
V.V. Das and J. Stephen (Eds.): CNC 2012, LNICST 108, pp. 193–198, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

An Effective Approach to Build Optimal T-way
Interaction Test Suites over Cloud Using Particle Swarm

Optimization

Priyanka1, Inderveer Chana2, and Ajay Rana1

1 CSED, Amity University, Noida, India
priyankamatrix@gmail.com, ajay_rana@amity.edu

2 Thapar University, India
inderveer@thapar.edu

Abstract. Software testing is an expensive and time consuming activity that is
often restricted by limited project budgets. There is a need for advanced soft-
ware testing techniques that offer a solid cost-benefit ratio in identifying
defects. Interaction testing is one such method that may offer a benefit. Combi-
natorial or Interaction Testing is a practical test generation technique that offers
a benefit when used to complement current test generation techniques such as
equivalence partitioning, boundary value analysis. There are many existing is-
sues which have not been fully addressed. One of the key issues of Combina-
torial Testing is Combinatorial Explosion problem which can be addressed
through Parallelization. In this paper, we propose an effective approach to build
optimal t-way interaction test suites over the cloud environment which could
further reduce time and cost.

Keywords: T-way Testing, Pairwise Testing, Interaction test suites, Combina-
torial testing.

1 Introduction

Software testing is an expensive and time consuming activity that is often restricted
by limited project budgets. Accordingly, the National Institute for Standards and
Technology (NIST) reports that software defects cost the U.S economy close to $60
billion a year [1]. They suggest that approximately $22 billion can be saved through
more effective testing. There is a need for advanced software testing techniques that
offer a solid cost-benefit ratio in identifying defects. Interaction testing is one such
method that may offer a benefit. Interaction testing or Combinatorial Testing imple-
ments a model based testing approach using combinatorial design. In this approach, it
creates test suites by selecting values for input parameters and by combining these
parameter values This testing method has been applied in numerous examples like
medical devices, browsers, servers etc. [2] [3].

194 Priyanka, I. Chana, and A. Rana

Combinatorial Testing can detect hard to find software faults more efficiently than
manual test case selection methods. It can be categorized into two types Pairwise
Testing and T-way testing.

2 Related Work

T-way testing is very promising technique for generating test data in software quality
assurance because it provides effective error detection at low cost. There are three
main types of algorithms to construct combinatorial test suites: Algebraic,
Computational and Heuristic search algorithms [4][5]. Comparison chart is shown in
Table 1. Test data generation process for multi-way testing can be fully automated.
Several tools that automate the production of complete test cases covering up to 6-
way combinations are summarized in Table 2. Combinatorial Testing is a practical
software testing approach, which could detect the faults that triggered by single
factors in software and even interactions of them. Existing Combinatorial Testing
Algorithms is summarized in Table 3.

Table 1. Comparison chart of Combinatorial Strategies

Algebraic Approach Computational Approach Heuristic search
1. Extensions of the mathematical
methods.

It iteratively searches the
combinations space to generate
the required test case until all
pairs have been covered.

These techniques start from a pre-
existing test set and then apply a series
of transformations to the test set until
a test set is reached that covers all the
combinations that need to be covered.

2. They do not enumerate any
combinations, hence less expensive.

It is expensive due to the need to
consider explicit enumeration
from all the combination space.

Produce smaller test suites than
Computational Approach.

3. Algebraic approaches can be
extremely fast.

Time required is more than
Algebraic Approach.

Time required is more than
Computational Approach.

4. Impose serious restrictions on the
system configurations to which they
can be applied.

It can be applied to arbitrary
system configurations.

It can be applied to arbitrary system
configurations.

5. Test prioritization and Constraint
handling can be more difficult for
algebraic approaches.

It constructs tests in a locally
optimized manner. Thus, the size
of test sets generated may not be
minimal

Easy to adapt computational
approaches for test prioritization and
constraint handling.

6. Deterministic Approach. For e.g.
Covering Arrays and Orthogonal
Arrays.

Can be either deterministic or
Non-Deterministic. For e.g.
AETG, IPO etc

Can be either deterministic or Non-
Deterministic. For e.g. Simulated
Annealing, Hill-Climbing.

3 Research Objectives

Based upon literature review, we found that one of the key issues of Combinatorial
Testing is Combinatorial Explosion problem (i.e. too many data set to consider)
which can be addressed through Parallelization. Many Combinatorial testing tech-
niques have been proposed which mainly focus on minimization of the resulting test
sets with balanced time and space requirements [6] [7] [16], removal of unwanted
controls and data dependencies [8] [9], pairwise testing with efficient data structure
for storing and searching pairs [10], but none of the techniques have been yet ported

 An Effective Approach to Build Optimal T-way Interaction Test Suites 195

to cloud environment which could further reduce time and cost. Due to resource con-
straints, it is nearly always impossible to exhaustively test all of these combinations of
parameter values. This problem can be addressed through Parallelization which can
be an effective approach to manage the computational cost to find a good test set that
covers all the combinations for a given interaction strength (t). In this paper we pro-
pose a strategy to build optimal t-way interaction test suites using artificial life tech-
niques like particle swarm optimization that that can be executed in the cloud
environment for further reduction in cost and time. Benefits of using Cloud as execu-
tion platform can be listed as: I) Computing clouds are huge aggregates of various
grids (academic, commercial), computing clusters and supercomputers. They are used
by a huge number of people either as users (300 million users of Microsoft’s Live) or
developers (330.000 application developers of Amazon EC2). II) Cloud computing
has strength to tackle vast amounts of data coming not only from the web but also
from a rising number of instruments and sensors as it draws on many existing tech-
nologies and architecture and integrates centralized, distributed and ‘software as ser-
vice’ computing paradigms into an orchestrated whole [21] and III)The emergence of
the computing cloud will invigorate academic research and will have strong potential
to spawn innovative collaboration methods and new behaviors for eg. SETI@home
and FOLDING@home.

4 Particle Swarm Optimization

Particle swarm optimization is a strategy that tries to manipulate a certain number of
candidate solutions at once. The whole population is referred to as swarm whilst the
solution is referred to as particle. Each solution is represented by a particle that works
in the search space to enhance its position (i.e. in order to find solution of the problem
at hand). Figure 1 illustrates the typical particles on the swarm search space. As com-
pared with other artificial intelligent optimization methods, PSO has few parameters
to regulate and can be easily merged with the environment that needs optimization. In
addition, PSO does not need the calculation of derivatives that the knowledge of good
solutions is kept by all particles and that particle share the information with others in
the swarm [12].

Fig. 1. Illustration of particle on the swarm search space [12][13]

196 Priyanka, I. Chana, and A. Rana

The manipulation of the particles around the search space is restricted by a certain
update and positions rule. The particles are manipulated according to the following
equations [13]:

Vj,d (t) = w Vj,d(t-1) +c rj,d(pBestj,d (t-1) – Xj,d (t-1)) +c’r’j,d (lBestj,d (t-1)-Xj,d(t-1)) (1)

Xj,d= Xj,d(t-1)+ Vj,d (t) (2)

Where ‘t’ is the iteration number or time, d is the dimension, j the particle index, w is
the inertia weight, r and r’ are two random factors, which are two random real num-
bers between 0 and 1, and c, c’ are acceleration coefficients that are adjusting the
weight between components.

Table 2. Summary of existing combinatorial testing tools

Tool Name Origin Citation Tool Category
FireEye NIST [4] Implements IPOG and IPOG-D; written in

Java.
TVG J.Arshem [11] Generates combinatorial Test Vectors based on

the input-output relationship, N-way coverage
or randomly;VSIT.

ITCH IBM [20] Implements combination of several algebraic
methods; written in Java.

TConfig Williams [16] Pairwise Interaction Coverage.
ACTS NIST [1] Implements IPOG, IPOG_D, IPOF1 and

IPOF2.
 Implements Greedy Algorithm; uses Random

Search Algorithm.
Jenny Jencins [17] Implements Greedy Algorithm, written in C.
 Variable strength combinatorial test generation

(VSIT).
PSTG Bestoun S.

Ahmed
[19] Implements Particle Swarm Optimization.

MC-MIPOG Mohammad
Younis

[9] Implements parallel strategy on multicore
architecture.

PairTest Yu Lei [4] Implements IPO; written in Java.

5 Proposed Strategy

Figure 2 shows the main classes of the tool that we have proposed in order to generate
an optimal t-way test suites using particle swarm optimization. Class Starter contains
the main program and will start the execution of operations for building the optimized
test suite. Class PSuiteOptimizer will be called by class Starter that contains the algo-
rithm based upon particle swarm optimization which generates the optimized test
suite. Class Repository contains the version of the test suite that is considered optimal.
In order to obtain real parallelism between threads, the instances of PSuiteOptimizer
will be executed on different machines. For this, we used the framework MapReduce
[14] that gives support for automatically distributing an application. MapReduce is a
programming model and an associated implementation for processing and generating
large datasets that is amenable to a broad variety of real-world tasks. Generated mi-
nimal t-way test suites executes simultaneously on different machines in cloud envi-
ronment. A Cloud will be set up to implement and validate the above proposed model.

 An Effective Approach to Build Optimal T-way Interaction Test Suites 197

Fig. 2. Class diagram of proposed strategy

Table 3. Summary of Existing Combinatorial Testing Techniques

Technique Year of
Origin

Approach Description

AETG 1997 Computational Employs greedy algorithm uses random search algorithm; non-deterministic;.
SA 2004 Heuristic Search

Technique
t-way test set is constructed from the initial test set by repeating modifications;
Stochastic greedy algorithm; can produce smaller test sets than AETG and
IPO; non-deterministic; time consuming.

GA 2004 Heuristic Search
Technique

Genetic Algorithms (GAs) are adaptive heuristic search algorithm premised on
the evolutionary ideas of natural selection and genetic; Modification of
AETG; non-deterministic; optimal test generation.

IPOG 2007 Computational Generalization of IPO; Deterministic.

IPOG-D 2007 Computational It combines the IPOG strategy with an algebraic recursive construction called
D-construction: faster than IPOG; larger test set; Deterministic

MIPOG 2007 Computational Variant algorithm of IPOG to address the issue of dependency : Deterministic
IRPS 2008 Computational Efficient pairwise data generation strategy and data structure implementation

to generate optimal pairwise test set.
IPOF 2008 Computational Refinement of IPOG; Non-Deterministic.

G2Way

2008 Computational Depends on two algorithms: the pair generation algorithm and the
backtracking algorithm.

PITS 2009 Computational Prioritized interaction test suite based on user importance
VSIT 2009 Computational Interactions have variable strengths; greedy heuristic and proposed two

concrete test generation strategies that were based on “one-test-at-a-time” and
in-parameter-order strategy.

MC_MIPOG 2010 Computational MC_MIPOG is a parallel t-way test generation strategy for multicore systems;
Deterministic.

6 Conclusions and Future Work

In this paper, we propose and illustrate our effective approach to build optimal t-way
interaction test suites over cloud using a novel approach particle swarm optimization
technique with the software test case generation to gain near optimal solution. Our
approach supports (t) equals up to 6-way consistent with the requirements as de-
scribed by Kuhn et al [15]. Concerning future work, we are now looking to compare
the performance of our approach particularly in terms of the test size with other strat-
egies like IPOG with its tool FireEye, WHITCH, Jenny, TConfig, and TVG etc.

References

1. National Institute of Standards and Technology. The Economic Impacts of Inadequate In-
frastructure for Software Testing. U.S. Department of Commerce (May 2002)

2. Berling, T., Runeson, P.: Efficient Evaluation of Multifactor Dependent System Perfor-
mance Using Fractional Factorial Design. IEEE Transactions on Software Engineer-
ing 29(9), 769–781 (2003)

198 Priyanka, I. Chana, and A. Rana

3. Kuhn, R., Reilly, M.: An investigation of the applicability of design of experiments to
software testing. In: NASA Goddard/IEEE Software Engineering Workshop 2002, pp. 91–
95 (2002)

4. Lei, Y., et al.: IPOG/IPOG-D: Efficient Test Generation for Multiway Combinatorial Test-
ing. Software Testing, Verification and Reliability 18(3), 125–148 (2007)

5. Younis, M.I., Zamli, K.Z., Isa, N.A.M.: IRPS – an efficient test data generation strategy
for pairwise testing. In: 12th International Conference on Knowledge-Based and Intelligent
Information and Engineering Systems (KES), Zagreb, Croatia, pp. 493–500 (September
2008b)

6. Forbes, M., et al.: Refining the In-Parameter-Order Strategy for Constructing Covering Ar-
rays. Journal of Reseach of the National Institute of Standards and Technology 113(5),
287–297 (2008)

7. Lei, Y., Carver, R.H., Kacker, R., Kung, D.: A combinatorial testing strategy for concur-
rent programs. Software Testing Verification and Reliability 17(4), 207–225 (2007)

8. Younis, M.I., Zamli, K.Z., Isa, N.A.M.: A strategy for grid based T-Way test data genera-
tion. In: Proceedings the 1st IEEE International Conference on Distributed Frameworks
and Application (DFmA 2008), Penang, Malaysia, pp. 73–78 (October 2008)

9. Younis, M.I., Zamli, K.Z.: MC-MIPOG: A Parallel t-Way Test Generation Strategy for
Multicore Systems. ETRI Journal 32, 73–82 (2010)

10. Younis, M., et al.: Assessing IRPS as an Efficient Pairwise Test Data Generation Strategy.
Int. J. Advanced Intelligence Paradigms 2(1), 90–104 (2010)

11. Arshem, J.: TVG (September 23, 2011),
http://sourceforge.net/projects/tvg/

12. Windisch, A., Wappler, S., Wegener, J.: Applying Particle Swarm Optimization to Soft-
ware Testing. In: Proc. of the 2007 Conf. on Genetic and Evolutionary Computation
GECCO 2007, London, England, United Kingdom, pp. 527–532 (2007)

13. Ganjali, A.: A Requirements-Based Partition Testing Framework Using Particle Swarm
Optimization Technique. Master Thesis, University of Waterloo, Canada (2008)

14. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Com-
mun. ACM 51(1), 107–113 (2008),
http://doi.acm.org/10.1145/1327452.1327492,
doi:10.1145/1327452.1327492

15. Kuhn, D.R., Wallace, D., Gallo, A.: Software fault interactions and implications for soft-
ware testing. IEEE Transactions on Software Engineering 30(6), 418–421 (2004)

16. Williams, A.: TConfig (March 23, 2011),
http://www.site.uottawa.ca/’awilliam/

17. Jenny, J.B. (March 23, 2011),
http://www.burtleburtle.net/bob/math/jenny.html

18. Czerwonka, J.: Pairwise testing in real world: Practical extensions to test case generator.
In: Proceedings of 24th Pacific Northwest Software Quality Conference, Portland, Oregon,
USA, pp. 419–430 (October 2006)

19. Ahmed, B.S., Zamli, K.Z.: PSTG: A T-Way Strategy Adopting Particle Swarm Optimiza-
tion, ams. In: 2010 Fourth Asia International Conference on Mathematical/Analytical
Modelling and Computer Simulation, pp. 1–5 (2010)

20. Hartman, A., Klinger, T., Raskin, L.: IBM intelligent test case handler (March 23, 2011),
http://www.alphaworks.ibm.com/tech/whitch

21. Weiss, A.: Computing in The Clouds. ACM Net. Worker, 16–25 (December 2007)

	An Effective Approach to Build Optimal T-way Interaction Test Suites over Cloud Using Particle Swarm Optimization
	Introduction
	Related Work
	Research Objectives
	Particle Swarm Optimization
	Proposed Strategy
	Conclusions and Future Work
	References

