Nihao: A Predictive Smartphone
Application Launcher

Chunhui Zhang, Xiang Ding, Guanling Chen, Ke Huang,
Xiaoxiao Ma, and Bo Yan

Computer Science Department, University of Massachusetts Lowell,
1 University Avenue, Lowell, Massachusetts, USA, 01854
{czhang,xding,glchen,khuang, xma,byan}@cs.uml .edu

Abstract. Increasingly large number of the applications installed on
smartphones tends to harm the application lookup efficiency. In this pa-
per, we introduce Nihao, a personalized intelligent app launcher system,
which could help the users to find apps quickly. Nihao predicts which
app the user will likely open next based on a Bayesian Network model
leveraging the contextual information such as the time of day, the day
of week, the user’s location and the last used app with the hypothesis
that the users’ app usage pattern is context dependent. Through the
field study with seven users over six weeks, we first validate the above
hypothesis by comparing the prediction accuracy of Nihao with other
predictors. We found that the larger UI change did not necessarily yield
longer app lookup time as the app lookup time highly depended on the
app icon position on screen, which suggested the prediction accuracy
was the most important factor in designing such a system. At the end of
the study, we conducted a user survey to evaluate Nihao qualitatively.
The survey results show that five out of seven users were quite satisfied
with the prediction of Nihao and thought it could help to save both app
lookup and management time by ranking the app icons automatically
while Nihao did not help the other two users much since they used their
phones primarily for calling and texting (not for apps).

Keywords: mobile applications, Android applications, application us-
age prediction, context awareness, adaptive Ul

1 Introduction

As of March 2012, the number of apps and games in Android market reached
about 620,000 and the total number of downloads was estimated to be over
nine billion [1I]. Increasingly large number of the apps installed on smartphones
tends to decrease the app lookup efficiency and more time is required to manage
them. A typical Android phone launcher by default places all app icons in the
app drawer and the apps are usually ordered according to their installation time
or alphabetically. Furthermore, the users could create shortcut for their favorite
apps on the homescreens directly or manage the shortcuts in folders. With a
large number of apps installed, the users usually launch an app either by looking

D. Uhler, K. Mehta, and J.L. Wong (Eds.): MobiCase 2012, LNICST 110, pp. 294-BT3] 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

A Predictive Smartphone Application Launcher 295

up the shortcut screen by screen (Android phone usually has more than one
homescreens) or by going through the prohibitively long app list in the app
drawer. In addition, the task of customizing and arranging the app shortcuts
consumes considerable amount of time and effort.

To shorten the app lookup and management time, we developed Nihao, a
personalized intelligent app launcher system, which could automatically rank
the apps by predicting how likely they tend to be opened. The prediction is
based on a Bayesian Network model leveraging various contextual information
such as the time of day, the day of week, the user’s location and the last used
app, with hypothesis that the users’ app usage pattern depends on those context.
For instance, someone likes to read Technology Review in the morning and use
Gtalk to contact his wife at the end of the day during weekdays while he likes to
play games using his phone during weekends. Another example is that someone
is likely to use Yelp [2] to read reviews for dishes when she is in a restaurant
while she tends to use Google Map to find interesting places in the destination
when waiting for the plane in the airport. Similarly for the context of the app
correlation, the users may use eBay app after using Amazon app.

When designing such a system involving adaptive user interface, whether the
UT change will hurt the usability is always a concern [3]. Some researchers be-
lieve that the users need a predictable UI while others argue that the accurate
prediction could mitigate the confusion caused by the Ul change. In this paper,
we aim to find out the feasibility and efficiency of the dynamic app launcher Ul
based on the predictions.

With the aforementioned expectation, hypothesis and concern in mind, we
conduct a field study with seven users for six weeks. As the data analysis results
show, the performance of Nihao in term of app lookup time outperformed the
default launcher when considering only downloaded apps. (Built-in apps such
as phone, text messaging, browser are usually opened through the quick launch
bar at the bottom of the homescreen in a Android phone and require little
lookup time). Then, the hypothesis was proved by demonstrating that Nihao
predicted more accurately than the benchmark predictor (app usage frequency
based predictor) and other predictors. Finally, we found that the larger UI change
did not necessarily yield longer app lookup time and the app lookup time highly
depended on the app icon position on screen, which suggested the prediction
accuracy was the most important factor in designing such a system.

At the end of the study, we conduct a user survey to evaluate Nihao qualita-
tively. The survey result shows that five out of seven users were quite satisfied
with the prediction of Nihao and thought it could help to save both app lookup
and management time by ranking the app icons automatically while Nihao did
not help the other two users much since they used their phones primarily for
calling and texting.

The contributions of this work include: 1) a new and effective UI design for
intelligent smartphone app launcher, 2) an effective app usage prediction method
based on a probabilistic model leveraging contextual information such as time,

296 C. Zhang et al.

location and app correlation, 3) a reference system design and implementation
of such a context-ware personal assistant to speed up app lookup.

The rest of this paper is organized as follows. In Section 2 we compile the
related works. Section [Bl discusses the interface design and the prediction model.
Section Ml presents details of the system design and implementation. Next, we
show the system evaluation results in Sections Bl Finally, Section [6] concludes
with planned future work.

2 Related Work

Several recent works have explored the smartphone usage and its correlation to
contexts. H. Falaki et al. suggest that smart phone service should be customized
due to the vast usage diversity among users [4]. M. Bohmer et al. find that app
usage is correlated to contexts such as time of the day and the user’s location
using the dataset collected through their app recommendation tool appazzar in
Android market [5] . T.M.T.Do et al. show two dependencies of app usage, i.e.
place and social context based on data collected from Nokia phones [6]. Most
recently, Ke Huang et al. proposed to use several contexts to predict app usage
and found that the app correlation is the most influential factor [7]. So far,
these mentioned researches are all based on the data collected from the smart
phones. In contrast, Q. Xu et al. reveal day-time app usage pattern and show
the app correlation through analysis based on a Tierl ISP’s dataset [§]. Instead
of focusing on the context-based data analysis, our work emphases on the design
of a complete system and the analysis of its effectiveness.

There is a rich body of literature regarding the adaptive user interface de-
sign. About twenty years ago, Andrew and Ben studied the split menus which
is a menu comprises both a static and an adaptive part with a line separating
them [9]. The adaptation was based on the selection frequency which could di-
rectly reflect the user’s preference. Leah and Joanna showed that adaptive user
interface is more beneficial in a small size screen than in a large size screen [10],
which strengthens our confidence in designing Nihao. Melanie Hartmann summa-
rized the challenges in designing adaptive user interface in his survey paper [3].
Recently, Santi. P. et al. have organized the outgoing call prediction result in
form of Intelligent Address Book where the predicted callee IDs are ranked based
on a computed score [I1], while our system foresees the apps that are likely to
be opened and organizes the app icons in a grid or list view.

Recently, several research groups have been focusing on the app recommen-
dation systems for smart phone users. Bo Yan et al. developed a collaborative
app recommendation system (AppJoy) considering the app usage history such as
frequency, duration and recency [12]. M. Bohmer et al. present Appazaar, which
is a context-aware recommender system [13]. In contrast to those works, our
system focuses on predicting which already installed apps to be opened next.

A Predictive Smartphone Application Launcher 297

3 Approach

If we had a good app launch prediction system, there are at least two usage
scenarios to leverage this kind of app prediction. One use case is to rank the
apps on launch pad based on the scores derived from the prediction model (i.e.
Figure[Tal). This use case falls into the category of intelligent user interface design
and focuses on fast app lookup. Another use case is to pre-load apps that are
likely to be launched into memory based on the prediction model [T4]. These two
use cases are different as the later focuses on launching the app quickly after the
user finds the app, while the first one helps the user finds the app quickly. In this
paper, we focus on the first use case, aiming to build an intelligent Ul to assist
app lookup. Thus, we propose a context-based app ranking method by leveraging
the context such as TimeOfDay, DayOfWeek, Location and LastUsedApp.

Predicted
Downloaded

Grid view

Search

Iphin

Dol
NubiNews 28R

WeatherBug WeatherBug

(a) Screenshotl (b) Screenshot2

Fig. 1. Nihao screenshots

3.1 Contextual Information

Based on the extensive data analysis result reported recently (see the related
work), many contextual information have been found correlated to the mobile
app usage in certain ways. Those contexts include time, the user’s location,
the correlation between apps and the social context etc. We believe that the
app usage pattern is much more complex and the user’s app usage behavior is
influenced by much richer context. By balancing the importance of the context
and the engineering effort, we chose the four aforementioned contexts.

First, TimeOfDay is defined as {morning(5am-1lam): 0; noon(llam-2pm):
1; afternoon(2pm-6pm): 2; dinner(6pm-9pm): 3; evening(9pm-5am): 4}. Actu-
ally, we originally proposed a variable HourOfDay which has 24 values. But we

298 C. Zhang et al.

changed it to the less fine-grain variable TimeOfDay because it required shorter
learning period and much less space for storing the historical data which is a
concern due to the limited disk storage in a smartphone. Then, we introduced a
variable DayOfWeek. For the same reason, we defined it as a binary variable with
0 representing the weekdays and 1 representing the weekends. Next, Location is
represented by location ID computed through our significant place algorithm
that is further explained in the next section. Finally, the correlation between
apps is considered. For the sake of simplicity, an app is treated only correlated
with the last used app (within a user interaction session, which is defined as
the time between the screen is turned on and off) which follows the order-one
Markov model. The value of the variable LastUsedApp is simply the string of
the app name.

3.2 Nihao Model

Based on the variables introduced, we construct a Bayesian Network for Nihao
(Figure [2) assuming that the app usage is dependent on the time of day, day
of week, the user’s location and which app was used before, where location is
dependent on both temporal variables. Every time the user opens Nihao, each
app is assigned a score calculated as the conditional probability of the app to be
opened according to the following equation,

P(A|D,L,T) « P(A|A") "
P(A)

and then the app icons are arranged in a grid view (optionally a list view) from
left to right and from top to bottom. When we actually calculate the scores, the
posterior probability of an app, P(A), is assumed to be equal for all apps.

All the probabilities were computed against the past three weeks’ historical
data to capture the most recent app usage behavior. However, what is the op-
timal value for this window size is still open and we will try to make this value
personalized and adaptive in the future.

Score(A) = P(A|D,L,T,A") =

(T)ime
OfDay

Fig. 2. Bayesian network model for Nihao

A Predictive Smartphone Application Launcher 299
4 System Design and Implementation

Nihao follows the client-server model. The client runs on a smartphone and is
responsible for providing the user interface, recording the app usage and the asso-
ciated contextual data. The server runs on remote PCs for storing the historical
data and conducting machine learning tasks such as learning new models. But,
please note that the client could work when the server is down since all the Ul
required statistics are cached locally. For the communication between the client
and the server, a customized protocol generated through Google ProtoBuf [15]
over http is used. Details are discussed in the following subsections.

4.1 Client

The client software contains several components including the Ul, a model man-
ager, a local database and a background service (Figure [)).

Foreground Ul

model update Model
(from server) Manager

pp Usage| |Screen
Logger Logger

Cellular || Wifi
Logger || Logger

Location Logger

Uploader Background
Setrvice

Fig. 3. Client software architecture

First, the major task of the Ul is to present the app icons. Following the tradi-
tion of Android phone, Nihao uses the grid view as the default configuration and
provides the list view as an option (Figure[Ial). Users may like to switch between
the grid view and the list view. Considering the code clarity and efficiency we
put both views in the same activity (term in Android) and play with the view’s
visibility instead of assigning views to different activities. Furthermore, Nihao
allows users to use popular static ranking methods i.e. alphabetical and new app
first ranking. For both methods, installed apps will be showed thus it is particu-
larly helpful when Nihao has not learned much at the beginning. In addition, the
search function is also implemented within Nihao. However we found that it was
seldom used by the subjects during the study which suggests that people prefer

300 C. Zhang et al.

to open apps by browsing instead of searching. Another function provided by
Nihao UI is the place check-in. As a location-ware system, this function allows
Nihao to learn place semantics opportunistically.

Second, as the name suggested, the model manager prepares the statistics
required by the model in local DB and computes the score for the apps. For
example, the model manager implements the significant place recognition algo-
rithm to produce the location ID. According to the Bayesian Network model
used, the statistics are organized in three local DB tables i.e. location, context
and correlation. Each record in location table represents a location with a unique
ID. context table maintains the statistics to calculate P(A|D, L,T) and correla-
tion table stores the data to compute P(A|A’).

Finally, let us discuss the background service. As the most important com-
ponent of Nihao, it further comprises several objects such as the cellular logger,
the WiFi logger, the app usage logger, the screen logger, the data uploader and
a local cache. The cellular logger and the WiF1i logger is used together to provide
the input of the significant place recognition algorithm such as the cell ID, the
connected WiFi AP MAC address and the list of nearby WiFi AP MAC ad-
dresses. The app usage logger is used to monitor the app usage i.e. listen on the
app open event. However, Android does not directly provide event-based APIs
for such a task. Fortunately, the APIs to find the top activity, the activity the
user is currently interacting with, is offered. So Nihao eventually generates app
open events itself by polling the top activity for every one second. The screen
logger is responsible for recording the screen on/off events which indicates the
start and the end of the phone usage sessions. Depends on whether it is the
first app used in a session, Nihao computes the scores for apps differently. App
ranking is only based on P(A|D, L, T) if no app is used so far within the session
while P(A|D,L,T) « P(A|A") is calculated if some apps has been opened. The
data uploader is responsible for uploading the data generated by the loggers
to the server. The uploading process is totally independent from the UI thread
since the data needed for Ul are stored in local DB in real time and at the same
time the data are put into the local cache. To save the battery and reduce the
3G/4G network traffic, the data are uploaded when the WiFi network is avail-
able and several records are batched into a single HT'TP POST when uploading.
In addition, considering the user privacy, all the sensitive data such as Android
ID, Wifi Mac address etc, are hashed.

4.2 Server

It is valid to ask why Nihao needs the server since the model required statistics
are stored locally on the client and the client could work even when the server is
down. Simply put, the server is used to preserve the app usage history for users and
run the complex machine learning algorithms. Even though Nihao currently uses
the fixed model for all users, more suitable model may exist for different users.
To find that out, based on the historical raw data on the server, we could keep
experimenting with the new models. When a better model is found, Nihao could
push the updated code and the statistics needed for the new model to the clients.

A Predictive Smartphone Application Launcher 301

Nihao server is implemented based on Play Framework [16] and MySQL database.
Instead of storing the data received in database directly, Nihao server stores the
data in daily files first. It is more efficient to do so thus the scalability of the server
is increased. In addition, for the purpose of storing the historical raw data, the
daily files are easier and more convenient to store and be moved around. Then,
a scheduled job is designed to read the data from the files and store them to
the database every 2:00AM in the morning. It is better to run various machine
learning algorithms against database since search is often involved and it could
benefit from the record indexing in the database.

4.3 Significant Place

Our significant place recognition method involves two steps. First, an automatic
algorithm is used to compute the place ID (or the location ID, we use them
interchangeably throughout the paper). Second, instead of guessing the semantic
meaning of the place, the check-in function is implemented as the part of the
Ul to allow the user to teach the system opportunistically. But be noted that
Nihao model is based on the place ID directly instead of the semantic label at
this time.

Recognition Algorithm. Nihao jointly uses the identifiers of cellular network
and WiF'i network to recognize the significant places by assuming that the most
in-door significant places have WiFi network. Cellular network is mainly used
to recognize outdoor places. In Nihao, a significant place is represented by a
tuple: (a set of cell IDs, a set of connected WiFi AP MAC addresses, a set of
nearby WiFi AP MAC addresses). The first element in the tuple is a set of
cell IDs instead of a single cell ID because a significant place may reside on the
boundary of the adjacent cells in the cellular network. For the similar reason, the
second element is also defined to be a set. The third element could be acquired
through the WiFi scan and it is naturally a set.

The recognition process follows a decision tree (Figure H). First of all, the
algorithm checks whether the WiFi network is connected. If it is connected, it
then tries to match a tuple in the local database and return the place ID. Here,
by match, we mean the current connected WiFi MAC address is contained in
the set of connected WiFi AP MAC addresses in an existing tuple. If the WiFi
network is not connected, the algorithm will check whether the WiF1i scan result
(a set of nearby AP MAC addresses) presents. The scan is conducted by the
WiFi logger and multiple consecutive scans are issued in the same scanning
session to find as much APs as possible. If the WiF1i scan result is none-empty,
the algorithm will again try to compare the current WiFi scan result(A) to the
the third variable of the tuples in DB (B). An existing place ID will be returned
and the WiFi scan result will be merged into the nearby APs set in the tuple if
there are at least two overlapped WiFi APs in (A) and (B). Otherwise, a new
record will be created and a new place ID will be returned. Finally, the cell ID
is used to match the record in a similar way if the WiFi scan result is empty.

302 C. Zhang et al.

[WiFi connected?

Has a record contains
the same connected
WiFi AP MAC
in local DB?

N

Has WiFi scan result?

Return the | linsert a new record
record ID | | with the connected

AP Mac, AP scan
result and cell ID in

Has a record contains
at least two scanned
WiFi AP MAC
In local DB?

Has a record
contains the same
cell ID?

DB; Return the
new record ID

A

Merge the AP scan
result; Return the
updated record ID

Insert a new record
with the AP scan

result and the cell
ID in DB; Return

Insert anew [|Return the

record with the|| record ID
cell ID in DB;

Return the

the new record ID || new record ID

Fig. 4. Decision tree for significant place recognition

After the six weeks’ filed study, the number of recognized places ranges be-
tween 4 and 60 for different users and the largest WiFi AP cluster contains 483
APs.

Place Check-In. To acquire the location semantics, we design the place check-
in function and the places include home, friend’s home, work place, school,
restaurant, shopping, gym, theater, outdoor and transportation related places.
When the user checks in a place, the semantic label is assigned to the current
place ID computed by the recognition algorithm and the place records with the
same label will be merged. Basically, the place check-in function is used to group
the places by their semantic meaning because for instance Nihao should predict
in the same way when a user in different restaurants no matter where they are
geographically.

4.4 Data Format and Protocol

Nihao uses Google ProtoBuf to manage the data format used to store and upload
the data. Listing [Il shows the .proto file which is used to define the structure of
the data and could be compiled to generate the code for serializing the data.

Listing 1. Nihao .proto file (1)

message Record {
enum RecordType {
APPUSAGE = 1:
SCREEN = 2;
WIFI = 3;

A Predictive Smartphone Application Launcher 303

CELLULAR = 4;
}

message AppUsage {
required string package name = 1;
}

message Screen {
required bool on off = 1;
}

message WiFi {

message Cellular {

required int64 timestamp = 1;
required RecordType type = 2;
optional AppUsage app usage = 3;

optional Screen screen = 4;
optional WiFi wifi = 5;
optional Cellular cellular = 6;

}

According to the message Record, four RecordTypes and their structure are de-
fined and the corespondent variables are designed to be optional. Thus, four
different loggers could share the same .proto file by using only the variable inter-
ests them. timestamp and type are two required variables since for each record
Nihao needs to know when it is generated and what the type is.

The Nihao client uploads the data through Http Post with the body being the
data serialized by ProtoBuf. To increase the data efficiency, we define message
RecordPool (Listing [2)) to upload the data in batch mode.

Listing 2. Nihao .proto file (2)

message RecordPool {
required int32 version number = 1;
required string android id hash = 2;
required string email hash = 3;
repeated Record records = 5;

5 Evaluation

We conducted a field study for six weeks with seven subjects, who are college
students and professionals. At the beginning of the study, we installed Nihao on
the participants’ Android phones. The first three weeks were the learning period
for Nihao, during which we asked the subjects to keep using their default device

304 C. Zhang et al.

Ul to launch apps while Nihao was running in the background, collecting app
usage data and related contextual data. In the following three weeks, we asked
the subjects to use Nihao to launch apps as much as possible.

5.1 App Usage

Figure B and Figure [0l show the app usage statistics Nihao collected and demon-
strate the usage diversity of the subjects. In both figures, for each user we sep-
arately show the usage of downloaded apps and built-in apps (e.g. phone, mes-
saging, browser etc.) since we wanted to understand how much the downloaded
apps, as the primary target of Nihao, were used. As Figure[B] shows, Userl used

@@ Built-in apps |
I Downloaded apps

i i i i i i
User2 User3 User4 User5 User6 User7
Users

Fig. 5. Number of used apps for seven users

1500 3 built-in apps H :
1400/ HEE downloaded apps I

Number
©
3
3

i i i i i
GUserl User2 User3 User4 User5 User6 User7
Users

Fig. 6. App launch count for seven users

A Predictive Smartphone Application Launcher 305

56 apps (the most) during the test period while User4 just used 17 apps (the
least). Users used 33 apps on average. Considering the ratio of the downloaded
apps to the built-in apps, Userl is 3.0 (highest) while Userd is 0.55 (lowest),
which indicates that Userl had much broader app usage behavior than User4.
In Figure Bl User7 launched apps for more than 1400 times among which about
3/4 times were for built-in apps. For User5, although the total launches were
much less than that of User7, he mostly used downloaded apps.

5.2 Launched App Position

First, we evaluated the model accuracy of Nihao using the metric launched app
position, which is the icon position in the grid view when the user clicks it. The
position starts with 1 and increases from left to right and top to bottom fashion.
Currently we show 4 app icons in each row of the grid view. We compared Nihao
with other predictors, such as frequency based predictor, app correlation based
predictor, time based predictor and location based predictor. For Nihao, launched
app position was recorded directly through Nihao UI. For other predictors, this
metric was calculated based on the dataset collected through the six weeks user
study. Simulating the real usage scenario, we used first three week’s data as
training dataset to predict the next three weeks’ app launch. In addition, we
progressively added the previous app launch records to the training dataset
when predicting the next one.

o
o

Percentage
o
in

Nihao

o o
W B
| \

Frequency only
App correlation only []
Time only

Location only

°
N

°
[

[1> ¢ m & @
> o B & °

o
o

3 2 5 6 7 8 5 10
App position in grid view

-
N

Fig. 7. CDF of launched app position (seven users combined)

As Figure [shows, 76% of the app launches were within first four posi-
tions (first row in the grid view) for Nihao while the number is only 58% for
the frequency based predictor. Other predictors’ performance were in between.

306 C. Zhang et al.

This result validates our hypothesis that app usage is correlated with the contex-
tual information such as time, location and last used apps and a context-based
predictor can be effective. However, Nihao model is not as accurate across all
users. For Userl, Nihao is the most accurate predictor (Figure[8]), but for User3,
Nihao does not obviously predict better than other predictors (Figure [@). The
reason could be found by analyzing the most used apps of individual users.
Take User3 for example, top five most used apps took up 81% of the total app
launches (Figure [[I]) while the number was just 50% for Userl (Figure [I0). In
other words, User3 used top five apps for the most of times, thus the frequency-
based predictor worked fairly good and that user can hardly take advantage of
Nihao prediction. On the other hand, Userl had much broader app usage pattern
and he benefited a lot from Nihao model. As a future work, we plan to develop
a customized prediction model that uses different predictors depending on the
user’s app usage patterns.

1.0

0.9r

Percentage
o o o
o o S

o
IS
T

o

W
T
)

Nihao

Frequency only
App correlation only []
Time only

Location only

°
N

°
[

[1> ¢ m & @
> o B & °

o
o

3 2 5 6 7 8 5 10
App position in grid view

-
N

Fig. 8. CDF of launched app position for individual users (Userl)

5.3 App Lookup Time

Next, we show the effectiveness of Nihao by analyzing how quick it could help its
users to locate apps. We compare app lookup time using Nihao with the lookup
time using the default device UL. We define the former as the time between when
Nihao UI was showed and the first app was launched, and define the later as the
time between when home screen was showed and the first app was launched. The
default UI app lookup time is further separated into two variables, the lookup
time for built-in apps and the lookup time for downloaded apps. As Figure
illustrated, the built-in apps in general had the shortest lookup time since apps
like phone, messaging and browser were usually launched through quick launch
bar at the bottom of the home screen, thus requiring little lookup time. But
our focus is to compare the lookup time through Nihao with the time needed
to launch downloaded apps through the default UL In both cases, for 35% of

A Predictive Smartphone Application Launcher 307

o
o

Percentage
o
o

°
IS

e Nihao

¢ Frequency only

= App correlation only ||

o Time only

A Location only

0.0 i i i H n n n n
1 2 3 4 5 6 7 8 9 10

App position in grid view

> o B & e

Fig. 9. CDF of launched app position for individual users (User3)

Percentage

top apps

Fig. 10. Top apps launch count for individual users (Userl)

times the apps were launched within 2.5 seconds. However, for about 70% of
times, apps launched via Nihao required at most five seconds while only 60% of
times required at most five seconds to launch a downloaded app. On average,
lookup time for Nihao is 4.94s while the time for finding the downloaded apps
through default launcher Ul is 5.51s. Comparing to the default UI with high
user familiarity, even the benefit in terms of app lookup time is not significant
in general, (but it could be very significant for some users as Figure [[3] shows),
it is already a great achievement for Nihao to outperform within such a short
period of learning time (three weeks). In addition, Nihao could potentially help
save time required to manage apps (i.e. arranging app icons on home screen and
assigning apps to different folders).

308 C. Zhang et al.

Percentage

top apps

Fig. 11. Top apps launch count for individual users (User3)

1.0 T T T T T T T

0.9r

0.7F

0.6

0.5F

Percentage

0.3F

0.2

0.1F

> E & e
> e e

Default Ul, all apps
Nihao

Default Ul, built-in apps
Default Ul, downloaded apps

0.0

6

8

T
10

T
12

T
14

App lookup time (s)

Fig.12. CDF of app lookup time

5.4 Correlation between Launched App Position and App Lookup
Time

After analyzing the launched app position and the app lookup time, it is interest-
ing to see the correlation between them. In Figure [[5] the z-axis represents the
row number in a grid view and the y-axis represents the average time for finding
the apps in a particular row with an error bar showing the standard deviation.
As expected, the app lookup time is monotonically increasing as the row number
in grid view increases which suggests that the more accurate prediction yields
shorter app lookup time and it also proves that our eyes usually scan for apps
row by row from the top. To further understand the correlation between the
individual app position and the app lookup time, we show Figure with the

A Predictive Smartphone Application Launcher 309

Percentage
o o
o >

e
>
T

°
w

e Default U, all apps
Nihao

m Default Ul, built-in apps |
a Default Ul, downloaded apps

°
N

o
P
'S

ADI‘.
*

°
o

I L
2 4 12 14

6 8 10
App lookup time (s)

Fig. 13. App lookup time for individual users (User3)

1.0

0.91

°
3

°
o

Percentage
o o

B u

:

°
w

Default Ul, all apps
Nihao

m Default Ul, built-in apps

4 Default Ul, downloaded apps

o
N

> e e
*

°
-

°
o

é 8 1‘0 12 14
App lookup time (s)

o
ok
IS

Fig. 14. App lookup time for individual users (User5)

x-axis representing the app icon position number in a grid view (This number
increases with the position from left to right and from top to bottom). and the
y-axis representing the average time for finding the app in that position. Unfor-
tunately, we failed to find similar pattern as Figure[I3l This result suggests that
the users may start scanning the apps from left, right or even in the middle.

5.5 UI Predictability

In order to understand how dynamic/predictable the Nihao Ul is (we assume
that more dynamic UI yields less predictable UI), we introduce a metric UI
difference between Nihao launches that is calculated as the number of positions
on which the app changed between Nihao launches. For example, the difference

310 C. Zhang et al.

N
=3

[
N s O ®
T T T T

Lookup time (s)
=
=

I I 1 I
0 1 2 3 4 5 6
Row in grid view

Fig. 15. Correlation between launched app position(in term of row in grid view) and
lookup time

20

18r

16

14

10r

Lookup time (s)

0 2 4 6 6 10 12 14 16 18 20 22 24
App position in grid view (from top left to bottom right)

Fig. 16. Correlation between launched app position and lookup time

between (A B C) and (A C B) is two. Then, we use this metric to compare
Nihao with other predictors (same as the predictors being compared with when
we analyze the launched app position). As Figure [shows, for about 80% of
the times, the number of the changed apps was at most five for the frequency
based predictor, while for less than 30% of the times Nihao was as dynamic.
In other words, Nihao UI was significantly more dynamic than the UI of the
frequency based predictor. The app correlation only based predictor produced
quite dynamic UI and the curve was fairly close to the curve of Nihao which
means that the app correlation is the primary contributor to the highly dynamic
UTI of Nihao. The time only based predictor and the location only based predictor
produce much less dynamic UI than Nihao, though its UI was still more dynamic
than the frequency based predictor.

A Predictive Smartphone Application Launcher 311

To understand whether the larger Ul difference will produce longer app lookup
time, we plotted Figure [[8 with z-axis representing the number of the UI differ-
ence between the Nihao launches and y-axis representing the average app lookup
time given the number of Ul difference with the error bar showing the standard
deviation. The figure shows that the larger Ul difference does not necessarily
require longer app lookup time. At the same time, we already know that the app
lookup time is highly correlated to the app position (Figure[IH). Thus, it allows
us to conclude that the prediction accuracy is the most important factor than
the Ul predictability in designing such a system.

1.0

0.8

°
o
T

Percentage

1
>

e Nihao

& Frequency only
021 = App correlation only ||
¢ Time only
A

Location only

o m e 0

A

0.0

S S S N s st s s s s
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Ul difference between Nihao launches

Fig.17. CDF of Ul difference between Nihao launches

5.6 User Survey

Finally, we conducted a user survey to better understand Nihao qualitatively.
We first asked questions about how the users were satisfied with the predicted
apps. Given the scale of one to seven, the average score is 6.3 which indicates
that the users were quite satisfied. Furthermore, five out of seven users would
like to keep using Nihao regularly after the test since they had become familiar
with Nihao and chose it as their personal app management assistant. The other
two users mainly used their phones for calling and texting thus Nihao was not
as helpful to them. Next, we obtained user opinions on Nihao’s Ul design. First,
six out of seven users preferred Nihao to be configured as a widget in one of the
homescreens instead of a standalone app since one more click could be saved in
the form of a widget. Second, all users preferred the grid view to the list view.
Finally, by considering two typical usage scenarios for Nihao: 1) to find a specific
app in mind quickly, 2) to browse and open some interesting apps to kill time),
five out of seven users chose the first option which suggested that Nihao was
largely treated as a serious app lookup tool instead of a time killer.

312 C. Zhang et al.

Lookup time (s)

Ul difference between Nihao launches

Fig. 18. Correlation between Ul difference and app lookup time

6 Conclusion and the Future Work

To find apps quickly on a smartphone with the overwhelmingly large app base, a
more efficient and intelligent app launcher is necessary. Nihao, as a time-aware,
location-aware, app correlation-aware and personalized app launcher, demon-
strates it effectiveness in term of app lookup time and management time. Data
analysis result shows that looking up downloaded apps using Nihao yields less
time than using the default launcher on average. Then through the user sur-
vey, we found that majority of the users thought Nihao could help save the app
management time by ranking the apps automatically.

Then we validated that users’ app usage pattern are indeed context dependent
by showing that Nihao predicts better than the frequency-based predictor. Thus,
exploring the correlation between app usage and the richer context is one of our
future work.

Finally, we found that the larger UI change does not necessarily yield longer
app lookup time as the app lookup time highly depends on the app icon position
on screen, which suggests the prediction accuracy is the most important factor
in designing such a system. Thus, in the future, we plan to focus on improving
the prediction accuracy by experimenting with different models leveraging richer
context and testing the system with more users of different backgrounds.

Acknowledgment. This material is based upon work supported partly by the
National Science Foundation under Grant No. 1040725 and No. 0917112. Any
opinions, ndings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reect the views of the National
Science Foundation.

A Predictive Smartphone Application Launcher 313

References

1. androlib, http://www.androlib.com

2. Yelp, http://www.yelp.com

3. Hartmann, M.: Challenges in developing user-adaptive intelligent user interfaces.
In: Proc. LWA 2009 (2009)

4. Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin,
D.: Diversity in smartphone usage. In: Proc. ACM MobiSys 2010, San Francisco,
CA (June 2010)

5. Bohmer, M., et al.: Falling asleep with angry birds, facebook and kindle - a large
scale study on mobile application usage, Stockholm, Sweden (August 2011)

6. Do, T.M.T., Blom, J., Gatica-Perez, D.: Smartphone usage in the wild: a large-scale
analysis of applications and context, Alicante, Spain (November 2011)

7. Huang, K., Ma, X., Zhang, C., Chen, G.: Predicting mobile application usage using
contextual information. In: Proc. ACM Sagaware 2012 (2012)

8. Xu, Q., et al.: Identifying diverse usage behaviors of smartphone apps, Berlin,
Germany (November 2011)

9. Sears, A., Shneiderman, B.: Split menus: effectively using selection frequency to
organize menus. ACM Trans. Comput. Hum. Interact. (1994)

10. Findlater, L., McGrenere, J.: Impact of screen size on performance, awareness, and
user satisfaction with adaptive graphical user interfaces. In: Proc. SIGCHI 2008
(2008)

11. Phithakkitnukoon, S., Dantu, R., Claxton, R., Eagle, N.: Behavior-based adap-
tive call predictor. ACM Transactions on Autonomous and Adaptive Systems 6(3)
(September 2011)

12. Yan, B., Chen, G.: Appjoy: Personalized mobile application discovery. In: Proc.
ACM MobiSys 2011 (2011)

13. Bohmer, M., et al.: Exploring the design space of context-aware recommender
systems that suggest mobile applications. In: Proc. CARS 2010 (2010)

14. Yan, T., et al.: Fast app launching for mobile devices using predictive user context.
In: Proc. ACM MobiSys 2012 (2012)

15. Google’s data interchange format, http://code.google.com/p/protobuf/

16. Play framework, http://www.playframework.org/

http://www.androlib.com
http://www.yelp.com
http://code.google.com/p/protobuf/
http://www.playframework.org/

	Nihao: A Predictive Smartphone Application Launcher
	Introduction
	Related Work
	Approach
	Contextual Information
	Nihao Model

	System Design and Implementation
	Client
	Server
	Significant Place
	Data Format and Protocol

	Evaluation
	App Usage
	Launched App Position
	App Lookup Time
	Correlation between Launched App Position and App Lookup Time
	UI Predictability
	User Survey

	Conclusion and the Future Work
	References

