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Abstract. A multi-objective optimization involves optimizing a number of 
objectives simultaneously. The Multi-Objective Optimization Problem has a set 
of solutions, each of which satisfies the objectives at an acceptable level. An 
optimization algorithm named SBGA (stage-based genetic algorithm), with new 
GA operators is attempted. The multiple objectives considered for optimization 
are maximum path coverage with minimum execution time and test-suite 
minimization. The coverage and the no. of test cases generated using SBGA are 
experimented with simple object-oriented programs. The data flow testing of 
OOPs in terms of path coverage are resulted with almost 88%. Thus, the 
efficiency of generated testcases has been improved in terms of path coverage 
with minimum execution time. 

Keywords: multi-objective optimization, test-suite minimization, stage-based, 
path coverage, execution time. 

1 Introduction 

Genetic algorithms which are more advanced heuristic search techniques have been 
successfully applied in the area of software testing. For a large search space and 
getting optimal set of solutions GA is the best choice in software testing. Commonly, 
these techniques are referred as evolutionary testing. Evolutionary testing tries to 
improve the effectiveness and efficiency of the testing process by transforming testing 
objectives into search problems, and applying evolutionary computation in order to 
solve them. In this testing of software can be done with a single objective or with 
multiple objectives. Instead of fixing only one criteria or quality parameter for 
generating test cases, multiple objectives like minimizing the time & cost and no. of 
test cases simultaneously maximizing the coverage (i.e., the test requirements) would 
be considered.   

2 Existing Methods 

Genetic Algorithms are the most popular heuristic technique to solve Multi-Objective 
Optimization Problems [2]. A Multi-Objective Optimization Problem has a number of 
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objective functions, which are to be minimized or maximized. MOOP can be 
expressed as, fitness function fm(x), where m = 1, 2, 3… M no. of objective functions 
& x = single candidate solution. The methods [1] used for multi-objective 
optimization are ranking, diversity and combined approach, NRGA [3].  

3 Stage-Based Genetic Algorithm (SBGA) 

The design diagram of stage-based genetic algorithm in connection with multi-
objective optimization is shown in Fig. 1. 
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Fig.1. Interconnection of multi-objective optimization with stage-based GA 

3.1 Test Data Generation 

The parameters and operators considered for test data generation in GA, their initial 
and range of values are tabulated in table1 and the results are shown in table 2.  



248 P. Maragathavalli and S. Kanmani 

Table 1. GA parameters and operators 

Name of the Parameter  Initial value Range 
Population size, M 40  40-200 
Maximum generations per era, G 40 40-100 
Number of eras, E 1 1-5 
Crossover Probability, Cp 0.95 0.1-1.0 
Mutation Probability, Mp 0.95 0.1-1.0 

 

Name of the Operator Type / value 

Selection Steady-state / fitness ≈ 1.0  
Crossover uniform / offsprings 
Mutation similarity / offsprings 
Fitness function (ft)* Float / (0.5 – 1.0) 
Immigration rate (I)* Float / (0.3 – 0.9) 

Table 2. Results obtained for sample java programs 
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* Fitness function ft(vi) = ½(cov_d / tot_d) + ½(cov_u / tot_u) 
* I = no. of chromosomes in next generation / no. of chromosomes in current 
generation The crossover used for getting the offsprings is uniform crossover which 
uses a fixed mixing ratio between two parents. For example, if the mixing ratio is 0.5, 
then half of the genes from both the parents go to offspring. The mutation is done 
using similarity mutation in which a similar gene is replaced with a different testcase.  
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3.2 Results and Discussion 

Programs like multiple stacks, calculator, sliding window, and array difference gives 
more coverage; because, the number of conditions to be checked for selecting test 
cases are less whereas in coinbox and postal code type of programs conditions are 
more almost 40, shown in Fig. 2.  

                       
Fig. 2. Immigration rate results in SBGA and GA 

4 Conclusion  

Thus, the stage-based genetic algorithm with two stages is used for generation of 
object-oriented test cases. The fitness is purely depends on the path coverage of the 
test cases in the class. The results for sample java programs show that the efficiency 
and effectiveness of test cases generated by SBGA in terms of path coverage. In 
addition to path coverage, the time required for execution and the immigration rate 
are also satisfactory. This algorithm can be used for similar type of software 
engineering problems. 
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