
V.V. Das and J. Stephen (Eds.): CNC 2012, LNICST 108, pp. 383–386, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

An Adaptive Earley Algorithm for LTAG Based Parsing

Sharafudheen K.A. and Rahul C.

MES College of Engineering, Kuttippuram, Kerala, India

Abstract. In traditional parsing methods Earley parsing is one of the best par
ser implemented for both NLP and programming language requirements. Tree
Adjoining Grammar is powerful than traditional CFG and suitable to represent
complex structure of natural languages. An improved version LTAG has appro-
priate generative capacity and a strong linguistic foundation. Here we introduce
a new algorithm that simply adopts Earley method in LTAG which results
combined advantages of TAG and Earley Parsing.

Keywords: Adaptive NLP Parser, Tree Adjunction Grammar, LTAG, Earley
Algorithm for TAG.

1 Introduction

Tree Adjoining Grammars are somewhat similar to context-free grammars, but the
elementary unit of rewriting is the tree rather than the symbol. Whereas context-free
grammars have rules for rewriting symbols as strings of other symbols, tree-adjoining
grammars have rules for rewriting the nodes of trees as other trees.

TAG has more generative capacity than CFG. For example it can be shown that
L3={anbncn} is a context free language, but L4={anbncndn} is not context free. TAG can
generate L4, so it is more powerful than CFG. So TAG is a mildly context sensitive
language. On the other hand L5={anbncndnen} is not a Tree Adjoining language, but it
is context sensitive. So it follows that L(CFG) < L(TAG) < L(CSG).

Definition 1(Tree Adjoining Grammar): A TAG is a 5-tuple G = (VN, VT,S,I,A)
where VN is a finite set of non-terminal symbols, VT is a finite set of terminals,
S is a distinguished nonterminal, I is a finite set of trees called initial trees
and A is a finite set of trees called auxiliary trees. The trees in I U A are called
elementary trees.

2 LTAG and Properties of LTAG

In LTAG, each word is associated with a set of elementary trees. Each elementary
tree represents a possible tree structure for the word. An elementary tree may have
more than one lexical item. There are two kinds of elementary trees, initial trees and
auxiliary trees. Elementary trees can be combined through two operations,
substitution and adjunction. Operations are substitution and adjunction. Former is
used to attach an initial tree, and later is used to attach an auxiliary tree.

384 K.A. Sharafudheen and C. Rahul

The key Properties of LTAG are

• Extended Domain Locality

• Factoring Recursion from the domain of Dependencies (FRD), thus making all
dependencies local (Joshi and Schabes, 1997 [5]).

3 Extending Dotted Symbols and Dotted Tree Concept

Use of dots in LTAG is basically same as that proposed by Earley (1970) for his
algorithm for CFG. We mimic the same idea here. Dot on left side of a non-terminal
indicates that the tree has not been explored yet. Right side dot indicates that all its
children are already explored.

Adjunction builds a new tree from an auxiliary tree β (with root/foot node X) and a
tree α (with internal node X). The sub-tree at internal node X in α is excised and
replaced by β; the excised sub-tree is then attached to the foot node of β.

The most common usage for substitutions on initial trees, but substitution may also
be done at frontier nodes of auxiliary and derived trees. Substitution takes place on
non-terminal nodes of the frontier of a tree (usually an initial tree). The node marked
for substitution is replaced by the tree to be substituted.

4 Proposed Algorithm

The algorithm uses two basic data structures: state and states set.
Definition 2: A state s is defined as a 5-tuple, [a, cur_it, pos, parent, lchild where a: is
the name of the dotted tree, cur_it: is the address or element of the dot in the tree a,
pos: is the position of the dot; parent: is the parent element of the cur_it; For start
node it is ф, lchild: is the left child of the cur_it; For leaf node it is ф.

A state set S is defined as a set of states. The states sets will be indexed by an
integer: Si with i є N. The presence of any state in states set i will mean that the input
string a1...ai has been recognized. Algorithm for state set creation is

Let G be an LTAG,
Let a1…anbe the input string,
/* Push initial state (α0,s’,L,ф,S) to stateset 0
ENQUEUE(α0,s’,L,ф,S) {Dummy}stateset 0
For(i=1 to LENGTH(sentence) do
 For each state in stateset i do
 If (incomplete (sentence)) and any Operation is
possible
 PREDICTOR(state)
 If (incomplete (sentence)) and any Operation is
not possible
 SCANNER(state)
 Else
 COMPLETOR(state)
 End

 An Adaptive Earley Algorithm for LTAG Based Parsing 385

 End
End

Algorithm Predictor
For each state cur_it as root in stateset(i) and for

all GRAMMAR_RULE

 Case 1: Dot is on the left side of a NT

 If NT is not a leaf

ENQUEUE(tree,cur_it,L,P,lc) {Predictor}

/*Do Adjunction Operation

/*Add all cur_it rooted element to stateset(i)

 Move dot to immediate left child

 Else

ENQUEUE(tree,cur_it,L,P,lc) {Predictor}
/*Substitution Operation

 End

 Case 2: Dot is on the left side of a Terminal

ENQUEUE(tree,cur_it,R,P,ф) {Predictor}
/*Move dot to right of the terminal

End

Algorithm Scanner
/*Increment stateset index
For word (j) in input sentence

Find elementary tree for the word
ENQUEUE(tree,root,L,ф,lc) {Scanner}

End
Algorithm Completer
For each state that all left tree and all child

explored
Case 1: Dot is on the right side of a NT

 If a sibling exist
ENQUEUE(tree,sibl,L,P,nlc) {Completer}
/*Move dot to left of immediate sibling

 Else
ENQUEUE(tree,P,R,GP,cur_it) {Completer}
/*Move dot to right of the parent

 End
 Case 2: If Dot is on right of a Terminal

ENQUEUE(tree,root,R,GP,cur_it) {Completer)
End

386 K.A. Sharafudheen and C. Rahul

4.1 Complexity

The basic idea and method of the proposed algorithm is from the Earley Parsing
Technique and the average complexity is of the proposed work is not changed than
Earley Parsing even after change. On analysing it shows O(|G|n3) in average behavior
in time and O(|G|n) in space where |G| is the length of input grammar.

5 Conclusion

We design a new Earley parser based algorithm for LTAG. It works in lesser
complexity than any of the existing TAG parser. It is easy to implement and complex
data structure of existing Earley algorithm for TAG has modified to a simple one. It
combines the advantages of both TAG and Earley parsing. Worst case behavior is also
adaptable.

References

1. Aho, A.V., Sethi, R., Ullman: Compilers: principles, techniques, and tools. Addison-Wesley
(2002)

2. Shen, L., Joshi, A.K.: Statitical LTAG Parsing. Ph.D. thesis, University of Pennsylvania
(2006)

3. Joshi, A.K., Schabes, Y.: Tree-adjoining grammars. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, vol. 3, pp. 69–124. Springer (1997)

4. McDonald, R., Crammer, K., Pereira, F.: Online large-margin training of dependency pars-
ers. In: Proceedings of the 43rd Annual Meeting of the Association for Computational Lin-
guistics, ACL (2005)

5. Shen, L., Joshi, A.K.: An SVM based voting algorithm with application to parse reranking.
In: Proceedings of the 7th Conference on Computational Natural Language Learning (2003)

6. Frost, R., Hafiz, R., Callaghan: Modular and Efficient Top-Down Parsingfor Ambiguous
Left-Recursive Grammars. In: ACL-SIGPARSE, 10th International Workshop on Parsing
Technologies (IWPT), pp. 109–120 (2007)

7. Chiang, D.: Statistical Parsing with an Automatically-Extracted Tree Adjoining Grammar.
In: Proceedings of the 38th Annual Meeting of the Association for Computational Linguis-
tics, ACL (2000)

	An Adaptive Earley Algorithm for LTAG Based Parsing
	Introduction
	LTAG and Properties of LTAG
	Extending Dotted Symbols and Dotted Tree Concept
	Proposed Algorithm
	Complexity

	Conclusion
	References

