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Abstract. Unmanned aerial vehicles (UAVs) can be used to chase radio
frequency (RF) emitters by sensing the signal sent out by the RF emit-
ters. Meanwhile, the RF emitter can evade from the UAVs, thus forming
a pursuit-evasion game. In contrast to traditional pursuit-evasion games,
in which the players can always observe each other, the RF emitter can
stop transmitting such that the UAVs lose the target. However, stopping
the transmission also incurs cost to the RF emitter since it can no longer
convey information to destinations. Hence, the RF emitter can take both
continuous actions, i.e., the moving direction, and discrete actions, i.e.,
whether to stop transmission. Meanwhile, there are both discrete states,
i.e., whether the RF transmitter is transmitting, and continuous states,
i.e., the locations of UAVs and RF emitter, thus forming a hybrid sys-
tem. We will study the game theoretic properties of this novel game and
derive the optimal strategies for both parties under certain assumptions.

Keywords: UAV, pursuit-evasion game.

1 Introduction

Unmanned aerial vehicle (UAV) is a remotely piloted aircraft, which is widely
used in military. It can be used for many tasks, particularly in surveillance or
renaissance. In recent years, people have studied how to use UAVs as a flying sen-
sor network to monitor various activities, such as radio activities [2][4][5][9][11].
This is particularly useful in military due to the inexpensive cost and efficient
deployment.

In this paper, we study how UAVs can be used to chase RF emitters. When
a UAV is equipped with directional antenna, it can determine where the RF
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emitter is and then pursue it, either to continue the surveillance or destroy the
RF emitter. We assume that the RF emitter is also mobile, but with a slower
speed than the UAV. The RF emitter can move to evade the pursuit of the UAV.
Then, it forms a pursuit-evasion game which was originally studied by R. Isaacs
[6]. Since such a game is played in a continuous space and continuous time,
it belongs to the category of differential games. In contrast to traditional game
theory, in which randomness is a key factor of the game, the pursuit-evasion game
is deterministic, which can be described by a partial differential equation (called
Isaacs Equation). It has been widely applied in the study of warfares, such as the
doggame of gameers and the bunker hill battle [6]. The value functions and the
optimal strategies at the equilibrium have been obtained for many applications.

Fig. 1. An illustration of the pursuit-evasion game of UAV and RF emitter

In contrast to the traditional pursuit-evasion games, the game studied in this
paper is characterized by its hybrid action space and state space. Besides choos-
ing the moving direction, the RF emitter can choose to stop the RF transmission.
Since the UAV’s geolocationing capability is completely dependent on the RF
signal, the UAV will lose the observability of the RF emitter. During this ’blind’
period, the RF emitter can try to evade the UAV. However, it incurs penalty
to the RF emitter when it ceases the RF transmission. Hence, the RF emitter
must find a good tradeoff between the risk of being caught by the UAV and the
penalty of ceasing transmitting. Note that the action of whether to transmit and
the state of whether being transmitting are both discrete. Therefore, the game is
actually played in a hybrid system in which both discrete and continuous states
exist [7].

Note that hybrid systems have been intensively studied in recent years due
to its wide applications in various areas such as smart grid and robotic network.
However, there have been very few studies on the games in hybrid systems [8].
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In particular, there have been no studies on the pursuit-evasion games with the
observation controllable by the evader, to our best knowledge. In this paper, we
will consider both cases of discounted and non-discounted rewards. The feedback
Nash equilibrium will be obtained and described by a combination of Bellman’s
equation and Isaacs equation. Due to the prohibitive challenge of solving the
equations, we will study heuristic steering strategies of the UAV and RF emitter
and then use numerical simulations to explore the strategy of whether to stop
transmitting.

The remainder of this paper is organized as follows. The system model for the
UAV and RF emitter is introduced in Section 2. The case of single UAV and
single RF emitter is studied in Section 3 and is then extended to the multiple-
UAV-multiple-emitter case in Section 4. The numerical results and conclusions
are obtained in Sections 5 and 6, respectively.

2 System Model

Consider one UAV and one RF emitter. We denote by xu = (xu1, xu2) and
xe = (xe1, xe2) the locations of the UAV and the RF emitter. We adopt a simple
model for the motions of the UAV and RF emitter, using the following ordinary
differential equations [3]:

⎧
⎨

⎩

ẋu1 = vu sin θu
ẋu2 = vu cos θu
θ̇u = wufu

, (1)

and
⎧
⎨

⎩

ẋe1 = ve sin θe
ẋe2 = ve cos θe
θ̇e = wefe

, (2)

where vu and ve are the velocities; fu and fe are the forces to make the direction
change; wu and we are the inertia. It is reasonable to assume that vu > ve. We
assume that the forces are limited; i.e., |fu| < Fu and |fe| < Fe, where Fu and
Fe are the maximum absolute values of the forces. Note that the above model is
very simple but more mathematically tractable than more complicated motion
models.

3 Single-UAV-Single-Emitter Game

In this section, we assume that there is only one UAV and it can perfectly
determine the location of the RF emitter when the emitter keeps transmitting.
This is reasonable if the UAV employs a powerful sensor which can determine
both distance (e.g., using the signal strength) and the angle (e.g., using an
antenna array). However, when the emitter stops transmitting at a certain cost,
the UAV loses the target; hence we say that the observation is controllable (by
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the emitter). In contrast to traditional continuous time pursuit-evasion game,
the challenge of this game is the hybrid system state, which consists of both
continuous one (the locations and directions) and discrete one (the emitter’s
transmission state).

3.1 Game Formulation

Obviously, there are two players in the game, namely the UAV and the RF
emitter. Essentially, the UAV wants to pursue the RF using its sensor while
the emitter wants to evade by moving or stopping emitting. For simplicity, we
assume that the pursuit and evasion occur in a plane. The elements are itemized
as follows.

State. We denote by s the state of the whole system, which consists of the
following components:

– For the UAV side, its state includes its current location xu = (xu1, xu2) and
the direction θu.

– For the emitter side, its state includes the current location xe = (xe1, xe2),
the moving direction θe and its transmission state se: se = 1 when the the
emitter transmits and se = 0 otherwise.

Since the game only concerns the the relative location x = xu−xe, we can define
the system state as s = (x, θu, θe).

Actions. Both the UAV and emitter can move and change direction. Moreover,
the emitter can choose to stop transmitting and then make the UAV lose track
of the target. Hence, the actions in the game are defined as follows.

– UAV: The action is fu which is visible to the emitter.
– Emitter: Its action includes fe, which is also visible to the UAV when se = 1,

and the decision on whether to stop the transmission, which is denoted by ae.

For simplicity, we assume that, when the UAV loses the targets, it follows a cer-
tain predetermined track; e.g., keeping the original direction (fu = 0). Moreover,
we assume that the transmission state has a minimal dwelling time τ0; i.e., each
transmission state, namely on or off, must last for at least τ0 units. To simplify
the analysis, we assume that the decision on transmission can be made at only
discrete times, namely 0, τ0, 2τ0, ... For the case in which the decision can be
made at continuous time under the constraint of minimum dwelling time, the
analysis is much more complicated and will be left to our future study.

Rewards. The purpose of the UAV is to catch the emitter or force the emitter
to keep silent. When the distance between UAV and emitter is small, the game
is ended. This stopping time is defined as

T ∗ = inf {t|‖x(t)‖ ≤ γd} , (3)
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where γd is a predetermined threshold for the distance. It is possible that T ∗ is
infinite if the UAV is unable to catch the emitter, e.g., if the RF emitter keeps
silent forever.

Hence, the total reward of the UAV can be modeled using the non-discounted
one or discounted one:

– Discounted reward: When the reward is discounted (i.e., the future is less
important than now; hence, the requirement of time is incorporated into
the decisions), we have (both α > 0 and 0 < β < 1 are parameters of
discounting)

R =

∫ T∗

t=0

(
R0e

−αtδ(‖x(t)‖ ≤ γd)− cβnae(t)δ(t = nτ0)
)
dt, (4)

where R0 is the reward for locating the emitter and c is the penalty on the
UAV when the emitter transmits in one time slot. The reward at time t is
given by

r(t) = R0e
−αtδ(‖x(t)‖ ≤ γd)− cβnae(t)δ(t = nτ0). (5)

– Non-discounted reward: When the reward is not discounted (i.e., the future
is the same important as now) within a time window [0, Tf ], we have

R =

∫ min{T∗,Tf}

t=0

(R0δ(‖x(t)‖ ≤ γd)− cae(t)δ(t = nτ0)) dt. (6)

The reward at time t is given by

r(t) = R0δ(‖x(t)‖ ≤ γd)− cae(t)δ(t = nτ0). (7)

For simplicity, we assume that tf = Tf/τ0 is an integer.

Since we model the game as a zero-sum one, the reward of the emitter at time
slot t is simply given by −r(t). Note that, in practice, the reward could be more
complicated, e.g., taking the fuel consumptions into account. This requires much
more complicated models and will be studied in the future.

System Dynamics. The dynamics of the game can be written as

ṡ(t) = fae(t)(s(t), fu(t), fe(t)), (8)

where ae(t) is the transmission state of the emitter. We denote by πu and πe

the strategies of the continuous actions of the UAV and emitter, respectively;
i.e., fu(t) = πu(ae(t), s(t)) and fe(t) = πe(ae(t),x(t)). As we have assumed in
the game formulation, when ae(t) = 0 (the emitter stops transmitting), πu is
independent of s(t); i.e., the UAV follows a predetermined track. In this paper,
we assume πu = 0 when ae = 0; i.e., the UAV keeps the original direction when
it loses track of UAV.
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3.2 Feedback Nash Equilibrium

When ae(t) is always 1 (i.e., the emitter keeps transmitting all the time and is
thus always visible to the UAV), the game degenerates to a traditional pursuit-
evasion game. A brief introduction to the feedback Nash equilibrium1 of the tra-
ditional pursuit-evasion game is provided in the Appendix for self-containedness.
When ae(t) is not always 1, the challenge is that there are both discrete and
continuous system states in the dynamics, thus eliminating the possibility of
straightforwardly applying the traditional theories of stochastic games (discrete
system state) and differential games (continuous system state).

Equilibrium for Discounted Reward. First, we define reward-to-go function
Rs(t); i.e., the reward from time t to the game termination. We have the following
two observations:

– We notice that the decision actually depends on only the relative locations
directions of UAV and emitter, not on the current transmission status of
emitter.

– There are two types of reward-to-go functions; namely the ones at the times
of deciding the transmission status and the ones in other times. We assume
that the decision on whether to shut down the transmission is made at
time slightly before nτ0; i.e., (nτ0)

−. Then, we have reward-to-go functions
{Rs((nτ0)

−)}n=0,1,... and Rx(t), t �= nτ0.

Then, the following proposition provides the reward-to-go functions at the feed-
back Nash equilibrium of the game with non-discounted reward:

Proposition 1. The reward-to-go functions for the non-discounted reward are
determined by

Rs((τ0)
−) = min

ae

[−cI(ae = 1) +Rs′(0, ae)] , (9)

and

Rs(t, 1) = max
fu

min
fe

[∫ min(τ,T∗)

t

R0δ(‖x(t)‖ < γd)dt+Rs′(τ
−
0 )

]

, (10)

where s′ is the system state at time τ0, respectively, and

Rs(t, 0) = min
fe

[∫ min(τ,T∗)

t

R0δ(‖x(t)‖ < γd)dt+Rs′(τ
−
0 )

] ∣
∣
∣
∣
fu=0

. (11)

And (31) and (33) can be further written as

{
−∂Rs(t,1)

∂t = maxfu minfe

[
∂Rs(t,1)

∂s f(t, s, fu, fe) +R0δ(‖x(t)‖ < γd)
]
,

Rs(τ, 1) = Rs((τ0)
−),

(12)

1 The definition of feedback Nash equilibrium can be found in [1].
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and
{
−∂Rs(t,0)

∂t = minfe

[
∂Rs(t,1)

∂s f(t, s, fu, fe) +R0δ(‖x(t)‖ < γd)
]
,

Rs(τ, 0) = Rs((τ0)
−),

(13)

Then, we can obtain the optimal strategies of the UAV and emitter, which are
given in the following corollary

Corollary 1. The strategies at the feedback Nash equilibrium are given by

– The strategy of UAV is given by

u∗
f = argmax

fu
min
fe

[
∂Rs(t, 1)

∂s
f(t, s, fu, fe) +R0δ(‖x(t)‖ < γd)

]

. (14)

– The strategy of the emitter is given by

u∗
e = argmin

fe
min
fu

[
∂Rs(t, 1)

∂s
f(t, s, fu, fe) +R0δ(‖x(t)‖ < γd)

]

. (15)

and

Rx((τ0)
−) = min

ae

[−cI(ae = 1) +Rx(0, ae)] , (16)

Equilibrium for Non-discounted Reward. Similarly to the discounted re-
ward case, the equilibrium for the non-discounted reward case is given in the
following proposition:

Proposition 2. The reward-to-go functions for the non-discounted reward are
determined by

Rn
s ((τ0)

−) = min
ae

[−cI(ae = 1) +Rn+1
s (0, ae)

]
, (17)

and

Rn+1
s (t, 1) = max

fu
min
fe

[∫ min(τ,T∗)

t

R0δ(‖x(t)‖ < γd)dt+Rn
s′(τ

−
0 )

]

, (18)

where s′ is the state at time τ and

Rn+1
s (t, 0) = min

fe

[∫ min(τ,T∗)

t

R0δ(‖x(t)‖ < γd)dt+Rn
s′(τ

−
0 )

] ∣
∣
∣
∣
fu=0

. (19)

And (31) and (33) can be further written as
{
−∂Rn+1

s (t,1)
∂t = maxfu minfe

[
∂Rn+1

s (t,1)
∂s f(t, s, fu, fe) +R0δ(‖x(t)‖ < γd)

]
,

Rn+1
s (τ, 1) = Rn+1

s ((τ0)
−),

(20)

and
{
−∂Rn+1

x (t,0)
∂t = minfe

[
∂Rn+1

x (s,1)
∂s f(t, s, fu, fe) + R0δ(‖x(t)‖ < γd)

]
,

Rn+1
s (τ, 0) = Rn+1

s ((τ0)
−),

, (21)

and

R
tf
s ((τ0)

− = 0. (22)
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3.3 Computation of Strategy

Since we have both continuous and discrete actions, we address them separately
and then integrate into one uniform procedure for computing the strategies at
the feedback Nash equilibrium. For simplicity, we consider only the case of dis-
counted rewards.

Discrete Action. For the discrete action, we consider only the emitter since
there is no discrete action for the UAV.

– Case of Discounted Reward: We assume that, given Rs((τ0)
−), we know how

to compute the strategies of the UAV and emitter in (20) and (21). Then,
we can do the following value iteration for computing Rs((τ0)

−):
{
Rk+1

s ((τ0)
−) = minae

[−cI(ae = 1) +Rk
s (0, ae)

]

R0
s((τ0)

−) = R0(x)
, (23)

where R0 is the initialization of the reward-to-go function, which is a function
of the relative location, and Rk

s (0, ae) is obtained from the the values of
Rk

s ((τ0)
−) in the k-th iteration. The difficulty of the value iteration is that

s is a continuous state, thus requiring uncountable equations in the value
iteration. One effective approach is that we can discretize the location, thus
approximating the problem using a discrete one.

– Case of Non-discounted Reward: We assume that, given Rs((τ0)
−), we know

how to compute the strategies of the UAV and emitter in (20) and (21).
Then, we can do the following value iteration for computing Rs((τ0)

−):
{
Rk+1

s ((τ0)
−) = minae

[−cI(ae = 1) +Rk
s (0, ae)

]

R0
s((τ0)

−) = R0(s)
, (24)

where R0 is the initialization of the reward-to-go function, which is a function
of the relative location, and Rk

s (0, ae) is obtained from the the values of
Rk

s ((τ0)
−) in the k-th iteration. The difficulty of the value iteration is that

x is a continuous state, thus requiring uncountable equations in the value
iteration. One effective approach is that we can discretize the location, thus
approximating the problem using a discrete one.

Continuous Action. It is highly nontrivial to solve the partial differential
equation, particularly when the cost function R0

x((τ0)
−) is complicated. Unfor-

tunately, we are still unable to solve it. Hence, we propose the following heuristic
but reasonable strategy for both the UAV and the RF emitter, which is inde-
pendent of whether the reward is discounted or not:

– UAV: When the RF emitter is transmitting, the UAV follows the direction
towards the RF emitter using the full force.

– RF emitter: The RF emitter follows the direction perpendicular to the vector
between the UAV and the RF emitter in full strength.
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4 Multi-UAV-Multi-Emitter Game

In this section, we extend the study on the single-UAV-single-emitter game to
the general case in which we consider multiple UAVs and multiple emitters.

4.1 Game Formulation

We assume that there are Nu UAVs and Ne RF emitters. We assume that both
quantities Nu and Ne are known to all UAVs and emitters. This is reasonable
since each emitter can count the number of UAVs due to the assumption of visi-
bility. We also assume that the emitters are in the state of ’on’ at the beginning
such that the UAVs know the number of emitters. The elements of the game are
then explained as follows.

Players: Since we do not consider any random factor, thus making the game a
deterministic one, each UAV and each emitter know the future evolution of the
game at the feedback Nash equilibrium. Hence, we can consider the the game
as a two (virtual) player one; i.e., both the UAV side and the emitter side are
controlled in centralized way. We assume that each emitter will be out of the
game once it is caught by any UAV; e.g., it is destroyed by the UAV. Hence,
the number of actual players may be changing during the game. We denote by
Ne(t) the set of emitters still surviving at time t.

In practice, when there exists randomness in the observations or each UAV
(emitter) has limited knowledge to the system state, the communications among
the UAVs or the emitters need to be considered, which is concerned with the
team formations due to limited communication range. This more complicated
case will be studied in the future.

State Space. For each individual UAV and emitter, its state is the same as the
single-UAV-single-emitter case. The system state space is the product of the in-
dividual ones; i.e., the state includes the locations and directions of all UAVs and
emitters, denoted by {xu

n}n=1,...,Nu
, {θun}n=1,...,Nu

, {xe
n}n∈Ne(t)

. {θen}n=1,...,Ne
,

as well as the emitters’ transmission state. Note that, when an emitter is caught
by a UAV, it is out of the game and the state space is reduced. Similarly to the
single-UAV-single-emitter case, we still use s to denote the overall system state
(excluding the discrete state of the transmission status of each emitter).

Action Space. For each individual UAV or emitter, its action space is the
same as the single-UAV-single-emitter case in the previous section. We simply
add superscript to distinguish the actions of different UAVs or emitters. For
simplicity, we do not add more constraints like collision avoidance or formation
maintenance.
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Reward. Similarly to the single-UAV-single-emitter case, a reward is achieved
by the UAVs when an emitter is caught. A cost is incurred to an emitter if it
stops transmitting. Due to the limited space, we consider only the non-discounted
case, in which the reward is given by

R =

∫ T∗

t=0

e−αtR0δ(‖xn
u − xm

e (t)‖ ≤ γd, ∃n,m ∈ Ne(t))

−
∑

n

∑

m∈Ne(t)

cβname (t)δ(t = nτ0)dt, (25)

where T ∗ is the earliest time that all emitters have been caught; i.e.,

T ∗ = min{t||Ne(t)| = 0}. (26)

Recall that R0 is the reward for catching an emitter and c is the cost when an
emitter transmits in one time slot. We can immediately obtain the instantaneous
reward r(t) of the UAVs.

4.2 Multi-UAV-Single-Emitter Game

To study the general case, we first study the special case in which there is only
one emitter. Similarly to the single UAV case, we have the following conclusion
for the multi-UAV-single-emitter game.

Proposition 3. The reward-to-functions for the non-discounted reward are de-
termined by

Rs((τ0)
−) = min

ae

[−cI(ae = 1) +Rx(0, ae)] , (27)

and

Rs(t, 1) = max
fu

min
fe

[∫ min(τ,T∗)

t

R0δ(∃n, ‖xu
n(t)− xe(t)‖ < γd)dt+Rs′(τ

−)

]

, (28)

and

Rs(t, 0) = min
fe

[∫ min(τ,T∗)

t

R0δ(∃n, ‖xu
n(t)− xe(t)‖ < γd)dt+Rs′(τ

−)

] ∣
∣
∣
∣
fu=f0

. (29)

4.3 Multi-UAV-Multi-Emitter Game

Based on the discussion on the multi-UAV-single-emitter case, the general multi-
UAV-multi-emitter case can be analyzed in a recursive manner: when an emitter
is caught, the game is converted into a game with one less emitter.
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Proposition 4. Suppose that the feedback Nash equilibrium for Ne− 1 emitters
has been obtained and we use a super script Ne− 1 in the reward-to-go function.
The reward-to-functions for the non-discounted reward are determined by

RNe
s ((τ0)

−) = min
ae

[−cI(ae = 1) +RPNex(0, ae)
]
, (30)

and

RNe
s (t, 1) = max

fu
min
fe

[∫ min(τ,T∗)

t

R0δ(∃n, ‖xu
n(t)− xe(t)‖ < γd)dt+RÑe

s′ (τ−)

]

, (31)

where Ñe is the number of emitters after the time τ ; i.e. ,

Ñe =

{
Ne − 1 , if ∃n, t, ‖xu

n(t)− xe(t)‖ < γd)
Ne , otherwise

, (32)

and

RNe
s (t, 0) = min

fe
[∫ min(τ,T∗)

t

R0δ(∃n, ‖xu
n(t)− xe(t)‖ < γd)dt+RÑe

s′ (τ−)

] ∣
∣
∣
∣
fu=f0

. (33)

5 Numerical Results

In this section, we use numerical simulations to disclose some phenomena of the
pursuit-evasion game. For simplicity, we consider only one UAV and one RF
emitter.

5.1 Simulation Setup

We consider abstract length and time units. We assume vu = 0.1, ve = 0.02,
Fu = 0.05 and Fv = 0.1. We assume γd = 0.1. Unless stated otherwise, the
penalty of the RF emitter being caught by the UAV is 10, while the penalty of
not transmitting is 3. For the case of discounted reward, the discounting factor
is β = 0.9. We discretize d, δθ1 and δθ2 into 40×20×20 grid. The value function
is obtained from 50 iterations. For the case of non-discounted reward, we set
tf = 5, i.e., the RF only need to consider the game within 5 decision periods.

5.2 Case of Discounted Reward

Fig. 2 shows the value functions of different cases. We observe that the value
function is high when δθ1 is close to zero. The reason is that both the UAV and
RF emitter have similar initial direction; hence it is easier for the UAV to catch
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the RF emitter. We also observe that the value usually decreases as the initial
distance between UAV and RF is large (but there are some exceptions).

Fig. 3 shows the tracks of the UAV and RF emitter with different initial
distances. In the left columns, the RF emitter always keeps transmitting; finally,
it will be caught by the UAV. In the right column, the RF emitter adopts the
optimized strategy. We observe that the RF emitter can escape from the pursuit
of the UAV by stopping transmitting in certain times.

Then, we increase the penalty of stopping transmitting to 8. The tracks using
the corresponding optimal strategy is shown in Fig. 4. We observe that, in both
cases, the RF emitter is finally caught by the UAV, due to the large penalty of
stopping transmitting.
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Fig. 4. Samples of tracks when the penalty of ceasing transmitting is increased

5.3 Case of Non-discounted Reward

For the case of no-discount reward, the value functions and the optimal actions
in different stages are shown in Fig. 5. We observe that, in the 5-th stage, the
RF emitter more intends to keep transmitting and take the risk of being caught
by the UAV. The sample tracks are shown in Fig. 6. We observe that, in the first
situation, the RF emitter stops transmitting to avoid the UAV at the beginning
and finally gets caught by the UAV.
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Fig. 5. Samples of value functions and optimal actions when the reward is not dis-
counted

0 5 10
−2

0

2

4

6
d=5\sqrt{2}, always transmit

−5 0 5 10
−5

0

5
d=5\sqrt{2}, optimal

0 2 4 6
−2

−1

0

1

2

3
d=3\sqrt{2}, always transmit

−5 0 5 10
−4

−2

0

2

4
d=3\sqrt{2}, optimal

Fig. 6. Samples of tracks when the reward is not discounted
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6 Conclusions

A The Isaccs Equation

We consider a differential game with N players over time period [0, T ], whose
dynamics are given by (the system state x is in RM )

ẋ(t) = f(t,x(t), u1(t), ..., uN (t)), (34)

and the cost functionals are given by

Ln(u1, ..., uN)

=

∫ T

0

gn(t,x(t), u1(t), ..., uN (t))dt+ qn(x(T)). (35)

We assume that each player has perfect access to all dimensions of the system
state; i.e., the closed-loop perfect state (CLPS). The following definition defines
the feedback Nash equilibrium for the differential game.

Definition 1. For the N -player game in (34) and (35), an N -tuple of strate-
gies {π∗

n}n=1,...,N consists of a feedback Nash equilibrium solution if there exist

functionals Vn over [0, T ]×RM such that

Vn(T,x) = qn(x), (36)

Vn(t,x) =

∫ T

t

gn(t,x
∗(s), π∗

1(x
∗), ..., π∗

N (x∗))ds

+ qn(x
∗(T ))

≤
∫ T

t

gn(t,x(s), π
∗
1 (x), ..., π

∗
n−1(x), πn(x),

π∗
n+1(x)..., π

∗
N (x))ds + qn(x

∗(T )), ∀πn, (37)

where x∗ is the trace of state when the actions are π∗
1(s), ..., π

∗
N (s) and x is the

state trace when the action of player n is changed to πn.

The following theorem provides a sufficient condition for the feedback Nash
equilibrium for the general N -player case.

Theorem 1. An N -tuple of strategies {π∗
n}n=1,...N provides a feedback Nash

equilibrium if the functionals {Vn}n=1,...,N satisfy the following equations:

− ∂Vn(t,x)

dt
= min

un

[
∂Vn(t,x)

∂x
f(t,x,

{
π∗
−n(t,x), un

}
)

+ g(t,x,
{
π∗
−n(t,x), un

}
)
]
, (38)

and

π∗
n(t,x) = argmin

un

[
∂Vn(t,x)

∂x
f(t,x,

{
π∗
−n(t,x), un

}
)

+ g(t,x,
{
π∗
−n(t,x), un

}
)
]
, (39)
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and

Vn(T,x) = qn(x). (40)

The following theorem provides a sufficient condition for two-player zero-sum
game in which the cost for player 1 is given by

L(u1, u2) =

∫ T

0

g(t, x(t), u1(t), u2(t))dt + q(T, x(T )), (41)

and the cost of player 2 is −L(u1, u2).

Theorem 2. The value function of the two-player zero-sum differential game
satisfies the following Isaacs equation:

− ∂V

∂t
= min

u1

max
u2

[
∂V

∂x
f(t,x, u1, u2) + g(t,x, u1, u2)

]

= max
u2

min
u1

[
∂V

∂x
f(t,x, u1, u2) + g(t,x, u1, u2)

]

(42)
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