
V.V. Das and J. Stephen (Eds.): CNC 2012, LNICST 108, pp. 275–281, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Join Query Processing in MapReduce Environment

Anwar Shaikh and Rajni Jindal

Dept. of Computer Engineering,
Delhi Technological University, Delhi, India

anwardshaikh@gmail.com, rajnijindal@dce.ac.in

Abstract. MapReduce is a framework for processing large data sets, where
straightforward computations are performed by hundreds of machines on large
input data. Data could be stored and retrieved using structured queries. Join
queries are most frequently used and importatnt. So its crucial to find out
efficient join processing techniques. This paper provides overview of join query
processing techniques & proposes a strategy to find out best suitable join
processing algorithm.

Keywords: MapReduce, Join processing, Hadoop, Multiway Join.

1 Introduction

MapReduce was proposed by Google [1]. Many complex tasks such as parallelism,
fault tolerance, data distribution and load balancing are hidden from the user; thus
making it simple to use. Tasks are performed in two phases, Map and Reduce. Input
in the form of key/value pairs is processed by Map function to produce intermediate
key/value pairs; these intermediate values with same keys are merged together by
Reduce function to form smaller set of values as output.

map(InputKey, InputValue)  list (IntermediateKey, intermediateValue)
reduce(IntermediateKey, list(intermediateValue))  list(intermediateValue)

Map and Reduce function are specified by the user, but the execution of these func-
tions in the distributed environment is transparent to the user. Hadoop is open source
implementation of MapReduce [2], built on top of Hadoop Distributed File System
(HDFS) which could handle petabytes of data [10]. Data blocks are replicated over
more than one location over the cluster to increase the availability.

2 Related Work

A framework Map-Reduce-Merge[8] was designed to improve join processing, it
included one more stage called Merge to join tuples from multiple relations. Join
performance could be improved by indexes; Hadoop++[6] used Trojan Join and Tro-
jan Index to improve join execution. Methods described in this paper could be applied
when data is organized in Row-wise manner; [9] described join optimization algo-
rithms for column-wise data. Authors in [7] designed a query optimizer for Hadoop.

276 A. Shaikh and R. Jindal

3 Join Processing

Join algorithms used by Conventional DBMS and MapReduce are different, because
join execution in MapReduce uses Map and Reduce functions to get results. This
section describes various join processing algorithms for MapReduce environment.

3.1 Repartition Join

Repartition Join[5] is a default join mechanism in Hadoop[3], implemented as a single
MapReduce job. A single split(block) of relation involved in join is processed by each
mapper in Map phase and a set of - Join key (k1), tuple (t1), relation name (R) – {k1,
t1, R} is produced as output. R is used as a tag to identify the relation to which a par-
ticular tuple belongs.

Output of Map phase is sorted and partitioned based on join key. Records with dif-
ferent join keys are distributed to each reducer. Tags attached to the tuples are re-
moved and tuples are separated to form two different relations by Reducer. Final
output is produced by performing cross join between these two relations.

Fig. 1. Repartition Join

Default Hadoop Join mechanism is not efficient because of following reasons –
1. Sorting and movement of all tuples between map and reduce phases.
2. For a popular key many tuples are sent to one reducer and buffering is required.
3. Tagging of tuples involves minor overhead in Map phase.
Improved Repartition Join was suggested by authors of [5] where the output of map
phase was adjusted such that tuples of smaller relation appeared before tuples of larg-
er relation and generation of join result needed buffering the tuples of smaller relation
and streaming the tuples of larger relation.

 Join Query Processing in MapReduce Environment 277

3.2 Broadcast Join (Naïve Asymmetric Join)

Broadcast join described by [5] is similar to Naïve Asymmetric join in [3]. Broadcast
join is asymmetric because both relations are treated differently. When relations R1
has very less number of tuples compared to R2, then R1 is copied to all mapper nodes
using Distributed Cache Mechanism provided by HDFS. A Hash table is built at
mapper such that Join attribute act as Hash key and the tuple of R1 act as Value.

Fig. 2. Broadcast Join

A split of R2 is assigned to each Mapper. Tuples of R2 are scanned sequentially
and join key attribute of R2 is hashed to find matching tuples of R1 from hash table.
Note that only one Map phase is required for Broadcast join, and transmission of only
the smaller relation over network reduces the bandwidth requirement.

3.3 Optimized Broadcast Join

It is also termed as Optimized Naïve Asymmetric Join [3] and Semi join[5]. Some-
times many tuples might not contribute to join result. It might be costly to broadcast
large relations R1 & R2. But when selectivity of R1 is less, then size of R1 could be
reduced by extraction of tuples contributing to the join result by using semi join me-
chanism. Two MapReduce jobs are required to perform Semi join between R1 and R2
and one more Map only job needed to perform actual broadcast join. Projection of
unique join attribute values from relation R2 is done in first MapReduce. These
unique values are used to find matching tuples from R1 in second MapReduce job,
hence size of R1 is reduced and made suitable for broadcasting.

3.4 Trojan Join

Prior knowledge of schema and join conditions could help in improvement of join
performance. Trojan join [6] was designed to take advantage of this. Also Trojan
indexes were created at data load time with read optimization. Implementation of
Trojan Join along with Trojan index is termed as Hadoop++.

Application of same partitioning function to both relations involved in join at data
load time, called as Co-partitioning is the basic idea behind Trojan join. Co-group

278 A. Shaikh and R. Jindal

pairs from each of two relations having similar join attribute values are kept on the
same split. Availability of data from both relations with same join key value at the
same split, makes execution of join possible locally at mapper node without need of
shuffle and reduce phases, hence reducing the network communication. Join result is
obtained by performing cross product between Data from a Co-Group in Map phase.
Execution of Trojan join between relations Passenger & Train is depicted in Figure 3.

Fig. 3. Trojan Join execution

3.5 Replicated Join

Two MapReduce jobs are required to perform Natural join between three relations
R(A,B), S(B,C), T(C,D) using methods described above, because only two relations
can be joined at a time. Authors in [4] proposed a multiway join query processing
algorithm, where three-way join can be performed as a single MapReduce operation.
Tuples from relations R and T are sent to multiple reducers, communication cost
might be increased, but it is acceptable because the join will be performed in the sin-
gle MapReduce job. Each tuple from S is sent to single reducer only.

Fig. 4. Replicated join

 Join Query Processing in MapReduce Environment 279

Replicated join could be used when a tuple from one relation is joined with many
tuples of other relation. ‘k’ number of reduce process are selected, where k=m*m.
Reducers are numbered as [i,j] where values of i and j are 1,2,..m. Tuples from R, S,
& T are hashed into ‘m’ buckets by a Hash function. Tuples are sent to reducer using
the hashed values of join attributes B and C. Join is performed locally at reducer as
tuples from R, S, T with same join attribute value are available at reducer numbered
[hash(b), hash(c)]. Distribution of tuples to the reduce processes is shown in figure
4,where k=16=4*4, final results are marked in yellow. An optimization algorithm to
find minimum number of replicas/reducers needed for join execution was proposed
and applied to star and chain join in [4].

4 Experiments

Experiments to evaluate performance of join processing algorithm are described in
this section. Performance was evaluated for three different sized user and log relations
on cluster of 6 nodes with split size of 64MB by authors of [3]. Naive Asymmetric
Join took half of the time taken by Default Hadoop Join.

Optimized Broadcast Join was performed between user table and log table such
that 50%, 70% and 90% log table tuples were associated to user table [3]. Results
showed that time required for semi join was very less compared to actual join phase.
Optimized Broadcast join performed better than Broadcast Join.

Experiments conducted in [5], on 100 node cluster showed that Improved reparti-
tion always performed better than Repartition join. And performance of Broadcast
join was decreased as the number of referenced tuples and percentage of referenced
tuples increased. Semi join was not observed to perform better than broadcast Join,
because of high overhead of scanning entire table. Also, Scalability of Improved Re-
partition Join, Broadcast Join and Semi join was observed to be linear.

Performance of cascade of binary joins and three way join using replication was
evaluated by authors of [4] on four node cluster, processing time taken by both ap-
proaches proved that three-way-join took less time than cascade of two way joins.

Experiments conducted on Amazon EC2 cloud showed that performance of Trojan
Join was better than Hadoop [6]. Performance of Hadoop++ with split size of 1GB
was better than Hadoop by factor of 20. But, for split size of 256MB performance was
alike, thus increasing the split size improved the performance of Hadoop++, but re-
duced the fault tolerance.

5 Join Algorithm Selection Strategy

Based on the results of experiments described above, we have proposed a join algo-
rithm selection strategy, depicted as a decision tree in Figure 5. One such strategy was
proposed in [5] based on tradeoff between few join algorithms and preprocessing
of data, but we have considered more number of join algorithms and assumed no
preprocessing of data.

280 A. Shaikh and R. Jindal

Two relation join

Cost effective to broadcast small relation Star join or Chain join,
and replication is efficient

Broadcast Join

Schema & Join conditions known

No Yes

Trojan Index &
Trojan Join

Yes No

Yes

Selectivity

Optimized Broadcast Join Repartition Join

No

less high

No Yes

Replicated Join

Fig. 5. Decision tree for Join algorithm selection

In case of Prior knowledge of schema and join condition, Trojan index and Trojan
join should be used for better performance. Multiway join (Replicated join) would be
efficient in case of star and chain join between more than two relations, otherwise
performing cascade of two way join would be better. For join between two relations
such that one relation is smaller and efficient to transmit over network then Broadcast
join would be a good choice. When less number of tuples of a relation contributes to
join result then prefer Optimized Broadcast Join or Semi join, else perform Reparti-
tion join.

6 Comparison

Consider that a join is performed between relations R1(a,b) and R2(b,c). Table 1
compares above mentioned join algorithms based on number of MapReduce jobs
required for execution, advantages of using a particular method and issues involved.

Table 1. Comparison of Join processing methods

Join Type MapReduce jobs Advantages Issues
Repartition 1 MapReduce job Simple implementa-

tion of Reduce phase
Sorting and movement of
tuples over network.

Broadcast 1 Map phase. No sorting and
movement of tuples.

Useful only if one relation
is small.

Optimized
Broadcast

2 jobs for Semijoin, 1
Map phase for
Broadcast.

Size of large relation
can be reduced and
broadcasted.

Extra MapReduce jobs
are required to perform
semi join.

Trojan 1 Map phase. Uses schema know-
ledge.

Useful, if join conditions
are known.

Replicated 1 MapReduce job. Efficient for Star join
and Chain join.

For large relations more
number of reducers /
replicas are required.

 Join Query Processing in MapReduce Environment 281

7 Conclusion

This paper has described current research work done for optimization of the join
query processing in MapReduce environment. Lots of research work is already done
in Distributed databases, Parallel databases and Relational databases; which could be
utilized for further improvement of join query execution in MapReduce environment.
Algorithms described above do not provide generic solution which would give opti-
mized performance in all cases. So, we proposed a strategy for join algorithm selec-
tion which could be applied dynamically based on the various parameters like size of
relation; knowledge of schema and selectivity.

References

1. Jeffrey, D., Sanjay, G.: MapReduce: Simplified Data Processing on Large Clusters. In:
OSDI 2004: Proceedings of the 6th Conference on Symposium on Operating Systems De-
sign & Implementation (2004)

2. Apache Foundation – Hadoop Project, http://hadoop.apache.org
3. Miao, J., Ye, W.: Optimization of Multi-Join Query Processing within MapReduce. In:

2010 4th International Universal Communication Symposium, IUCS (2010)
4. Foto, N.A., Jeffrey, D.U.: Optimizing Multiway Joins in a Map-Reduce Environment.

IEEE Transactions on Knowledge and Data Engineering 23(9) (2011)
5. Spyros, B., Jignesh, M.P., Vuk, E., Jun, R., Eugene, J., Yuanyuan, T.: A Comparison of

Join Algorithms for Log Processing in MapReduce. In: SIGMOD 2010, June 6–11. ACM,
Indian-apolis (2010)

6. Jens, D., Jorge-Arnulfo, Q., Alekh, J., Yagiz, K., Vinay, S., Jorg, S.: Hadoop++: Making a
Yellow Elephant Run Like a Cheetah (Without It Even Noticing). In: Proceedings of the
VLDB Endowment, vol. 3(1) (2010)

7. Sai, W., Feng, L., Sharad, M., Beng, C.: Query Optimization for Massively Parallel Data
Processing. In: Symposium on Cloud Computing (SOCC 2011). ACM, Cascais (2011)

8. Yang, H.-C., Dasdan, A., Hsiao, R.-L., Parker, S.: Map-Reduce-Merge: Simplified Rela-
tional Data Processing on Large Clusters. In: SIGMOD 2007, June 12–14. ACM, Beijing
(2007)

9. Minqi, Z., Rong, Z., Dadan, Z., Weining, Q., Aoying, Z.: Join Optimization in the MapRe-
duce Environment for Column-wise Data Store. In: 2010 Sixth International Conference
on Semantics, Knowledge and Grids. IEEE (2010)

10. Konstantin, S., Hairong, K., Sanjay, R., Robert, C.: The Hadoop Distributed File System.
In: MSST 2010 Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies, MSST (2010)

	Join Query Processing in MapReduce Environment
	Introduction
	Related Work
	Join Processing
	Repartition Join
	Broadcast Join (Naïve Asymmetric Join)
	Optimized Broadcast Join
	Trojan Join
	Replicated Join

	Experiments
	Join Algorithm Selection Strategy
	Comparison
	Conclusion
	References

