
V.V. Das and J. Stephen (Eds.): CNC 2012, LNICST 108, pp. 363–376, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Specification – Based Approach for Implementing
Atomic Read/ Write Shared Memory in Mobile Ad Hoc

Networks Using Fuzzy Logic

Sherif El-etriby1 and Reham Shihata2

1 Faculty of Computers and Information,
Computer Science Dept., Menoufiya University, Egypt
sherif.el-etriby@ci.menofia.edu.eg

2 Faculty of Science, Math's. Dept., Menoufiya University, Egypt
rehamteacher@yahoo.com

Abstract. In this paper we propose an efficient fuzzy logic based solution for
the specification and performance evaluation depending on generation of fuzzy
rules. A new property matching mechanism is defined. The requirement with
attributes is chandelled in the following manner: the basic functionality is
ensured, matching properties names according to the classical reading/writing
strategy. The preliminary solutions are selected and hierarchies according to the
degree of attribute matching. Consequently, we describe the basic principles of
the proposed solutions and illustrate them for implementing atomic read write
shared memory in mobile ad hoc network. This is done by fuzzy logic, which is
considered a clear solution to illustrate the results of this application in
distributed systems. The results are approximate but also, they are very good
and consistent with the nature of this application.

Keywords: Specification, Distributed Systems, Mobile Ad Hoc Network,
Fuzzy Logic.

1 Introduction

A software system is viewed as a set of components that are connected to each other
through connectors. A software component is an implementation of some
functionality, available under the condition of a certain contract, independently
deployable and subject to composition. In the specification approach, each component
has a set of logical points of interaction with its environment. The logic of a
component composition (the semantic part) is enforced through the checking of
component contracts. Components may be simple or composed [1] [11]. A simple
component is the basic unit of composition that is responsible for certain behavior.
Composed components introduce a grouping mechanism to create higher abstractions
and may have several inputs and outputs. Components are specified by means of their
provided and required properties. Properties in this specification approach are facts
known about the component. A property is a name from a domain vocabulary set and
may have refining sub-properties (which are also properties) or refining attributes that

364 S. El-etriby and R. Shihata

are typed values [1]. The component contracts specify the services provided by the
component and their characteristics on one side and the obligations of client and
environment components on the other side. The provided services and their quality
depend on the services offered by other parties, being subject to a contract. A
component assembly is valid if it provides all individual components are respected. A
contract for a component is respected if all its required properties have found a match.
The criterion for a semantically correct component assembly is matching all required
properties with provided properties on every flow in the system [11]. In this
specification approach, it is not necessary that a requirement of a component is
matched by a component directly connected to it. It is sufficient that requirements are
matched by some components that are presented on the flow connected to the logical
point; these requirements are able to propagate.

2 Fuzzy Attributes

A property consists of a name describing functionality and attributes that are either
type values or fuzzy terms. The names used for the properties and for the attributes
are established through a domain-specific vocabulary[2][11]. Such a restriction is
necessary because a totally free-text specification makes the retrieval difficult,
producing false- positive or false-negative matching due to the use of a non-standard
terminology[2][11]. In this work, the domain specific vocabulary must also describe
the domains of the fuzzy attributes (linguistic variables) for each property as well as
the membership functions for the fuzzy terms. The membership functions for all
linguistic variables are considered of triangular shape as shown in Fig.1.

For each linguistic variable, first the number and the names of the terms of its
domain must be declared, and after that the values of the parameters a1, a2… an must
be specified.

Fig. 1. The Shape of the Membership Functions

3 Implementing Atomic Read/Write Shared Memory

In this paper the Geoquorum approach has presented for implementing atomic
read/write shared memory in mobile ad hoc networks. This approach is based on

D
eg

re
e

m
em

be
r-

sh
ip

 a1 a2 a3 an am

Term_n Term 2Term 1

Domain

. . .

Specification – Based Approach for Implementing Atomic Read/ Write Shared Memory 365

associating abstract atomic objects with certain geographic locations. It is assumed
that the existence of Focal Points, geographic areas that are normally "populated" by
mobile nodes. For example: a focal point may be a road Junction, a scenic observation
point. Mobile nodes that happen to populate a focal point participate in implementing
a shared atomic object, using a replicated state machine approach. These objects,
which are called focal point objects, are prone to occasional failures when the
corresponding geographic areas are depopulated [3]. The Geoquorum algorithm uses
the fault-prone focal point objects to implement atomic read/write operations on a
fault-tolerant virtual shared object. The Geoquorum algorithm uses a quorum- based
strategy in which each quorum consists of a set of focal point objects. The quorums
are used to maintain the consistency of the shared memory and to tolerate limited
failures of the focal point objects, which may be caused by depopulation of the
corresponding geographic areas. The mechanism for changing the set of quorums has
presented, thus improving efficiency. in general, the new Geoquorum algorithm
efficiently implements read/write operations in a highly dynamic, mobile network. In
this study the basic idea for the proposed approach is an ad hoc network uses no pre-
existing infrastructure, unlike cellular networks that depend on fixed, wired base
stations. Instead, the network is formed by the mobile nodes themselves, which co-
operate to route communication from sources to destinations. Ad hoc communication
networks are by nature, highly dynamic. Mobile nodes are often small devices with
limited energy that spontaneously join and leave the network. As a mobile node
moves, the set of neighbors with which at can directly communicate may change
completely. The nature of ad hoc networks makes it challenging to solve the standard
problems encountered in mobile computing, such as location management using
classical tools. The difficulties arise from the lack of a fixed infrastructure to serve as
the backbone of the network [3] [4]. Atomic memory is a basic service that facilitates
the implementation of many higher level algorithms. For example: one might
construct a location service by requiring each mobile node to periodically write its
current location to the memory. Alternatively, a shared memory could be used to
collect real – time statistics, for example: recording the number of people in a
building here, a new algorithm for atomic multi writes/multi- reads memory in mobile
ad hoc networks.

The problem of implementing atomic read/write memory is explained as we define
a static system model, the focal point object model that associates abstract objects
with certain fixed geographic locales. The mobile nodes implement this model using a
replicated state machine approach [3] [4]. In this way, the dynamic nature of the ad
hoc network is masked by a static model. Moreover, it should be noted that this
approach can be applied to any dynamic network that has a geographic basis. The
implementation of the focal point object model depends on a set of physical regions,
known as focal points.The mobile nodes within a focal point cooperate to simulate a
single virtual object, known as a focal point object. Each focal point supports a local
broadcast service, LBcast which provides reliable, totally ordered broadcast. This
service allows each node in the focal point to communicate reliably with every other
node in the focal point. The focal broadcast service is used to implement a type of
replicated state machine, one that tolerates joins and leaves of mobile nodes. If a focal

366 S. El-etriby and R. Shihata

point becomes depopulated, then the associated focal point object fails [4]. (Note that
it doesn't matter how a focal point becomes depopulated, be it as a result of mobile
nodes failing, leaving the area, going to sleep. etc. Any depopulation results in the
focal point failing). The Geoquorum algorithm implements an atomic read/write
memory algorithm on top of the geographic abstraction, that is, on top of the focal
point object model. Nodes implementing the atomic memory use a Geocast service to
communicate with the focal point objects. In order to achieve fault tolerance and
availability, the algorithm replicates the read/write shared memory at a number of
focal point objects. In order to maintain consistency, accessing the shared memory
requires updating certain sets of focal points known as quorums.

An important aspect of our approach is that the members of our quorums are focal
point objects, not mobile nodes [3] [4]. The algorithm uses two sets of quorums (I)
get-quorums (II) put- quorums with property that every get-quorum intersects every
put-quorum. There is no requirement that put-quorums intersect other put-quorums, or
get-quorums intersect other get-quorums. The Put/Get quorums implementing atomic
read / write shared memory in mobile ad hoc networks shown in Fig. 2.

The use of quorums allows the algorithm to tolerate the failure of a limited number
of focal point objects. Our algorithm uses a Global Position System (GPS) time
service, allowing it to process write operations using a single phase, prior single-
phase write algorithm made other strong assumptions, for example: relying either on
synchrony or single writers [3][4]. This algorithm guarantees that all read operations
complete within two phases, but allows for some reads to be completed using a single
phase.

The atomic memory algorithm flags the completion of a previous read or write
operation to avoid using additional phases, and propagates this information to various
focal paint objects[3][4]. As far as we know, this is an improvement on previous
quorum based algorithms. For performance reasons, at different times it may be
desirable to use different times it may be desirable to use different sets of get quorums
and put-quorums.

Fig. 2. Put/Get quorums implementing atomic read / write shared memory in mobile ad hoc
networks

Specification – Based Approach for Implementing Atomic Read/ Write Shared Memory 367

4 The Specification of the Geoquorum Approach Using Fuzzy
Logic

A component repository contains several implementations of components that have
the functionality of the application, specified with the provided property
reading/writing in mobile ad hoc networks. Let us considered two different
components, C1 and C2, specified as follows:

Component C1:
 Property reading / writing with attributes
Read/write_ACK_rate = Crisp(0.2)
Read/write_ACK_rate = Crisp(0.4)
Occurrence = fuzzy (connect, about right, Almost no–connect)
Component C2:
 Property reading / writing with attributes
Read/write_ACK_rate = Crisp(0.6)
Read/write_ACK_rate = Crisp(0.8)
Occurrence = fuzzy (connect, about right, Almost no connect)

Each of these attributes is defined as a linguistic variable with these terms as follows:

Domain(read/write_ACK_status)={ACK_response,no change is needed,Almost no
response}
Domain(occurrence)= {connect, about right, almost no connect}

For each linguistic variable set of the parameters a1, a2, a3 defining the shape of the
membership functions are defined. In our application, in case of the attribute
reading/writing, these values are (a1= 0.2), (a2= 0.4), (a3 = 0.6), (a4= 0.8), and random
values are (a5 = 0.1), (a6 = 0.3).It is important to note that a linguistic variable that
characterizes an attribute can have different meanings in the context of different
properties. The domain and the shape of a linguistic variable can be redefined in the
context of different properties.

4.1 Generation of Fuzzy Rules

A new property matching mechanism is defined. In general, a requirement as:
Requirement property P with attributes A1 = V1 and A2 = V2 and An = Vn is
handled in the following manner: First, the basic functionality is ensured, matching
properties names according to the classical reading/writing strategy. Usually several
solutions result from this first step. Second, the preliminary solutions are selected and
hierarchies according to the degree of attribute matching [5] [6] [11]. This is done by
fuzzy logic. The given requirement is translated into the corresponding rule:

If A1= V1 and A2 = V2 and … An = Vn then decision = select

The generation of the fuzzy rules is done automatically starting from the
requirements. Very often, the required attributes are not values, but rather are required
to be at least (or at most) a given value, A> = V or A< =V. In general, a requirement
containing the attribute expression A> =V will be translated into a set of I rules, for
all Vi => V: If A= Vi then decision = select

368 S. El-etriby and R. Shihata

4.2 Extension of the Fuzzy Rules

Several rules are generated from one requirement. In order to relax the selection, it is
considered a match even if one of the linguistic variables in the premises matches
only a neighbor of the requested value (the predecessor or the successor) [5] [6] [11].
In this case the decision of selection is a weak one. In the case that more than one
linguistic variable in the premise matches only neighbor values (while the rest match
the requested fuzzy terms); the decision is a weak reject. In the extreme case that all
linguistic variables in the premises match neighbor values, the decision is a weak
reject [5] [7]. In all the other cases, the decision is a strong reject. For example, in the
case of a requirement containing two attributes, A1= V1 and A2=V2, the complete set
of generated rules is [7] [8]:

The directly generated rule is:

If A1=V1 and A2=V2 then decision=strong_ select

The rules generated if one of the linguistic variables in the premises matches only a

neighbor of the requested value are:

If A1 = pred (V1) and A2=V2 then decision = weak _ select

If A1 = succ (V1) and A2= V2 then decision =weak _select

If A1 = V1 and A2 = pred (V2) then decision = weak _ select

If A1 = V1 and A2 = succ (V2) then decision =weak _select

In this case there are a maximum number of four generated rules for instance. If
neither V1 nor V2 are extreme values of their domains, if a value is the first value in
the domain it has no predecessor, if it is the last value in the domain it has no
successor. The rules generated if more than one of the linguistic variables in the
premises matches only a neighbor of the requested value are (maximum 4 rules):

If A1= pred (V1) and A2 = pred (V2) then decision =weak_ reject

If A1= succ (V1) and A2 = pred (V2) then decision =weak_ reject

If A1= pred (V1) and A2 = succ (V2) then decision =weak_ reject
If A1= succ (V1) and A2 = succ (V2) then decision =weak_ reject

For all the rest of possible combinations of values of A1and A2 the decision is strong-reject
[11[14] [15].

4.3 Specifying the Application Using Fuzzy Rules

Let the rules generated for one different neighbor are:

[R1]If read/ write_ Ack_ status = Almost_ no response and occurrence = about
right then decision = weak_ select.

[R2]If read/ write_ Ack_ status = Ack_ response and occurrence = about right
then decision = weak_ select.

[R3]If read/ write_ Ack_ status = Ack_ response and occurrence = Almost no_
connect then decision = weak_ select.

Specification – Based Approach for Implementing Atomic Read/ Write Shared Memory 369

[R4]If read/ write_ Ack_ status = no change need and occurrence = connect then
decision = weak_ select

The rules generated for two different neighbors are:

[R5] If read/write_Ack_status=Almost_no response and occurrence = almost no-
connect then decision = weak_reject.

[R6] If read/write_Ack_status=Ack_response and occurrence = almost
no_connect then decision = weak_ reject.

[R7] If read/write_Ack_status=Almost no response and occurrence = connect
then decision =weak_reject.

[R8] If read/write_Ack_status=Ack_response and occurrence = connect then
decision = strong_select.

The method has been implemented using java programming, the code is consists of
four phases: Analysis phase, Specification phase, Design phase, and Test phase. This
paper proposes an efficient fuzzy logic based solution for the specification and
performance evaluation depending on generation of fuzzy rules. As shown in Fig.3 to
Fig. 6 we are discussing samples at instant values with a resulting controller output;
the controller is sampling several times each second with a resulting “correction”
output following each sample. So, we introduce a specification approach for the
Geoquorums approach for implementing atomic read/write shared memory in mobile
ad hoc networks which is based on fuzzy logic. The advantages of this solution are: a
natural treatment for certain non-functional attributes that cannot be exactly evaluated
and specified, and a relaxed matching of required/provided attributes that do not have
to always be precise (see Fig. 9). Fig 3 -6 (a, b, c, d) illustrate how each of the
generated rules is composed with the fact represented by the specification of
component c1 (with read/ write- Ack- rate= 0.1, 0.3, 0.4, 0.8 and occurrence= Almost
no connect).

Fig. 3a. Rule: If read/ write- Ack- status = (Almost- no- response) and occurrence= (almost-
no-connect) then decision = weak-reject. Facts: read/ write- ack- rate= 0.1.

1
Read/ write- ack-
status = Almost no-
response

0-1

Occurrence= Almost no-
connect

370 S. El-etriby and R. Shihata

Fig. 3b. Rule: If read/ write- Ack-status = Almost no-response and occurrence= about right
then decision= weak-reject. Facts: read/ write- Ack-rate= 0.1.

Fig. 3C. Rule: If read/ write-Ack-status = no change needed and occurrence=Almost no-
connect then decision= weak-reject facts: read/ write- ack- rate= 0.1

Fig. 3d. Rule: If read/ write- Ack–status = no change needed and occurrence= about right then
decision= weak–reject. Facts: read/ write- Ack-rate= 0.1.

Fig. 4a. Rule: If read/ write-Ack–status = (Almost no- response) and occurrence= Almost no-
connect then decision= weak–reject Facts: read/ write-Ack-rate= 0.3.

1 Read/ write- ack-
status = no change
needed

0-1

Occurrence= Almost no-
connect

0-1

1
Read/ write- ack-
status= Almost no-
response

0.1

Occurrence= about right

0.1

0.5

Specification – Based Approach for Implementing Atomic Read/ Write Shared Memory 371

Fig. 4b. Rule: If read/write-Ack – status = (Almost no- response) and occurrence= about right
then decision= weak–select. Facts: read/ write- Ack-rate= 0.3.

Fig. 4c. If read/ write- Ack – status= no change needed and occurrence= Almost no- connect
then decision= weak–reject. Facts: read/ write- Ack- rate= 0.3.

Fig. 4d. Rule: If read/ write- Ack – status = no change needed and occurrence= about right then
decision= strong- select. Facts: read/ write- Ack- rate= 0.3.

.

Fig. 5a. Rule: If read/ write-Ack – status= (Almost no- response) and occurrence= Almost no-
connect then decision= weak–reject facts: read/ write- Ack-rate= 0.4

Read/ write- ack-
status = (no change
needed)

0.30.3

Occurrence= almost no- connect

0.3 0.3

0.4

Read/ write- ack-
status = (almost- no-
response)

Occurrence= about right

Read/ write- ack-
status = (no
change needed)

0.3 0.3

0.4

Occurrence= about right

0.40.4

Read/ write- ack-
status= (almost- no-
response)

Occurrence= (almost- no- connect)

372 S. El-etriby and R. Shihata

Fig. 5b. Rule: If read/write- Ack–status = (Almost no- response) and occurrence= about right
then decision= weak -reject. Facts: read/write- Ack- rate= 0.4

Fig. 5c. Rule: If read/ write- Ack–status = no change needed and occurrence= Almost no-
connect then decision= weak–reject Facts: read/ write- Ack- rate= 0.4

Fig. 5d. Rule: If read/ write- Ack–status = no change needed and occurrence about right then
decision= strong-select. Facts: read/ write- Ack- rate= 0.4

.
Fig. 6a. Rule: If read/ write- Ack–status= (Almost no- response) and occurrence= Almost no-
connect then decision= weak–select Facts: read/ write- Ack- rate= 0.8

0.3
0.4

0.4

Read/ write- ack-
status = (almost-
no- response)

Occurrence= about right

Read/ write- ack-
status= (no change
needed)

0.40.4

Occurrence= (almost-
no- connect)

0.6

0.8

0.8

Read/ write- ack-
status = (almost-
no- response)

Occurrence = about right

0.3
0.4

0.4

Occurrence =about
right

Read/ write- ack- status =
no change needed

Specification – Based Approach for Implementing Atomic Read/ Write Shared Memory 373

Fig. 6b. Rule: If read/ write- Ack–status= (Almost no- response) and occurrence= about right
then decision= weak–select. Facts: read/write-Ack-rate= 0.8.

Fig. 6c. Rule: If read/ write-Ack – status= no change needed and occurrence= Almost no-
connect then decision= weak–select Facts: read/write-Ack- rate= 0.8.

Fig. 6d. Rule: If read/write-Ack–status = no change needed and occurrence= about right then
decision= weak–reject. Facts: read/ write-Ack-rate= 0.8.

Fig. 7. First interface of the software
development process

Fig. 8. The interface of the specification phase

Read/ write- ack- status
= (no change needed)

0.8

0.4

0.8

Occurrence= about right

Read/ write- ack- status=
(no change needed)

0.80.8

Occurrence = almost no- connect

0.8

Read/ write- ack- status =
(almost- no- response)

Occurrence= almost- no connect

374 S. El-etriby and R. Shihata

Table 1. GUI bottoms and its corresponding results

Bottoms Results
• Read/write- ack- status • Almost no response, no change needed
• Occurrence • Almost no connect, about right
• The decision • Weak reject, strong select, weak select
• Specification result • The specification phase is completed successfully

X = 0

Print “decision weak-
Reject”

X = X + 0.1

If X >
0.2 & X <

Print "decision
Weak-reject or Strong-
select" or "weak-
select"

Print "decision
Weak- reject or
Strong -select"

Print "decision
Weak- select or
weak- reject"

Print "decision
Weak- reject or
Strong -select"

Print "decision
Weak- select or
weak- reject

A

A

No

Ye
s

If X >
0.5 & X <

If X >
0.1 & X <

If X >
0.7 & X <

If X >
0.3 & X <

If X >
0.2

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Fig. 9. Flow Chart for Specification Phase for Implementing Atomic Read/Write Shared
Memory in Mobile Ad Hoc Networks

Specification – Based Approach for Implementing Atomic Read/ Write Shared Memory 375

Consequently, the results of the previous figures (Fig. 3 to Fig. 6) are determined
as follow: the status of read/write operation is always (almost no response or no
change needed of connection), the future occurrence of connection is always (almost
no connect or about right of the connection in the network connection). Also, in these
figures we have two facts: the current status of occurrence is almost no connect and
according to the fuzzy logic we assume values X which are determined at range from
0 to 1. So, the results of the connection by the network is either weak-reject or weak–
select. Also, we can observe that when X is nearly 0.4 and the read/write-ack-status is
no change needed, the current occurrence of connection is about right and the result of
connection is may be strong-select, all possible output cases are shown in Table 1.
The snapshot of the GUI is illustrated in Fig.7 and Fig. 8.

5 Conclusions

In this paper we introduce a specification Geoquorums approach for implementing
atomic read/write shared memory in mobile ad hoc networks which is based on fuzzy
logic. The advantages of this solution are: a natural treatment for certain non-
functional attributes that can not be exactly evaluated and specified. In addition to a
relaxed matching of required/provided attributes that do not have to always be
precise.

References

1. Bachman, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord, R.,
Wallnau, K.: Technical concepts of component-based software engineering. Technical
Report CMU/SEI-2000-TR-008, Carnegie Mellon Software Engineering Institute (2000)

2. Cooper, K., Cangussu, J.W., Lin, R., Sankaranarayanan, G., Soundararadjane, R., Wong,
E.: An Empirical Study on the Specification and Selection of Components Using Fuzzy
Logic. In: Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford, J.A., Ren, X.-M.,
Wallnau, K. (eds.) CBSE 2005. LNCS, vol. 3489, pp. 155–170. Springer, Heidelberg
(2005)

3. Dolv, S., Gilbert, S., Lynch, N.A., Shvartsman, A.A., Welch, A., Loran, J.L.:
Geoquorums: Implementing Atomic Memory in Mobile Ad Hoc Networks. In:
Proceedings of the 17th International Conference on the Distributed Computing, pp. 306–
319 (2005)

4. Haas, Z.J., Liang, B.A., Wjghs, D.: Ad Hoc Mobile Management with Uniform
GeoQuorums Systems. Proceeding of IEEE/ACM Transactions on Mobile Ad Hoc
Networks 7(2), 228–240 (2004)

5. Koyuncu, M., Yazici, A.: A Fuzzy Knowledge-Based System for Intelligent Retrieval.
IEEE Transactions on Fuzzy Systems 13(3), 317–330 (2005)

6. Sora, I., Verbaeten, P., Berbers, Y.: A Description Language For Composable
Components. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 22–36. Springer,
Heidelberg (2003)

7. Şora, I., Creţu, V., Verbaeten, P., Berbers, Y.: Automating Decisions in Component
Composition Based on Propagation of Requirements. In: Wermelinger, M., Margaria-
Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984, pp. 374–388. Springer, Heidelberg (2004)

376 S. El-etriby and R. Shihata

8. Sora, I., Cretu, V., Verbaeten, P., Berbers, Y.: Managing Variability of Self-customizable
Systems through Composable Components. Software Process Improvement and
Practice 10(1) (January 2005)

9. Szyperski, C.: Component Software: Beyond Object Oriented Programming. Addison
Wesley (2002)

10. Zhang, T., Benini, L., De Micheli, G.: Component Selection and Matching for IP-Based
Design. In: Proceedings of Conference on Design, Automation and Test in Europe
(DATE), Munich, Germany, pp. 40–46 (2001)

11. Şora, I., Todinca, D.: Specification-based Retrieval of Software Components through
Fuzzy Inference. Acta Polytechnica Hungarica 3(3) (2006)

12. Oliveira, R., Bernardo, L., Pinto, P.: Modeling delay on IEEE 802.11 MAC protocol for
unicast and broadcast non saturated traffic. In: Proc. WCNC 2007, pp. 463–467. IEEE
(2007)

13. Fehnker, A., Fruth, M., McIver, A.K.: Graphical Modelling for Simulation and Formal
Analysis of Wireless Network Protocols. In: Butler, M., Jones, C., Romanovsky, A.,
Troubitsyna, E. (eds.) Fault Tolerance. LNCS, vol. 5454, pp. 1–24. Springer, Heidelberg
(2009)

14. Ghassemi, F., Fokkink, W., Movaghar, A.: Restricted broadcast process theory. In: Proc.
SEFM 2008, pp. 345–354. IEEE (2008)

15. Ghassemi, F., Fokkink, W., Movaghar, A.: Equational Reasoning on Ad Hoc Networks.
In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 113–128. Springer,
Heidelberg (2010)

16. Lin, T.: Mobile Ad-hoc Network Routing Protocols: Methodologies and Applications. PhD
thesis, Virginia Polytechnic Institute and State University (2004)

17. Tracy Camp, V.D., Boleng, J.: A survey of mobility models for ad hoc network research.
Wireless Communications and Mobile Computing 2, 483–502 (2002)

	Specification – Based Approach for Implementing Atomic Read/ Write Shared Memory in Mobile Ad Hoc Networks Using Fuzzy Logic
	Introduction
	Fuzzy Attributes
	Implementing Atomic Read/Write Shared Memory
	The Specification of the Geoquorum Approach Using Fuzzy Logic
	Generation of Fuzzy Rules
	Extension of the Fuzzy Rules
	Specifying the Application Using Fuzzy Rules

	Conclusions
	References

