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Abstract. The ‘Holy Grail’ of cryptography called Fully Homomorphic 
Encryption (FHE), which allows encrypted data processing and delegation of 
computational tasks to the remote untrusted server, has become a hot research 
topic in light of the privacy concerns related to cloud computing. Several FHE 
schemes were found after the first construction of such scheme by Craig Gentry 
in 2009. One of the several reasons making these theoretically feasible schemes 
unpractical is their high computational costs. In this paper, a simplest possible 
key generation method is proposed for the somewhat homomorphic scheme of 
Van Dijk et al., which leads to an efficient integer based FHE scheme. Also, the 
security and practicality of the proposed scheme is thoroughly analyzed with 
respect to the new key generation method suggested.   
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1 Introduction 

The problem of devising a Fully Homomorphic Encryption (FHE) scheme or a 
privacy homomorphism [1], which supports “processing the data while it is 
encrypted”, has been studied for over decades. The research on the topic has gained 
momentum after Craig Gentry’s first construction of such a scheme based on 
algebraic lattice theory in the year 2009 [2][3]. This breakthrough work has become 
an attractive solution, especially for the security and privacy problems of cloud 
computing [7] and the related applications, but, only theoretically promising. 

The initial construction of Gentry’s FHE [2] [3] consists of a strict 3-step blueprint 
which include, Constructing a Somewhat Homomorphic Encryption (SHE) scheme, 
Squashing the decryption function of the SHE, and finally Obtaining the FHE 
(Bootstrapping) [6]. FHE schemes that follow the Gentry’s blueprint [4] [5] were 
found to be inefficient enough for practical implementation [9] because of the huge 
difference between the computational complexities of processing the ciphertexts and 
processing the plaintexts. The major contribution to this high complexity is by large 
message expansion (e.g., in the scheme of [5] every bit is expanded to a ciphertext of 
Õ(n5)), and the ciphertext refreshing procedure during the bootstrapping. In [8] the 
first implementation of integer based FHE scheme of [5] is described. Their major 
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contribution is in reducing the public key size of that scheme from Õ(n10) to Õ(n7).   
More expository survey of the recent advances in the homomorphic cryptography is 
given in [10].  

In this work, an efficient variant of the underlying SHE scheme of [5] is presented 
using a comparatively smaller public key of size Õ(n3). It is shown that, the semantic 
security of the proposed scheme is preserved under the two-element Partial 
Approximate Greatest Common Divisor (PAGCD) problem. Also, the proposed 
variant is proved compact with low ciphertext expansion of n3. It is estimated that, 
with the improvements made the Homomorphic Encryption usage and thus encrypted 
data processing becomes imminent for suitable applications that fall within the 
multiplicative capacity of the proposed scheme. Due to space constraints, the proofs 
for all the Theorems and Lemmas are given in the Appendix of the full version of this 
paper. 

2 The SHE over the Integers and the Proposed Optimization 

The Somewhat Homomorphic Encryption over the integers [5], which is denoted as 
HE in this paper, consists of four algorithms KeyGen, Encrypt, Decrypt and Evaluate.  
The size (bit length) of various integers used in the scheme is denoted by the 
parameters e, t, r, g, d, which represent the size of the secret key, number of elements 
in the public key, size of the noise in the public key integers, the size of each integer 
in the public key, size of the noise used for encryption, respectively and are 
polynomial in the security parameter n. The parameter setting suggested in view of 
the homomorphism and security is, e = Õ(n2), r = n, d = 2n,  g = Õ(n5), and t = g + n. 
This makes the public key size as Õ(n10), because, the public key consists of t = Õ(n5) 
integers each of size g = Õ(n5). 

KeyGen(n): Choose a random e-bit odd integer from the right open interval [2e-1, 2e 
) 

as the secret key P. For i = 0,1,…..,t , Choose a random integer Qi from [0, 2g/P), 
another integer Ri from the open interval (-2r, 2r 

), and compute Xi = PQi + Ri until the 
conditions X0 > X1,….., Xt ,  X0 mod 2 = 1, and (X0 mod P) mod 2 = 0 are satisfied. 
Output the public key PK = (X0, X1,….., Xt) and the secret key SK = P. 
Encrypt(PK, M ∈ {0, 1} ): Choose an integer B from (-2d, 2d 

) as noise for encryption. 
Choose a subset J ⊆ {1,…..t}. Compute the sum S = ∑i ∈J Xi . Output the ciphertext 

as C = [M + 2(B + S) ] mod X0. 

Decrypt (SK, C) : Compute M = ( C  mod P ) mod 2. 

Evaluate(PK,CKT, (C1,…..,Ck) ): Let CKT be the binary circuit to be evaluated 
representing a boolean function f, with XOR gates and AND gates (i.e., CKT consists 
of mod-2 addition and multiplication gates). Replace the XOR gates and AND gates 
of CKT with addition and multiplication gates that operate over integers. Let GCKT 
be the resulting generalized circuit and fg be the corresponding multivariate 
polynomial. Apply GCKT over (C1,…..,Ck), and output the resulting ciphertext        
Cg =  fg (C1,…..,Ck) . 
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For a ciphertext in the scheme we have, C = [M + 2(B + S)] mod X0 = M + 2Bm + 
PQm, for some integers Bm and Qm. The term, say N = M + 2Bm << P, is the noise 
(the distance to the multiple PQm), which makes C an approximate or near multiple 
of P. Multiplication or addition of such near multiples results in another near 
multiple. Therefore in decryption, C mod P results in N, and N mod 2 gives the 
plaintext bit M. For every multiplication during the Evaluate, the size of the resulting 
noise equals the sum of the sizes of the multiplicand noises, which crosses the size of 
P after certain number of multiplications, resulting in incorrect decryption. This 
makes the scheme an SHE and to make it an FHE, the transformation based on 
Gentry’s blueprint [2][3] is used by [5]. Optimizations proposed in this paper targets 
only the underlying SHE.  

The method being proposed is denoted as HESP, in which the public key consists of 
only two big integers X0 and X1. X0 is an exact multiple of the odd secret integer P 
and X1 is an approximate multiple, i.e., multiple of P containing some additive error 
R. To encrypt a plaintext bit M, the erroneous integer X1 of the public key is 
multiplied with a random even integer N, the result is added to the plaintext bit and 
the final sum is reduced modulo the error-free integer X0 in the public key. For 
homomorphic evaluation of a function, the addition and multiplication operations in 
the corresponding arithmetic circuit are performed over ciphertexts, modulo the error-
free integer X0 in the public key. The security of HESP is based on the two-element 
Partial Approximate Greatest Common Divisor (PAGCD) problem (Definition 2). 
The parameter setting for the variant scheme being proposed is reviewed as follows.  

For the given security parameter n, the size of the secret key integer P, denoted by 
e, is taken as ≥ d. Ѳ(n lg2 n) to support homomorphism for evaluation of sufficiently 
deeper circuits. Size of the noise in the public key integer X1, denoted by r, is taken as 
ω(lg n) to foil the brute-force attack against the noise. The number of bits in each of 
the public key integers is denoted by g. More precisely, g is the size of the factor Q in 
the multiples of P, in the public key. Since the public key consists of only two 
elements, the attacks related to two-element PAGCD problem only are considered. 
With respect to this, it is claimed that, it is sufficient to take g > e against the 
condition used in [5] as g > e2, to thwart lattice based attacks on the AGCD problem 
with some arbitrary t number of elements. Therefore, g is taken as ω( e. lg n ). The 
parameter d denotes the size of the even noise factor N used during the encryption. 
With these, the theoretical parameter setting for HESP can be chosen as, e = Õ(n2),      
r = n, d = 2n, and g = Õ(n3). This setting results in a scheme with overall complexity 
of Õ(n3). With this, the construction of the proposed variant is obtained as follows. 

KeyGenSP(n): Secret key is a random e-bit odd integer P chosen from [2e-1, 2e 
). 

Choose a random r-bit integer R from the interval (-2r, 2r). For i = 0, 1, Choose a 
random g-bit integer Qi from [0, 2g / P). Compute X0 = P Q0, X1 = PQ1 + R. Output 
the secret key, SK = P and the public key, PK = (X0, X1). 

Note. For the reasons described in Section 4, the integers X0, X1 should be co-prime. 
Also, we take X0 > X1. 
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EncryptSP (PK, M ∈ {0,1} ): For a plaintext bit M∈ {0,1}, Choose a random even 
integer N from the interval [2d-1, 2d). The ciphertext C = [M + N. X1] mod X0  

EvaluateSP ( PK, CKT, (C1,…..,Ck) ), and  DecryptSP (SK, C) algorithms are same as 
that of the original HE.  

 
The appealing feature of the scheme HESP is the relatively smaller public key with 
only two integers of size Õ(n3) each. Encryption method is also comparatively simple 
because, the product (N. X1) corresponds to the operations of choosing a random 
subset from the big set of public key elements, adding the elements in that subset, 
multiplying the sum with 2 and adding to an even noise as done in HE. 

Similar to the case of HE, the limits imposed on the sizes of the noise makes the 
scheme somewhat homomorphic. It is quite easy to see that the scheme HESP is a 
variant of the scheme HE for the chosen parameter setting. This is because, the 
ciphertext in HE is M + 2B + PQ. The ratio of size of P and the size of noise (M+2B) 
is Õ(n2) / Õ(n) = Õ(n). Consider a fresh ciphertext in HESP. We have,                          
C  = [M + N. X1] mod X0  = M + RN + P (NQ1 – K Q0) for some integer K ≥ 0. This 
can be written as M + 2Bs + PQs since RN is even, and due to which we have             
Bs = RN/2, Qs = (NQ1 – K Q0).The ratio between the size of P and the size of noise          
(M + 2Bs) is Õ(n2) / Õ(n) = Õ(n), which is same as that of HE. Hence, both the 
schemes are identical with only difference in the methods of key generation and 
encryption. For EvaluateSP, corresponding to the generalized circuit GCKT we have 
the following notion of permitted circuit. 

Definition 1. (Permitted circuit). An arithmetic circuit with addition and 
multiplication gates is called a permitted circuit for the scheme HESP if, for any set of 
integer inputs each < 2d in absolute value, the maximum absolute value output by the 
circuit is  < 2e-2. We denote the set of permitted circuits as PCKT. 

Lemma 1. For the scheme HESP, the ciphertexts resulting from EncryptSP as well as 
EvaluateSP applied to a permitted circuit, decrypts correctly.                                      □ 

Theorem 1. The encryption scheme HESP is correct, compact and is algebraically 
homomorphic for the given plaintext M ∈ {0,1}, and for any circuit CKT ∈ PCKT.  □ 

3 Security of the Proposed Variant  

Since HESP is a variant of HE, we can follow the same strategy as that of [5] and [8] 
to base the security of our proposition on the hard problem of solving a version of 
GACD called Partial Approximate Greatest Common Divisor (PAGCD). In [8] this 
problem is called as error-free approximate-GCD. 

Definition 2. (Two-element Partial Approximate Greatest Common Divisor) The 
two-element (r, e, g )-PAGCD problem is: For a random e-bit odd positive integer P, 
given X0 = PQ0 and  X1= PQ1 + R, where Qi ( i=0,1), R are chosen from the intervals 
[0, 2g / P), and (-2r, 2r ) respectively, output P. 
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The recent work of Chen and Nguyen [12] shown that solving PAGCD is relatively 
easier than solving GAGCD. However, as mentioned by them their attack’s 
implementation parameters are suboptimal for medium and large challenges put forth 
by Coron et el [8]. Hence, if the security parameter n is appropriately chosen, the 
PAGCD problem will be intractable ensuring the semantic security of the scheme. We 
have the following theorem, similar to [5] to base the security of our scheme on the 
two-element PAGCD problem.  

 
Theorem 2. Let d, e, g, r be the parameters of the scheme HESP, which are 
polynomial in the security parameter n. An adversary A with an advantage ε against 
HESP can be converted in to an algorithm B for solving the two-element (r, e, g )-
PAGCD problem with success probability at least ε /2. The running time of B is 
polynomial in the running time of A, n and 1/ ε.                                                           □ 

4 Known Attacks  

In HESP, for a given security parameter n the lowest possible size of the problem 
instance to solve the PAGCD problem is the public key (X0, X1) because, the noise in 
X1 is less when compared to noise in ciphertexts for a particular instance of the 
scheme. Therefore, the attacks against the two-element PAGCD problem, i.e., against 
the public key only are described, claiming that the high noise ciphertexts 
(approximate multiples of P) successfully defend all these attacks. 

Factoring the Exact Multiple. For the chosen parameter values, the size of the exact 
multiple of P i.e., X0 is big enough so that, even the best known integer factoring 
algorithms such as the General Number Field Sieve [13] will not be able to factor X0. 
Even if the factor P is targeted which is smaller than the size of total Q0, algorithms 
such as Lenstra’s elliptic curve factoring [14] takes about exp (O(√e ))time to find P. 
But, it is to be noted that, P will not be recovered directly as it is not prime and may 
be further decomposed in to smaller primes. 

Brute-Force Attack on the Noise. Given the public key integers X0 and X1, the 
simple brute-force  attack can be; choosing an R form the interval (-2r, 2r), subtracting 
it from X1, and computing GCD(X0, X1- R) every time, which may be the required 
secret integer P. In a worst case, this process may need to be repeated for all the 
integers R in the interval. The complexity of this attack will be 2r. Õ(g) for g bit 
integers.  

Another integer more vulnerable to brute-force attack in HESP is the noise factor N 
used during the encryption. In fact, this integer clearly defines the overall security of 
the scheme because, guessing this number simply breaks the scheme, rather than 
guessing the secret integer P. The attack in the case of this integer will be, choosing 
all the possible even integers N from the interval mentioned, and encrypting 0 with 
each such N and public key. Then, for a plaintext bit encrypted using some N, the  
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difference between the corresponding ciphertext and a ciphertext that encrypted 0 
using the same N will be only in the least significant bit. The complexity of this attack 
will be exponential in the size of N that is 2r and choosing r = ω( lg n) foils this attack. 

Continued Fractions and Lattice Based Attacks. Howgrave Graham [11] described 
two methods to solve the two-element PAGCD problem. In simple terms the 
continued fraction based approach (Algorithm 11, [11] ) recovers P if the condition   
R < P/Q is satisfied. Similarly, his lattice based algorithm (Algorithm 12, [11]) 
recovers P if the condition R < P2 / (PQ)ε is satisfied for some real number ε. Also, as 
analyzed in [5] for the case of a two-element PAGCD problem, it is possible to 
recover P when r/g is smaller than (e / g)2 . Since the parameter setting of HESP does 
not satisfy these constraints, the concerned methods fail to recover the value of P. 

The General Common Divisors Attack. Consider the Theorem 31.2 and its 
corollaries discussed in [15]. GCD(X0, X1), can be the smallest positive element in the 
set     {AX0 + BX1 : A,B ∈ ℤ }. This is possible because, A, B can be any integers 
including negative numbers. Now, if a common divisor exists for both X0, X1, it will 
divide all the possible linear combinations of X0, X1. Modular reduction of a 
ciphertext with such common divisor results in the plaintext, because a ciphertext 
contains a linear combination of X0, X1. Therefore, taking the pair of integers X0, X1 
as co-prime foils this attack. 

5 Improvement in Bit Complexity 

As discussed earlier, the public key of the HE contains Õ(n5) elements each of which 
is Õ(n5) bits long. This will take Õ(n10) computations for complete key generation. 
Also, in that scheme the bit length of a fresh ciphertext that encrypts a single bit is 
Õ(n5), leading to an expansion ratio of n5 . 

The public key in the scheme HESP consists of only two elements of Õ(n3) bits 
long. This makes the complexity of key generation as Õ(n3). This is a considerable 
improvement over the somewhat homomorphic schemes of [5] and [8]. Also, the 
encryption of an Õ(n) bit plaintext, which involves a multiplication of Õ(n3). Õ ( n) 
and a modular reduction of this with Õ(n3) bit X0 takes Õ(n3) steps. Similarly, the bit 
complexity of decryption is roughly Õ(n3). Therefore, the overall complexity of the 
proposed variant HESP is Õ(n3). Similarly, a single plaintext bit is embedded in a 
ciphertext of Õ(n3) bits making the expansion ratio also comparatively less which is 
n3. With these drastic improvements in bit complexity and ciphertext expansion, this 
conceptually simple somewhat homomorphic scheme will be suitable for many 
practical applications that involve simple functions for homomorphic evaluation (The 
degree of the polynomial approximation of such functions should be within the 
homomorphic evaluation capacity of the scheme).  
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6 Conclusions 

In this paper, an efficient and hopefully a practical variant of the existing Somewhat 
Homomorphic Encryption over the integers is proposed. The improvement in 
efficiency, from Õ(n10) to Õ(n3), is obtained by reducing the size of the public key, 
which contains only two integers. The semantic security of the scheme is thoroughly 
analyzed by reducing the same to the hard problem of solving the two-element Partial 
Approximate Greatest Common Divisor, describing all the known attacks. With the 
improvement in bit complexity, it is expected that the Homomorphic Encryption 
usage and thus encrypted data processing becomes imminent practically.  
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