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Abstract. We consider learning correlated equilibria in noncooperative
repeated games where players form clusters. In each cluster, players ob-
serve the action profile of cluster members and receive local payoffs,
associated to performing localized tasks within clusters. Players also ac-
quire global payoffs due to global interaction with players outside cluster,
however, are oblivious to actions of those players. A novel adaptive learn-
ing algorithm is presented which generates trajectories of empirical fre-
quency of joint plays that converge almost surely to the set of correlated
ε-equilibria. Thus, sophisticated rational global behavior is achieved by
individual player’s simple local behavior.

Keywords: Adaptive learning, correlated equilibrium, differential in-
clusions, stochastic approximation.

1 Introduction

Consider a noncooperative repeated game with a set of players comprising multi-
ple non-overlapping clusters. Clusters are characterized by the subset of players
that perform the same task locally and share information of their actions with
each other. However, clusters do not disclose their action profile to other clusters.
In fact, players inside clusters are even oblivious to the existence of other clusters
or players. Players repeatedly take actions to which two payoffs are associated: i)
local payoffs: due to performing localized tasks within clusters, ii) global payoffs:
due to global interaction with players outside clusters. The incremental informa-
tion that players acquire at the end of each period then comprises: i) the realized
payoff, delivered by a third party (e.g. network controller in sensor networks),
and ii) observation of action profile of cluster members. Players then utilize this
information and continuously update their strategies – via the proposed regret-
based learning algorithm – to maximize their expected payoff. The question we
tackle in this paper is: Given this simple local behavior of individual agents, can
the clustered network of players achieve sophisticated global behavior? Similar
problem have been studied in the Economics literature. For seminal works, the
reader is referred to [1,2,3].
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Main Results: Regret-matching as a strategy of play in long-run interactions
has been introduced in [1,2]. In [1] the authors prove that when all players share
action information and follow the proposed regret-based learning procedure, un-
der general conditions, the global behavior converges to the set of correlated equi-
librium. A milder assumption is that players only observe the outcome, namely,
stage payoffs. A regret-based reinforcement learning algorithm is proposed in [2]
whereby players build statistics of their past experience and infer how their pay-
off would have improved based on the history of realized payoffs. Our model
differs from the above works as it incorporates cluster structure where action
information is only locally shared. The main result of this paper is that if every
player follows the proposed adaptive regret-based learning algorithm, the global
behavior of the network converges to the set of correlated ε-equilibria [4]. The
presented learning procedure can be simply regarded as a non-linear adaptive
filtering algorithm. In addition, we show (via empirical numerical studies) that,
taking advantage of the excess information disclosed within clusters, an order of
magnitude faster convergence to the set of correlated ε-equilibria can be achieved
as compared to the regret-based reinforcement learning algorithm in [2].

Correlated equilibrium is a generalization of Nash equilibrium and describes
a condition of competitive optimality. It is, however, more preferable for on-
line adaptive learning in distributed systems with tight computation/energy
constraints (e.g. wireless sensor networks [5,6]) due to the following reasons:
i) Structural Simplicity: it is a convex polytope, whereas the Nash equilibria
are isolated points at the extrema of this set [7], ii) Computational Simplicity:
computing correlated equilibrium requires solving a linear program (that can be
solved in polynomial time), whereas computing Nash equilibrium necessitates
finding fixed points. iii) Coordination Capability: it directly takes into account
the ability of players to coordinate their actions. Indeed, Hart and Mas-Colell
observe in [2] that for most simple adaptive procedures, “...there is a natural
coordination device: the common history, observed by all players. It is thus rea-
sonable to expect that, at the end, independence among players will not obtain.”
This coordination leads to potentially higher payoffs than if players take their
actions independently as required by Nash equilibrium [4].

Context: The motivation for such formulation stems from multi-agent net-
works that require some sort of cluster structure such as intruder monitoring
in sensor networks. Consider a multiple-target localization scenario in an unat-
tended ground sensor network [5,6]. Depending on their locations, sensors form
clusters each responsible for localizing a particular target. Sensors receive two
payoffs: i) local payoffs, based on the importance and accuracy of the informa-
tion provided about the local phenomena, ii) global payoffs, for communicating
the collected data to the sink through the communication channel, which is
globally shared amongst all sensors. Consideration of the potential local interac-
tion among sensors leads to a more realistic modeling, hence, more sophisticated
design of reconfigurable networked sensors.
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2 Regret-Based Learning with Cluster Structure

2.1 Game Model

Consider the finite repeated strategic-form noncooperative game:

G =
(
K, (Cm)m∈M ,

(Ak
)
k∈K,

(
Uk

)
k∈K,

(
σk

)
k∈K

)
, (1)

where each component is described as follows:
1) Set of Players: K = {1, 2, . . . ,K}. Individual players are denoted by k ∈ K.
2) Local Clusters Cm: Set K is partitioned into M non-overlapping clusters

Cm ⊂ K, m ∈ M = {1, . . . ,M}. We make the cluster monitoring assumption:
k, k′ ∈ Cm if and only if k knows ak

′
n and k′ knows akn at the end of period n.

Note that isolated players, which do not belong to any cluster, are formulated
as singleton clusters.

3) Action Set: Ak = {1, 2, . . . , Ak} denotes the set of action indices for each
player k, where |Ak| = Ak.

4) Payoff Function: Uk : AK → R denotes the payoff function for each player
k. Here, AK = ×k∈KAk represents the set ofK-tuple of action profiles. A generic
element of AK is denoted by a = (ak, . . . , aK) and can be rearranged as (ak, a−k)
for any player k, where a−k ∈ ×k′∈K

k′ �=k

Ak′
.

The payoff for each player k ∈ K is formulated as:

Uk
(
ak, a−k

)
= Uk

l (a
k, aCm) + Uk

g (a
k, a−Cm). (2)

Here, aCm ∈ ×k′∈Cm

k′ �=k

Ak and a−Cm ∈ × k′∈K
k′ /∈Cm

Ak denote the joint action profile of

cluster Cm (to which player k belongs) excluding player k and the joint action

profile of all players excluding cluster Cm, respectively. In addition, Uk
l (a

k, aC
−k
m )

= 0 if cluster Cm is singleton.
Time is discrete n = 1, 2, . . .. Each player k takes an action akn at time instant

n and receives a payoff Uk
n

(
akn

)
. Each player is assumed to know its local payoff

function Uk
l (·); Hence, taking action akn and knowing aCm

n , is capable of evaluat-
ing its stage local payoff. Players do not know the global payoff function Uk

g (·).
However, they can compute their realized global payoffs as follows:

Uk
g,n

(
akn

)
= Uk

n

(
akn

)− Uk
l (a

k
n, a

Cm
n ). (3)

Note that, even if players knew Uk
g (·), they could not compute stage global

payoffs as they are unaware of the actions taken by players outside cluster,
namely, a−Cm

n .
5) Strategy σk: At period n, each player k selects actions according to a

randomized strategy σk ∈ ΔAk = {pk ∈ R
Ak

; pk(a) ≥ 0,
∑

a∈Ak pk(a) = 1}.
The learning algorithm is an adaptive procedure whereby obtaining relatively



118 O.N. Gharehshiran and V. Krishnamurthy

high payoff by a given action i at period n increases the probability of choosing
that action σk

n+1 (i) in the following period.

2.2 Learning Correlated ε-equilibria

The game G, defined in (1), is played repeatedly in discrete time n = 1, 2, . . ..
Each player k generates two average regret matrices and update their elements

over time: (i) ᾱk
Ak×Ak , which records average local-regrets, and (ii) β̄

k
Ak×Ak ,

which is an unbiased estimator of the average global-regrets. Each element
ᾱk
n (i, j), i, j ∈ Ak, gives the time-average regret, in terms of gains and losses in

local payoff values, had the player selected action j every time he played action
i in the past. However, players are not capable of computing their global payoffs
and only receive the realized values. Each element β̄k

n (i, j), i, j ∈ Ak, thus pro-
vides an unbiased estimate (based on the realized global payoffs) of the average
regrets for replacing action j every time i was played in the past.

Positive overall-regrets (sum of local- and global-regrets) imply the oppor-
tunity to gain higher payoffs by switching action. Therefore, agents take only
positive regrets |ᾱk

n(i, j) + β̄k
n(i, j)|+ into account to determine switching proba-

bilities σk
n. Here, |x|+ = max{0, x}. The more positive the regret for not choos-

ing an action, the higher is the probability that the player picks that action.
At each period, with probability 1 − δ, player k chooses its consecutive action
according to |ᾱk

n(i, j) + β̄k
n(i, j)|+. With the remaining probability δ, player k

randomizes amongst the actions Ak according to a uniform distribution. This
can be interpreted as “exploration” which is essential as players continuously
learn their global payoff functions. Exploration forces all actions to be chosen
with a minimum frequency, hence, rules out actions being rarely chosen.

The adaptive regret-based learning algorithm can then be summarized as
follows:

Algorithm 1: Adaptive Regret-based Learning with Partial Local Information
0) Initialization: Set 0 < δ < 1. Initialize ψk

0 (i) = 1/Ak, for all i ∈ Ak,

ᾱk
0 = 0Ak×Ak and β̄

k
0 = 0Ak×Ak .

For n = 1, 2, . . . repeat the following steps:

1) Strategy Update and Action Selection: Select action akn = j according
to the following distribution

σk
n = (1− δ)μk

n +
δ

Ak
· 1Ak , (4)

where 1Ak = [1, 1, · · · , 1]Ak×1 and μk
n denotes an invariant measure for the

following transition probabilities:

ψk
n(i) =

⎧
⎨
⎩

1
ξk

∣∣ᾱk
n−1

(
akn−1, i

)
+ β̄k

n−1

(
akn−1, i

)∣∣+ , i �= akn−1,

1−∑
j∈Ak

j �=i

ψk
n (j) , i = akn−1.

(5)

Here, ξk is chosen such that ξk >
∑

j∈Ak−{ak
n−1} ψ

k
n (j).



Learning Correlated Equilibria in Clustered Noncooperative Games 119

2) Local Information Exchange: Player k: i) broadcasts akn to the cluster
members, ii) receives actions of cluster members and forms the profile aCm

n .
3) Regret Update:

3.1: Local Regret Update

ᾱk
n(i, j) = ᾱk

n−1(i, j) + εn
[(

Uk
l (j, a

Cm
n )− Uk

l (a
k
n,a

Cm
n )

)
I{ak

n = i} − ᾱk
n−1(i, j)

]
. (6)

3.2: Global Regret Update

β̄k
n(i, j) = β̄k

n−1(i, j)+εn

[
σk
n(i)

σk
n(j)

Uk
g,n

(
ak
n

)
I{ak

n = j} − Uk
g,n

(
ak
n

)
I{ak

n = i} − β̄k
n−1(i, j)

]
.

(7)

Here, I{·} denotes the indicator function and the step-size is selected as εn =
1/(n+1) (in static games) or εn = ε̄, 0 < ε̄� 1, (in slowly time-varying games).

4) Recursion: Set n← n+ 1 and go to Step 1.

Remark 1. The game model may evolve with time due to: i) players join-
ing/leaving the game, ii) players appending/shrinking the set of choices, iii)
changes in players’ incentives, and iv) changes in cluster membership agree-
ments. In these cases, to keep players responsive to the changes, a constant
step-size εn = ε̄ is required in (6) and (7). Algorithm 1 cannot respond to mul-
tiple successive changes in the game as players’ strategies are functions of the
time-averaged regrets.

3 Global Behavior and Convergence Analysis

3.1 Global Behavior and Correlated ε-equilibrium

Consider game G, defined in (1), and suppose each player employs Algorithm 1
to pick action for the next period. The global behavior, denoted by z̄n, is defined
as the (discounted) empirical frequency of joint play of all players. Formally,

z̄n =

{ 1
n

∑
τ≤n eaτ , if εn = 1

n ,

ε̄
∑

τ≤n (1− ε̄)n−τ eaτ , if εn = ε̄,
(8)

where eaτ denotes the
(∏

k∈K A
k
)
-dimensional unit vector with the element

corresponding to aτ being equal to one. The second line in (8) is a discounted
version of the first line and will be used in slowly evolving games. Note that
z̄n is only used for the global convergence analysis of Algorithm 1 – it does
not need to be computed by the players. However, in multi-agent systems such
as sensor networks, a network controller can monitor z̄n and use it to adjust
sensors’ parameters, thereby changing the equilibrium set in novel ways.
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Before proceeding with the main theorem of this paper, we provide the defi-
nition of the correlated ε-equilibrium Cε.
Definition 1. Let π denote a joint distribution on AK, where π (a) ≥ 0 for all
a ∈ AK and

∑
a∈AK π (a) = 1. The set of correlated ε-equilibrium, denoted by

Cε, is the convex set [4]

Cε =
{
π :

∑
a−k

πk(i,a−k)
[
Uk(j, a−k)− Uk(i,a−k)

]
≤ ε,∀i, j ∈ Ak,∀k ∈ K

}
. (9)

For ε = 0 in (9), C0 is called the set of correlated equilibria.

In (9), πk
(
i, a−k

)
denotes the probability of player k choosing action i and the

rest playing a−k. Definition 1 simply states that when the recommended signal a,
chosen according to the distribution π, allocates positive probability to playing
action i by player k, choosing j ∈ Ak − {i} (instead of i) does not lead to a
higher expected payoff.

3.2 Convergence to Correlated ε-equilibrium

The following theorem states the main result of this paper:

Theorem 1. Suppose each player k ∈ K employs the learning procedure in
Algorithm 1. Then, for each ε > 0, there exists δ̂ (ε) such that if δ < δ̂ (ε)
in Algorithm 1, the global behavior z̄n converges almost surely (for εn = 1/n) to
the set of correlated ε-equilibria in the following sense:

z̄n
a.s.−−→ Cε as n→∞ iff d (z̄n, Cε) = inf

z∈Cε

|z̄n − z| a.s.−−→ 0 as n→∞. (10)

For constant step-size εn = ε̄, z̄n weakly tracks Cε.
The above theorem implies that, for constant step-size εn = 1/n, the stochastic
process z̄n enters and stays in the correlated ε-equilibrium set Cε forever with
probability one. In other words, for any ε > 0, there exists N (ε) > 0 with
probability one such that for n > N (ε), one can find a correlated equilibrium
π ∈ C0 at the most ε-distance of z̄n. In addition, if the game evolves with time
slowly enough, Algorithm 1 can properly track the time-varying set of correlated
ε-equilibria.

Remark 2. If one replaces δ in Algorithm 1 with δn, such that δn → 0 slowly
enough as n→∞, convergence to the set of correlated equilibria C0 (instead of
ε-equilibria Cε) can be achieved in static games. This result cannot be expanded
to the games slowly evolving with time.

Proof. The proof uses concepts in stochastic averaging theory [8] and Lyapunov
stability of differential inclusions [9]. In what follows, a sketch of the proof will
be presented:
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1) Asymptotics of the Discrete-time Dynamics: Trajectories of the piecewise

constant continuous-time interpolation of the stochastic processes ᾱk
n and β̄

k
n

converges almost surely to (for εn = 1/n), as n → ∞, or weakly tracks (for

εn = ε̄), as ε̄→ 0, trajectories ᾱk(t) and β̄
k
(t) evolving according to the system

of inter-connected differential inclusion-equation:

{
dᾱk

dt ∈ Lk
(
ᾱk, β̄

k)− ᾱk,
dβ̄k

dt = Gk
(
ᾱk, β̄

k)− β̄
k
,

(11)

where elements of the set-valued matrix Lk
(
ᾱk, β̄

k)
and matrix Gk

(
ᾱk, β̄

k)
are

given by:

Lkij
(
ᾱk, β̄

k)
=

{[
Uk
l

(
j,νCm

)− Uk
l

(
i,νCm

)]
σk (i) ;νCm ∈ ΔACm−{k}

}
, (12)

Gkij
(
ᾱk, β̄

k)
=

[
Uk
g,t (j)− Uk

g,t (i)
]
σk (i) , (13)

for some bounded measurable process Uk
g,t (·). Here,

Uk
l (a

k,νCm) =

∫

ACm−{k}
Uk
l (a

k, aCm)dνCm(aCm), (14)

In addition, ΔACm−{k} denotes the simplex of probability measures over
ACm−{k}. The proof for the case of slowly time-varying game includes mean
square error bounds and weak convergence analysis.

Furthermore, if (11) is Lyapunov stable, trajectories of the continuous-time

interpolation of the stochastic processes ᾱk
n and β̄

k
n converges almost surely to

(for εn = 1/n), as n → ∞, or weakly tracks (for εn = ε̄), as ε̄ → 0, the set of
global attractors of (11).

2) The coupled system of differential inclusion-equation (11) is Lyapunov sta-

ble and the set of global attractors is characterized by
∣∣ᾱk (i, j) + β̄k (i, j)

∣∣+
being confined within an ε-distance of R−, for all i, j ∈ Ak. Formally, for almost
every solution to (11),

lim
t→∞

∣∣ᾱk
t (i, j) + β̄k

t (i, j)
∣∣+ ≤ ε, ∀i, j ∈ A. (15)

This, together with step 1, proves that if player k employs the learning procedure
in Algorithm 1, ∀ε ≥ 0, there exists δ̂(ε) ≥ 0 such that if δ ≤ δ̂(ε) in Algorithm 1:
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Table 1. Agents’ Payoff Matrix

Local:
(
U1

l , U
2
l

)
2 : x1 2 : x2

1 : x1 (3, 5) (2, 3)

1 : x2 (3, 3) (5, 4)

Global:
(
U1

g , U
2
g , U

3
g

)
2 : x1 2 : x2

1 : x1 (−1, 3, 1) (2,−1, 3)

1 : x2 (1,−1, 3) (1, 4, 1)

2 : x1 2 : x2

(1,−1, 3) (0, 3, 1)

(3, 3, 1) (−1, 0, 3)

3 : y1 3 : y2

lim sup
n→∞

∣∣∣ᾱk
n(i, j) + β̄k

n(i, j)
∣∣∣
+

≤ ε w.p. 1, ∀i, j ∈ Ak. (16)

3) The global behavior z̄n converges to Cε if and only if (16) holds for all
players k ∈ K. Thus, if every player k follows Algorithm 1, z̄n converges almost
surely (in static games) or weakly tracks (in slowly evolving games) the set of
correlated ε-equilibrium Cε. �


4 Numerical Example

In this section we study a small hypothetical multi-agent network comprising
three agents K = {1, 2, 3}. Agents 1 and 2 are allocated the same task, hence,
form the cluster C = {1, 2} and share action information. Agent 3 forms a sin-
gleton cluster, hence, neither observes the action profile of C, nor discloses its
action to agents 1 and 2. Agents 1 and 2 repeatedly take action from the same
action set A1 = A2 = {x1, x2}. Agent 3, due to performing a different task,
chooses from a different action set A3 = {y1, y2}. Table 1 gives the payoffs in
normal form. The set of correlated equilibrium is singleton (a pure strategy),
where probability one is assigned to a∗ = (x2, x2, y1) and zero to others.

In numerical studies, we set εn = 1/n and δ = 0.1. Figure 1 illustrates the
behavior of Algorithm 1 and compares its performance to the reinforcement lean-
ing algorithm proposed in [2]. The sample paths shown in Fig. 1 are averaged
over 50 independent runs of the algorithms starting with the same initial con-
ditions a1 = (x1, x1, y1). Note that Theorem 1 proves convergence to the set of
correlated ε-equilibrium. Therefore, although the average utilities increases with
the number of iterations in Fig. 1(a), it only reaches an ε-distance of the val-
ues achievable in correlated equilibrium depending on the choice of exploration
parameter δ in Algorithm 1. Comparing the slopes of the lines in Fig. 1(b),
m1 = −0.182 (for regret-based reinforcement learning [2]) and m2 = −0.346 (for
Algorithm 1) numerically verifies that exploiting local action information results
in an order of magnitude faster convergence to the set of correlated ε-equilibria.
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Fig. 1. Performance Comparison: The solid and dashed lines represent the results from
Algorithm 1 and the reinforcement learning algorithm in [2], respectively. In (a), the
blue, red and black lines illustrate the sample paths of average payoffs of agents 1, 2 and
3, respectively. The dotted lines also represent the payoffs achievable in the correlated
equilibrium.

5 Conclusion

We considered noncooperative repeated games with cluster structure and
presented a simple regret-based adaptive learning algorithm that ensured con-
vergence of global behavior to the set of correlated ε-equilibria. Noting that
reaching correlated equilibrium can be conceived as consensus formation in ac-
tions amongst players, the proposed learning algorithm could have significant
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applications in frameworks where coordination is sought among “players” in a
distributed fashion, e.g. smart sensor systems and cognitive radio. It was nu-
merically verified that utilizing the excess information shared/observed within
clusters could lead to an order of magnitude faster convergence results.
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