the burden of continually adapting to
context changes is placed on the applications themselves. Additionally, in the former
case, the Context Detection Block (CDB) can become a bottleneck for applications
attempting to retrieve context, and inefficient if they try to retrieve the same context
information. For example, two applications that need the same context variable (i.e.
the time of day, or the ambient noise level) must separately be updated every time the
context changes. Instead, we place a power manager in between the application and
the CDB, which serves a dual purpose. First, it aggregates power-relevant context
variables from both the sensors directly, and from a CDB, which provides higher
abstractions of raw context. This removes the inefficiency of applications retrieving
the same context. Secondly, instead of performing actions independently, applications
register rules for updating context-dependent input data with the power manager.

This allows similar applications to adapt to context with the same variables. The
resulting system, composed of sensor input, CDB, and the power manager, forms a
flexible framework, able to use any context detection block, including those specified
in Section 1. Figure 2 shows the architecture of the framework.

 Context-Aware Mobile Power Management Using Fuzzy Inference as a Service 319

Fig. 2. Layout of the Context-aware Power Manager, showing sensors for raw data, a context-
detection block for processed data, and the power manager with sample rules

The power manager, unique to our system, retrieves context information and
outputs a set of application-specific actions. Context information is either derived
directly from input sensors (for simple contexts such as time or date), or as high-level
abstractions in the context detection block (for processed context such as relative
location, noise level, or user activity level). The output actions are application-
specific variables, registered by the respective applications. The power manager tunes
these variables based on static rules to provide context-aware energy-efficient
behavior.

For example, let us consider a periodic application whose rate of download
(UpdateRate) can be modified by the power manager based on the time of day. The
rules governing the update can simply use numerical (via system time), or a more
fuzzy representation, such as the TimeOfDay variable discussed above (provided by
the CDB). Such a rule can be paired with the output action, i.e. UpdateRate={10min,
30min, 60min, 120min}. A rule connecting TimeOfDay with UpdateRate, can be
specified in the power manager in the format “IF context THEN output_action”. In
the case of TimeOfDay, we can establish the update interval of a periodic application
based on the intuition that users do not check an application for updates at night:

IF TimeOfDay == “night”, THEN UpdateRate= “1hr-update”

This further illustrates the advantage of registering rules in the power manager: different
periodic applications that desire to use the same action can all register to use UpdateRate
to determine their output action, reducing their query rate to once per hour.

The system, implemented for Android API Version 10, is designed to be versatile
and extensible. The power manager can retrieve new raw (from sensors) or abstracted
(from the context detection block) context variables, extend and re-aggregate existing
context variables, and establish new or extend rules for output actions.

Our system accomplishes all such goals with limited interaction with the
established platform. Each application provides two descriptor files to the power
manager: a fuzzy control logic (FCL) file and a properties file. The FCL file [9]

Application
Data

Context-aware Power Manager

Sensors

Context
Detection
Block (CDB)

Power Manager

Rules:
IF condition1 THEN action1
IF condition2 THEN action2
…

Output
Actions

320 M. Moghimi et al.

exposes context-sensitive application parameters that can be tuned, and establishes the
rules for adapting to the context. More specifically, the FCL file lists the context
variables needed, the output actions modified, the fuzzy sets that compose both, and
the piecewise linear membership functions which translate input context to the output
actions. The properties file is used to store updates to the context-dependent variables
for an application. Figure 3 shows the overview of the system and the interaction
between the components.

Fig. 3. Software component overview, consisting of the Context-aware Power Manager (see
Fig. 2), the FCL file that provide application data, and the PROPERTIES file, to which output
actions are published, and which is read by the application.

When a context-aware application is developed, it registers with the power
manager by exposing its FCL and properties files. The power manager parses the FCL
file, registering any new context inputs and action outputs, and integrates the rules
needed to translate the context into the member functions. When the power manager
is running, it provides the defuzzified output variables, which determine the
application’s adaptations, to the properties file. For example, in the case of streaming
media applications, context would be used to determine the bitrate of the incoming
stream, which strongly affects the energy consumed by the device. The power
manager would output the new bitrate for the application to the properties file, which
then changes the quality of the incoming stream as desired.

3 Experiments and Results

3.1 Experimental Setup

We implemented our framework on both a T-Mobile G1 development phone and a
Nexus One phone. Power measurements for the running applications are provided via
the PowerTutor application. PowerTutor estimates power consumption based on a
power model customized for each phone’s hardware, and has been demonstrated to
have less than 2.5% long-term error [23]. Our experiments consisted of two separate
classes of applications: periodic downloading applications, which query and retrieve
data from a backend at specific intervals, and streaming applications, which need to
constantly retrieve data over the duration of the stream.

Context–aware Power
Manager

FCL file Application

PROPERTIES file
Output
Actions

Application Data

 Context-Aware Mobile Power Management Using Fuzzy Inference as a Service 321

3.2 Periodically Downloading Applications

Periodically downloading applications have risen in popularity, and now consist of a
significant portion of mobile apps [5]. We model our test applications after common
examples of such apps: RSS feed-following, Twitter, and e-mail retrieval,
implemented in RSSApp, TwitterApp, and EmailApp, respectively. Each application
is implemented as a background service without a graphical user interface (GUI).
Communication to the backend composes a majority of the energy requirement for
such applications, and consequently, our goal with each of the model applications is
to reduce the amount of energy spent on connectivity. The work in [1] analyzed the
energy cost of such network-dependent applications, identifying tail energy, caused
by mobile data connections’ retention of high-energy states even after completion of
data retrieval, to be a significant contributor to energy use. To compensate, the
authors implemented batch-processing of periodic applications to avoid recurring
overheads, and a similar approach was undertaken in [14]. We approached the
problem in a similar manner, with the added advantage of the context framework.

Observed user interaction with periodic applications shows a variation over the
course of the day, requiring more frequent updates in the morning, as the user is
brought up to date on the events of the recent past, and less frequent updates
throughout the day, culminating in low access needs at night. Additionally, we
leverage the lower energy requirements of Wi-Fi over GSM/GPRS connectivity.

We establish DayType = {Weekday, Weekend}, TimeOfDay = {Morning, Noon,
Evening, Night}, and WifiAccess = {Wi-Fi, No Wi-Fi} as context variables, and
TimeStep = {Short, Medium, Long} and levelOfInfo = {0, 1, 2} as the output actions.
TimeStep refers to the update frequency of the application, levelOfInfo refers to the
depth of data needed by the application (0 = title only, 1 = title and text, and 2 = title,
text, and attachments), and WifiAccess = represents the access to Wi-Fi connectivity.
The fuzzy context rules are described in Table 1 and Table 2.

Table 1. TimeStep membership sets for DayType and TimeOfDay

 Morning Noon Evening Night
Weekday Short Short Medium Long
Weekend Medium Medium Medium Long

Table 2. LevelOfInfo membership sets for WifiAccess and TimeOfDay

 Morning Noon Evening Night
Wi-Fi 2 1 1 0
No Wi-Fi 2 2 2 0

The defuzzification of TimeStep is obtained by the center of gravity (cogs) for the

piecewise functions that comprise Short, Medium, and Long, each weighted by the
level of confidence in the particular function. This is defined in Equation 2:

 . (2)

322 M. Moghimi et al.

where Short, Medium, and Long denote the piecewise functions that compose each
set, and , , and representing the confidence for each set, respectively.
The output, is the numerical output representing the period for updating the
application.

The experiments for the RSSApp and TwitterApp use feed traces from
mashable.com, a technology news feed, and the EmailApp used a Gmail account to
retrieve email messages. User interaction is simulated on three user models: Heavy
User, Medium User, and Light User, which are derived from models presented by
Falaki et al. in [6]. The delay time is measured from the time of the request to the time
of the response.

Table 3 summarizes the actual power consumption and the delay for different
adaptation techniques: fuzzy inference, a simple decision-tree model, and a fixed
update rate representing no adaptation. The decision tree model uses crisp thresholds
for each state, defining the action to take as a list of conditionals.

Table 3. Comparison of adaptive techniques for periodic downloading applications

 Fuzzy Inference Decision Tree Fixed

 Avg. Power
(W)

Delay
(s)

Avg. Power
(W)

Delay
(s)

Avg. Power
(W)

Delay
(s)

RSS App 0.345 9.94±3.0 0.390 10.80±2.6 0.658 6.34±2.3

Twitter App 0.289 7.33±2.4 0.330 9.40±1.9 0.780 5.9±1.0

Email App 0.510 8.11±0.4 0.500 14.00±2.4 0.800 10±1.1

The energy consumption in all three periodic applications is significantly reduced

due to context-aware adjustment of both the frequency of the data retrieved and the
level of data downloaded. However, longer TimeStep values and lower levelOfInfo
increase the chance that users experience a delay in retrieving backend data or the level
of data they require. Fuzzy logic demonstrates, on average, a 49% improvement in
average application power reduction over no adaptation, although with 14% increase in
retrieval delay. Additionally, fuzzy logic demonstrates, on average, 12% improvement
in power reduction for the RSSApp and the TwitterApp, and a reduction in delay of
14.5%. For the EmailApp, the decision tree method performed slightly better in terms
of power consumption (2%), though with 42% increase in delay. An analysis of the
results shows that the decision tree’s crisp boundaries allow it to spend more time in
the longest TimeStep, whereas the smoother transitions of fuzzy inference result in
more frequent intermediate TimeSteps. However, the slight power saving comes at a
high delay cost. While the delay cost is a qualitative measure, fuzzy inference still
provides an improvement over the decision tree model, with a significant improvement
in delay.

We then evaluate the tradeoff between the time-delay needed to retrieve the
necessary data and the energy cost for retrieving data. We test the three user models:
light, medium, and heavy, where each model indicates the frequency of application
usage based on time and day. In order to represent the usage pattern of a mobile user,
we can expect a fixed average rate of use, with the average number varying between
light, medium, and heavy. As each device usage instance is independent, one

 Context-Aware Mobile Power Management Using Fuzzy Inference as a Service 323

representation of usage patterns is a Poisson distribution, which has previously been
published in [7]. Figure 3 depicts the tradeoff between power usage and the average
delay that a user faces to get updated data for the different usage patterns. The average
delay stabilizes near 5 seconds as usage increases, regardless of the increase in
UpdateTime. The result helps illustrate two ways to optimize the functionality of the
power manager: utilizing learning algorithms to limit thresholds, and statically
analyzing an application so that appropriate limits may be set to minimize power
consumption.

Fig. 4. The delay vs. power usage for periodically downloading applications

3.3 Streaming Applications

Streaming applications are common in the mobile world, with the prevalence of
services like Pandora and Google Music. We model our test application after a
streaming music service, allowing streaming playback of a remote playlist. Similar to
periodic applications, data retrieval with the backend service composes a majority of
the energy consumption for streaming applications, although real-time playback
precludes the use of batch information retrieval. Instead, we leveraged available
context to vary the bitrate of data recovery, reducing the amount of data consumed by
the running application over its lifetime.

In designing the context awareness of the application, we take advantage of the
notion that a quiet environment enables reducing the quality of the streaming music, as
the user is less likely to increase the volume and become exposed to distortion.
Conversely, in when the environment is noisy, a higher quality stream mitigates
distortion at higher volumes. Similarly, we perform a simple activity analysis from
accelerometer readings. If the user is stationary, the quality of the stream is likely more
important, as the music is a primary activity. If the user is walking or running,
however, he or she is most likely listening to music as a secondary activity, and
listening to music is a secondary activity.

As such, we define AmbientNoise = {Quiet, Moderate, Loud} and Activity =
{Stationary, Walking, Running} as context variables, and Bitrate = {Very Low, Low,
Medium, High, and Very High} as the output actions. The fuzzy context rules are
described in the table below.

0

5

10

15

20

0 50 100 150 200 250

A
ve

ra
ge

 D
el

ay
 (s

)

Power Usage (mW)

Heavy User Medium User Light User

324 M. Moghimi et al.

Table 4. Bitrate member sets for AmbientNoise and Activity

 Stationary Walking Running
Quiet Medium Low Very Low
Moderate High Medium Low
Loud Very High High Medium

The experiments used accelerometer and microphone traces from a 1-hour period of

activity which involved all three Activity types and all three AmbientNoise levels.
Accelerometer amplitudes and directions were converted to abstracted activity contexts
using a variation of the algorithms presented in [22], simplified to reflect only walking,
running, and remaining stationary. Microphone input was translated to quiet, moderate,
and loud using a training set to capture minimum and maximum volume levels, and
dividing the range into three equal sets. A separate program is used to stitch together a
variable-bitrate file based on the traces and Equation 3 below. The resulting file is then
streamed to the phone for the experiment. The defuzzification of the output settings is
defined by the linear combination of confidence of settings associated with each
member:
 f f C C C C C C6

 . . . (3)

where the . 128kbps, 256kbps, 384kbps, 512kbps,
and . 640kbps. The selected frequencies for each state were determined by
linear growth from the lowest to the highest available frequencies {128,192,…,640},
and the resulting frequency is discretized to the closest member in the frequency
range.

Table 5. Comparison of adaptive techniques for streaming applications

 Fuzzy Inference Decision Tree Fixed

 Avg. Power
(W)

Median
bitrate
(kbps)

Avg.
Power
(W)

Median
bitrate
(kbps)

Avg. Power
(W)

Median
bitrate
(kbps)

Streaming App 0.689 256 0.844 256 0.983 512

 Context-Aware Mobile Power Management Using Fuzzy Inference as a Service 325

We again perform a comparison of fuzzy inference with both a decision tree model
and a fixed (non-adaptive) model. The results in Table 5 show marked improvement,
with fuzzy inference providing, on average, 29.9% improvement over a non-adaptive
application and 18.4% improvement over a decision tree model. The improvement over
the decision tree model is most striking, and is attributed to the more natural,
intermediate transitions enabled by confidence values between states. The discrete sets of
the decision tree force sudden, large transitions which do not take advantage of potential
intermediate transitions between, for example, Stationary+Moderate and Walking+Quiet.
As such, the decision tree spends a longer time in the higher-bitrate state and consumes
on average more power. Figure 5 displays the results of one of the experiments, and helps
illustrate the gradual vs. stark transitions between the fuzzy inference and decision tree
methods for a subset of the streaming experiment. For example, the raw sensor data
shows a steady increase in ambient noise between minutes 4 and 10. Both the decision
tree and the fuzzy inference models react to this change by increasing the bitrate
accordingly. However, the sharp, early increase in the decision tree model contrasts with
the more gradual change of fuzzy logic for the same period. Additionally, at time t=5, the
crisp threshold of the decision tree model jumps to 512kb, implying the need for a High
bitrate. However, fuzzy inference demonstrates that there is actually not a need for a
High bitrate due to there not being enough confidence for that state, choosing instead to
gradually increase with increasing ambient noise until leveling off at 448kbps. Similarly,
the decision tree model increases to 640kbps at t=11, though fuzzy inference
demonstrates that a lowered confidence in the Very High state should actually limit the
value to 576kbps. Both these cases exemplify the advantage of fuzzy logic in adapting to
context and, more importantly, its ability to better reflect the more graduated changes that
actually occur in the surrounding context.

Fig. 5. Experimental bitrate results for Streaming Applications. At t=14, the decision tree
model was streaming at 384kbps, the fuzzy logic model was streaming at 320kbps, compared
with a fixed stream at 512kbps. Time t=4 to t=10 demonstrates the difference in response for
decision tree compared to fuzzy logic in adapting to gradually increasing ambient noise levels.

-50

50

150

250

350

450

550

650

0 5 10 15 20 25

Bi
tr

at
e

(k
bp

s)

Time (min)

Decs. Tree Fuzzy Inf. Fixed

t=14min

326 M. Moghimi et al.

4 Conclusion

In this paper, we introduce the idea of using context information to minimize energy
usage of characteristic applications on mobile devices. We explore the background
research in context awareness, and illustrate the advantages fuzzy inference of context
provides to both mobile applications and in energy efficiency. We then propose and
implement a context-aware power manager on mobile phones leveraging both raw
and abstract context detection, and fuzzy inference to adapt typical mobile
applications’ behavior to current context. The proposed technique has been compared
to similar method and showed 10 to 50% percent lower power consumption, as well
as up to 18% improvement over traditional decision-tree models. Future work
includes expanding the power manager with additional context variables and
applications, as well as using learning techniques to dynamically determine higher-
level context, as opposed to fixing them with static values. This has been utilized in
related work for determining context [13][18], and allows abstract context variables to
be adapted to the user.

Acknowledgements. This research was supported by NSF Grant CNS-0932403, the
Center for Networked Systems (http://cns.ucsd.edu), and Qualcomm.

References

1. Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy Consumption in
Mobile Phones: A measurement Study and Implications for Network Applications. In:
Proc. of 9th Conf. on Internet Measurement, pp. 280–293 (2009)

2. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A.,
Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive and Mobile
Computing 6(2), 161–180 (2010)

3. Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In: Proc.
USENIX, p. 21 (2010)

4. Ciaramella, A., Cimino, M., Lazzerini, B., Marcelloni, F.: Situation-Aware Mobile Service
Recommendation with Fuzzy Logic and Semantic Web. In: Proc. 9th Int. Conf. on
Intelligent Systems Design and Applications, pp. 1037–1042 (2009)

5. Chen, G., Kotz, D.: Solar: An Open Platform for Context-Aware Mobile Application. In:
1st Int. Conf. on Pervasive Computing, pp. 41–47 (2002)

6. Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin, D.:
Diversity in smartphone usage. In: Proc. 8th Int. Conf. on Mobile Systems, Applications
and Services, pp. 179–194 (2010)

7. Gündüz, Ş., Özsu, M.T.: A Poisson Model for User Accesses to Web Pages. In: Yazıcı, A.,
Şener, C. (eds.) ISCIS 2003. LNCS, vol. 2869, pp. 332–339. Springer, Heidelberg (2003)

8. Hong, J., Suh, E., Kim, S.: Context-aware systems: A literature review and classification.
Expert Systems with Applications 36(4), 8509–8522 (2009)

9. International Electrotechnical Commission. IEC 1131- Programmable Controllers Part 7 -
Fuzzy Control Programming (1997)

10. Kim, K., Min, A., Gupta, D., Mohapatra, P., Singh, J.: Improving Energy Efficiency of
Wi-Fi Sensing on Smartphones. In: Proc. of IEEE Int. Conf. on Computer
Communications (2011)

 Context-Aware Mobile Power Management Using Fuzzy Inference as a Service 327

11. Korpipaa, P., Mantyjarvi, J., Kela, J., Keranen, H., Malm, E.: Managing Context
Information in Mobile Devices. IEEE Pervasive Computing 2(3), 42–51 (2003)

12. Lemlouma, T., Layaida, N.: Context-aware adaptation for mobile devices. In: Proc. of
IEEE Int. Conf. Mobile on Data Management, pp. 106–111 (2004)

13. Lin, K., Kansal, A., Lymberopoulos, D., Zhao, F.: Energy-Accuracy Trade-off for
Continuous Mobile Device Location. In: Proc. 8th Int. Conf. on Mobile Systems
Applications and Services, pp. 285–297 (2010)

14. Mahesh, M., Calder, M.: Batch Scheduling of Recurrent Applications for Energy Savings
on Mobile Phones. Sensor Mesh and Ad Hoc Communications and Networks, 1–3 (2010)

15. Mäntyjärvi, J., Seppänen, T.: Adapting applications in handheld devices using fuzzy
context information. Interacting with Computers 15(4), 521–538 (2003)

16. Martínez, J., John, R., Hissel, D., Péra, M.: A survey-based type-2 fuzzy logic system for
energy management in hybrid electrical vehicles. Information Sciences 190(1), 192–207
(2012)

17. Musolesi, M., Piraccini, M., Fodor, K., Corradi, A., Campbell, A.T.: Supporting Energy-
Efficient Uploading Strategies for Continuous Sensing Applications on Mobile Phones. In:
Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 355–372.
Springer, Heidelberg (2010)

18. Paek, J., Kim, J., Govindan, R.: Energy-Efficient Rate-Adaptive GPS-based Positioning
for Smartphones. In: Proc. 8th Int. Conf. on Mobile Systems Applications and Services,
pp. 299–314 (2010)

19. Ravi, N., Scott, J., Lu, H., Iftode, L.: Context-aware Battery Management for Mobile
Phones. Pervasive Computing and Communications, 224–233 (2008)

20. Rahmati, A., Zhong, L.: Context-for-Wireless: Context-Sensitive Energy-Efficient
Wireless Data Transfer. In: Proc. 8th Int. Conf. on Mobile Systems Applications and
Services, pp. 165–178 (2007)

21. Shye, A., Scholbrock, B., Memik, G.: Into the wild: studying real user activity patterns to
guide power optimizations for mobile architectures. In: Proc. 42nd Int. Sym. on
Microarchitecture, pp. 168–178 (2009)

22. Weiss, G., Kwapisz, J., Moore, S.: Activity Recognition using Cell Phone Accelerometers.
ACM SIGKDD Explorations, 74–82 (2010)

23. Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R., Mao, Z., Yang, L.: Accurate online
power estimation and automatic battery behavior based power model generation for
smartphones. In: Proc. 8th Int. Conf. on Hardware/Software Codesign and System
Synthesis, pp. 105–114 (2010)

24. Zhuang, Z., Kim, K., Singh, J.: Improving Energy Efficiency of Location Sensing on
Smartphones. In: Proc. 8th Int. Conf. on Mobile Systems Applications and Services,
pp. 315–330 (2010)

	Context-Aware Mobile Power Management Using Fuzzy Inference as a Service
	Introduction
	System Design
	Fuzzy Inference
	Context-Aware Power Manager

	Experiments and Results
	Experimental Setup
	Periodically Downloading Applications
	Streaming Applications

	Conclusion
	References

