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Abstract. MapReduce is a framework for processing large data sets, where 
straightforward computations are performed by hundreds of machines on large 
input data. Data could be stored and retrieved using structured queries. Join 
queries are most frequently used and importatnt. So its crucial to find out 
efficient join processing techniques. This paper provides overview of join query 
processing techniques & proposes a strategy to find out best suitable join 
processing algorithm. 
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1 Introduction 

MapReduce was proposed by Google [1]. Many complex tasks such as parallelism, 
fault tolerance, data distribution and load balancing are hidden from the user; thus 
making it simple to use. Tasks are performed in two phases, Map and Reduce. Input 
in the form of key/value pairs is processed by Map function to produce intermediate 
key/value pairs; these intermediate values with same keys are merged together by 
Reduce function to form smaller set of values as output. 

map(InputKey, InputValue)  list (IntermediateKey, intermediateValue) 
reduce(IntermediateKey, list(intermediateValue))  list(intermediateValue) 

Map and Reduce function are specified by the user, but the execution of these func-
tions in the distributed environment is transparent to the user. Hadoop is open source 
implementation of MapReduce [2], built on top of Hadoop Distributed File System 
(HDFS) which could handle petabytes of data [10]. Data blocks are replicated over 
more than one location over the cluster to increase the availability.  

2 Related Work 

A framework Map-Reduce-Merge[8] was designed to improve join processing, it 
included one more stage called Merge to join tuples from multiple relations. Join 
performance could be improved by indexes; Hadoop++[6] used Trojan Join and Tro-
jan Index to improve join execution. Methods described in this paper could be applied 
when data is organized in Row-wise manner; [9] described join optimization algo-
rithms for column-wise data. Authors in [7] designed a query optimizer for Hadoop. 
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3 Join Processing 

Join algorithms used by Conventional DBMS and MapReduce are different, because 
join execution in MapReduce uses Map and Reduce functions to get results. This 
section describes various join processing algorithms for MapReduce environment. 

3.1 Repartition Join 

Repartition Join[5] is a default join mechanism in Hadoop[3], implemented as a single 
MapReduce job. A single split(block) of relation involved in join is processed by each 
mapper in Map phase and a set of - Join key (k1), tuple (t1), relation name (R)  – {k1, 
t1, R} is produced as output. R is used as a tag to identify the relation to which a par-
ticular tuple belongs.  

Output of Map phase is sorted and partitioned based on join key. Records with dif-
ferent join keys are distributed to each reducer. Tags attached to the tuples are re-
moved and tuples are separated to form two different relations by Reducer. Final  
output is produced by performing cross join between these two relations.  

 

Fig. 1. Repartition Join 

Default Hadoop Join mechanism is not efficient because of following reasons – 
1. Sorting and movement of all tuples between map and reduce phases.  
2. For a popular key many tuples are sent to one reducer and buffering is required.  
3. Tagging of tuples involves minor overhead in Map phase. 
Improved Repartition Join was suggested by authors of [5] where the output of map 
phase was adjusted such that tuples of smaller relation appeared before tuples of larg-
er relation and generation of join result needed buffering the tuples of smaller relation 
and streaming the tuples of larger relation. 
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3.2 Broadcast Join (Naïve Asymmetric Join) 

Broadcast join described by [5] is similar to Naïve Asymmetric join in [3].  Broadcast 
join is asymmetric because both relations are treated differently. When relations R1 
has very less number of tuples compared to R2, then R1 is copied to all mapper nodes 
using Distributed Cache Mechanism provided by HDFS. A Hash table is built at 
mapper such that Join attribute act as Hash key and the tuple of R1 act as Value. 

 

Fig. 2. Broadcast Join 

A split of R2 is assigned to each Mapper. Tuples of R2 are scanned sequentially 
and join key attribute of R2 is hashed to find matching tuples of R1 from hash table. 
Note that only one Map phase is required for Broadcast join, and transmission of only 
the smaller relation over network reduces the bandwidth requirement. 

3.3 Optimized Broadcast Join 

It is also termed as Optimized Naïve Asymmetric Join [3] and Semi join[5]. Some-
times many tuples might not contribute to join result. It might be costly to broadcast 
large relations R1 & R2. But when selectivity of R1 is less, then size of R1 could be 
reduced by extraction of tuples contributing to the join result by using semi join me-
chanism. Two MapReduce jobs are required to perform Semi join between R1 and R2 
and one more Map only job needed to perform actual broadcast join. Projection of 
unique join attribute values from relation R2 is done in first MapReduce. These 
unique values are used to find matching tuples from R1 in second MapReduce job, 
hence size of R1 is reduced and made suitable for broadcasting. 

3.4 Trojan Join 

Prior knowledge of schema and join conditions could help in improvement of join 
performance. Trojan join [6] was designed to take advantage of this. Also Trojan 
indexes were created at data load time with read optimization. Implementation of 
Trojan Join along with Trojan index is termed as Hadoop++. 

Application of same partitioning function to both relations involved in join at data 
load time, called as Co-partitioning is the basic idea behind Trojan join. Co-group 



278 A. Shaikh and R. Jindal 

pairs from each of two relations having similar join attribute values are kept on the 
same split.  Availability of data from both relations with same join key value at the 
same split,  makes execution of join possible locally at mapper node without need of 
shuffle and reduce phases, hence reducing the network communication. Join result is 
obtained by performing cross product between Data from a Co-Group in Map phase. 
Execution of Trojan join between relations Passenger & Train is depicted in Figure 3. 

 

Fig. 3. Trojan Join execution 

3.5 Replicated Join 

Two MapReduce jobs are required to perform Natural join between three relations 
R(A,B), S(B,C), T(C,D) using methods described above, because only two relations 
can be joined at a time. Authors in [4] proposed a multiway join query processing 
algorithm, where three-way join can be performed as a single MapReduce operation. 
Tuples from relations R and T are sent to multiple reducers, communication cost 
might be increased, but it is acceptable because the join will be performed in the sin-
gle MapReduce job. Each tuple from S is sent to single reducer only.  

 

Fig. 4. Replicated join 
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Replicated join could be used when a tuple from one relation is joined with many 
tuples of other relation. ‘k’ number of reduce process are selected, where k=m*m. 
Reducers are numbered as [i,j] where values of i and j are 1,2,..m. Tuples from R, S, 
& T are hashed into ‘m’ buckets by a Hash function. Tuples are sent to reducer using 
the hashed values of join attributes B and C. Join is performed locally at reducer as 
tuples from R, S, T with same join attribute value are available at reducer numbered 
[hash(b), hash(c)]. Distribution of tuples to the reduce processes is shown in figure 
4,where k=16=4*4, final results are marked in yellow. An optimization algorithm to 
find minimum number of replicas/reducers needed for join execution was proposed 
and applied to star and chain join in [4]. 

4 Experiments  

Experiments to evaluate performance of join processing algorithm are described in 
this section. Performance was evaluated for three different sized user and log relations 
on cluster of 6 nodes with split size of 64MB by authors of [3]. Naive Asymmetric 
Join took half of the time taken by Default Hadoop Join.  

Optimized Broadcast Join was performed between user table and log table such 
that 50%, 70% and 90% log table tuples were associated to user table [3]. Results 
showed that time required for semi join was very less compared to actual join phase. 
Optimized Broadcast join performed better than Broadcast Join. 

Experiments conducted in [5], on 100 node cluster showed that Improved reparti-
tion always performed better than Repartition join. And performance of Broadcast 
join was decreased as the number of referenced tuples and percentage of referenced 
tuples increased. Semi join was not observed to perform better than broadcast Join, 
because of high overhead of scanning entire table. Also, Scalability of Improved Re-
partition Join, Broadcast Join and Semi join was observed to be linear. 

Performance of cascade of binary joins and three way join using replication was 
evaluated by authors of [4] on four node cluster, processing time taken by both ap-
proaches proved that three-way-join took less time than cascade of two way joins.  

Experiments conducted on Amazon EC2 cloud showed that performance of Trojan 
Join was better than Hadoop [6]. Performance of Hadoop++ with split size of 1GB 
was better than Hadoop by factor of 20. But, for split size of 256MB performance was 
alike, thus increasing the split size improved the performance of Hadoop++, but re-
duced the fault tolerance. 

5 Join Algorithm Selection Strategy 

Based on the results of experiments described above, we have proposed a join algo-
rithm selection strategy, depicted as a decision tree in Figure 5. One such strategy was 
proposed in [5] based on tradeoff between few join algorithms and preprocessing  
of data, but we have considered more number of join algorithms and assumed no  
preprocessing of data.  
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Two relation join  

Cost effective to broadcast small relation Star join or Chain join, 
and replication is efficient 

Broadcast Join 

Schema & Join conditions known 

No Yes 

Trojan Index &  
Trojan Join 

Yes No 

Yes 

Selectivity 

Optimized Broadcast Join Repartition Join 

No 

less high 

No Yes 

Replicated Join 
 

Fig. 5. Decision tree for Join algorithm selection 

In case of Prior knowledge of schema and join condition, Trojan index and Trojan 
join should be used for better performance.  Multiway join (Replicated join) would be 
efficient in case of star and chain join between more than two relations, otherwise 
performing cascade of two way join would be better. For join between two relations 
such that one relation is smaller and efficient to transmit over network then Broadcast 
join would be a good choice. When less number of tuples of a relation contributes to 
join result then prefer Optimized Broadcast Join or Semi join, else perform Reparti-
tion join. 

6 Comparison 

Consider that a join is performed between relations R1(a,b) and R2(b,c). Table 1 
compares above mentioned join algorithms based on number of MapReduce jobs 
required for execution, advantages of using a particular method and issues involved. 

Table 1. Comparison of Join processing methods 

Join Type MapReduce jobs Advantages Issues 
Repartition 1 MapReduce job Simple implementa-

tion of Reduce phase 
Sorting and movement of 
tuples over network. 

Broadcast 1 Map phase. No sorting and 
movement of tuples. 

Useful only if one relation 
is small. 

Optimized 
Broadcast 

2 jobs for Semijoin, 1 
Map phase for 
Broadcast.  

Size of large relation 
can be reduced and 
broadcasted. 

Extra MapReduce jobs 
are required to perform 
semi join. 

Trojan 1 Map phase. Uses schema know-
ledge. 

Useful, if join conditions 
are known. 

Replicated 1 MapReduce job. Efficient for Star join 
and Chain join. 

For large relations more 
number of reducers / 
replicas are required. 
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7 Conclusion 

This paper has described current research work done for optimization of the join 
query processing in MapReduce environment. Lots of research work is already done 
in Distributed databases, Parallel databases and Relational databases; which could be 
utilized for further improvement of join query execution in MapReduce environment. 
Algorithms described above do not provide generic solution which would give opti-
mized performance in all cases. So, we proposed a strategy for join algorithm selec-
tion which could be applied dynamically based on the various parameters like size of 
relation; knowledge of schema and selectivity. 
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