
V.V. Das and J. Stephen (Eds.): CNC 2012, LNICST 108, pp. 246–249, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Multi-objective Optimization for Object-oriented Testing
Using Stage-Based Genetic Algorithm

P. Maragathavalli and S. Kanmani

 Department of Information Technology,
Pondicherry Engineering College, Puducherry, India

{marapriya,kanmani}@pec.edu

Abstract. A multi-objective optimization involves optimizing a number of
objectives simultaneously. The Multi-Objective Optimization Problem has a set
of solutions, each of which satisfies the objectives at an acceptable level. An
optimization algorithm named SBGA (stage-based genetic algorithm), with new
GA operators is attempted. The multiple objectives considered for optimization
are maximum path coverage with minimum execution time and test-suite
minimization. The coverage and the no. of test cases generated using SBGA are
experimented with simple object-oriented programs. The data flow testing of
OOPs in terms of path coverage are resulted with almost 88%. Thus, the
efficiency of generated testcases has been improved in terms of path coverage
with minimum execution time.

Keywords: multi-objective optimization, test-suite minimization, stage-based,
path coverage, execution time.

1 Introduction

Genetic algorithms which are more advanced heuristic search techniques have been
successfully applied in the area of software testing. For a large search space and
getting optimal set of solutions GA is the best choice in software testing. Commonly,
these techniques are referred as evolutionary testing. Evolutionary testing tries to
improve the effectiveness and efficiency of the testing process by transforming testing
objectives into search problems, and applying evolutionary computation in order to
solve them. In this testing of software can be done with a single objective or with
multiple objectives. Instead of fixing only one criteria or quality parameter for
generating test cases, multiple objectives like minimizing the time & cost and no. of
test cases simultaneously maximizing the coverage (i.e., the test requirements) would
be considered.

2 Existing Methods

Genetic Algorithms are the most popular heuristic technique to solve Multi-Objective
Optimization Problems [2]. A Multi-Objective Optimization Problem has a number of

 Multi-objective Optimization for Object-oriented Testing 247

objective functions, which are to be minimized or maximized. MOOP can be
expressed as, fitness function fm(x), where m = 1, 2, 3… M no. of objective functions
& x = single candidate solution. The methods [1] used for multi-objective
optimization are ranking, diversity and combined approach, NRGA [3].

3 Stage-Based Genetic Algorithm (SBGA)

The design diagram of stage-based genetic algorithm in connection with multi-
objective optimization is shown in Fig. 1.

Program under test

Test data generation

Search-based Optimization Techniques

Various forms of (MOGA’s) genetic algorithms

local
search

global
search

2 approaches in implementing GA

Evoly methods

GAs

ESs

Single-objective Multi-objective

HC, SA, TS

Simple genetic
algorithm

Ranking-
based

Diversity-
basedNRGA

RWGA NSGA

Stage-based
obj1: max cov
obj2: min time
obj3: min test suite

Criteria
(test reqts)

(Coverage)

Multiple objectives

obj1: max cov
obj2: min time
obj3: min test suite

Brch, Stmt, Dec,
Dec/Con, Cond,
MCDC, Mul cond.

Data set

Linear search, Qua Eqn, GCD,
TCP, Binary search, LRC, no of
days prob.

Compared the results with random
testing, GA gives better coverage
with min time reqt.

(java & c++ pgms)
Mul stacks, coinbox, circular
queue, calculator, postcode,
sliding window, array diff, LRC,
anomaly detector, banking trans.

SBGA

sample
programs

Efficient test cases

Fig.1. Interconnection of multi-objective optimization with stage-based GA

3.1 Test Data Generation

The parameters and operators considered for test data generation in GA, their initial
and range of values are tabulated in table1 and the results are shown in table 2.

248 P. Maragathavalli and S. Kanmani

Table 1. GA parameters and operators

Name of the Parameter Initial value Range
Population size, M 40 40-200
Maximum generations per era, G 40 40-100
Number of eras, E 1 1-5
Crossover Probability, Cp 0.95 0.1-1.0
Mutation Probability, Mp 0.95 0.1-1.0

Name of the Operator Type / value

Selection Steady-state / fitness ≈ 1.0
Crossover uniform / offsprings
Mutation similarity / offsprings
Fitness function (ft)* Float / (0.5 – 1.0)
Immigration rate (I)* Float / (0.3 – 0.9)

Table 2. Results obtained for sample java programs

S.
No

Sample
programs

No. of test
cases
generated

Path
coverage
(cov/tot)

Execution time
(ms)

Immigration
rate (I)

Stopping
criteria

GA SBGA GA SBGA GA SBGA

1.

Multiple
Stacks

100

0.90

0.95

2990

2180

0.5

0.4

Tc =
4(reduced)

2.

Coinbox

120

0.75

0.83

4080

3802

0.7

0.5

Upto 3 eras

 3.

Circular
Queue

105

0.75

0.83

3210

3095

0.5

0.4

Till
fitness=1.0

4.

Calculator

110

0.87

0.93

2725

2570

0.4

0.3

Upto 3 eras

5.

Postal code

98

0.78

0.88

5180

4215

0.8

0.5

Upto 10 secs

6.

Sliding
Window

100

0.87

0.93

4250

3990

0.5

0.4

Upto 3 eras

7.

Line-rectangle
classifier

125

0.80

0.90

3917

3605

0.5

0.4

Tc =
4(reduced)

8.

Anomaly
detector

140

0.80

0.90

2312

2196

0.5

0.4

Upto 4 eras

9.

Array
difference

150

0.83

0.92

2105

1958

0.4

0.3

Upto 4 eras

10.

Banking
transactions

105

0.80

0.87

3635

3220

0.6

0.4

Tc =
4(reduced)

* Fitness function ft(vi) = ½(cov_d / tot_d) + ½(cov_u / tot_u)
* I = no. of chromosomes in next generation / no. of chromosomes in current
generation The crossover used for getting the offsprings is uniform crossover which
uses a fixed mixing ratio between two parents. For example, if the mixing ratio is 0.5,
then half of the genes from both the parents go to offspring. The mutation is done
using similarity mutation in which a similar gene is replaced with a different testcase.

 Multi-objective Optimization for Object-oriented Testing 249

3.2 Results and Discussion

Programs like multiple stacks, calculator, sliding window, and array difference gives
more coverage; because, the number of conditions to be checked for selecting test
cases are less whereas in coinbox and postal code type of programs conditions are
more almost 40, shown in Fig. 2.

Fig. 2. Immigration rate results in SBGA and GA

4 Conclusion

Thus, the stage-based genetic algorithm with two stages is used for generation of
object-oriented test cases. The fitness is purely depends on the path coverage of the
test cases in the class. The results for sample java programs show that the efficiency
and effectiveness of test cases generated by SBGA in terms of path coverage. In
addition to path coverage, the time required for execution and the immigration rate
are also satisfactory. This algorithm can be used for similar type of software
engineering problems.

References

1. Ghiduk, A.S.: Automatic Generation of Object-Oriented Tests with a Multistage-Based
Genetic Algorithm. Journal of computers 5(10), 1560–1569 (2010)

2. Singh, D.P., Khare, A.: Different Aspects of Evolutionary Algorithms, Multi-Objective
Optimization Algorithms and Application Domain. International Journal of Advanced
Networking and Applications 2(04), 770–775 (2011)

3. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms:
A tutorial. Reliability Engineering and System Safety, 992–1007 (2006)

0 1 2 3 4 5 6 7 8 9 10

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Im
m

ig
ra

tio
n

R
at

e
'I'

Programs

 SBGA
 GA

(3802, 4215) ms

(4080, 5180) ms

	Multi-objective Optimization for Object-oriented Testing Using Stage-Based Genetic Algorithm
	Introduction
	Existing Methods
	Stage-Based Genetic Algorithm (SBGA)
	Test Data Generation
	Results and Discussion

	Conclusion
	References

