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Abstract. In this paper we consider the problem of distributed through-
put maximization of networks with multi-channel ALOHA medium ac-
cess protocol. In the multi-channel ALOHA protocol, each user tries to
randomly access a channel using a probability vector defining the access
probability to the various channels. First, we characterize the Nash Equi-
librium Points (NEPs) of the network when users solve the unconstrained
rate maximization. We show that in this case, for any NEP, each user’s
probability vector is a standard unit vector (i.e., each user tries to access
a single channel with probability one and does not try to access other
channels). Specifically, when the number of users, N, is equal to the num-
ber of channels there are N! NEPs. However, when the number of users
is much larger than the number of channels, most of the users get a zero
utility (due to collisions). To overcome this problem we propose to limit
each user’s total access probability and solve the problem under a total
probability constraint. We characterize the NEPs when user rates are
subject to a total transmission probability constraint. We propose a sim-
ple best-response algorithm that solves the constrained rate maximiza-
tion, where each user updates its strategy using its local channel state
information (CSI) and by monitoring the channel utilization. We prove
that the constrained rate maximization can be formulated as an exact
potential game. This implies that convergence of the proposed algorithm
is guaranteed. Finally, we provide numerical examples to demonstrate
the algorithm’s performance.

Keywords: Collision channels, multi-channel ALOHA, Nash equilib-
rium point, best response, potential games.

1 Introduction

In typical wireless communication networks, the bandwidth is shared by several
users. Medium Access Control (MAC) schemes are used to manage the access of
users to the shared channels. The slotted ALOHA access protocol is popular due
to its simple implementation and random-access nature [I]. In each time-slot, a
user may access a shared channel according to a specific transmission probability.
Transmission is successful only if a single user tries to access a shared channel
in a given time-slot. If more than one user transmits at the same time slot over
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the same channel a collision occurs. Here, we examine the ALOHA protocol
with multi-channel systems, dubbed multi-channel ALOHA. In multi-channel
systems, the bandwidth is divided into K orthogonal sub-bands using Orthog-
onal Frequency Division Multiple Access (OFDMA). Each sub-band can be a
cluster of multiple carriers. A diversity of channel realizations is advantageous
when users exploit local CSI to access good channels. Multi-channel systems are
widely investigated recently in cognitive radio networks, where cognitive users
share an unlicensed spectrum band, while avoiding interferences with licensed
users. A related work on this subject can be found in [2H6].

In distributed optimization algorithms, users take autonomous decisions based
on local information and coordination or massage passing between users are not
required. Therefore, in wireless networks, distributed optimization algorithms
are simple to implement and generally preferred over centralized solutions. A
natural framework to analyze distributed optimization algorithms in wireless
networks is non-cooperative game-theory. A related work on this subject can be
found in [7THIZ].

In this paper we present a game theoretic approach to the problem of dis-
tributed rate maximization of multi-channel ALOHA networks. In the multi-
channel ALOHA protocol, each user tries to randomly access a channel using a
probability vector defining the access probability to the various channels. First,
we characterize the Nash Equilibrium Points (NEPs) of the network when users
solve the unconstrained rate maximization. We show that in this case, for any
NEP, each user’s probability vector is a standard unit vector (i.e., each user occu-
pies a single channel with probability one and does not try to access other chan-
nels). When considering the unconstrained rate maximization, we are mainly
interested in the case where the number of channels is greater or equal to the
number of users, to avoid collisions. Specifically, in the case where the number of
users, N, is equal to the number of channels there are N! NEPs. However, when
the number of users is much larger than the number of channels, most users get
a zero utility (due to collisions). To overcome this problem we propose to limit
each user’s total access probability and solve the problem under a total prob-
ability constraint. We characterize the NEPs when user rates are subject to a
total transmission probability constraint. We propose a simple best-response al-
gorithm that solves the constrained rate maximization, where each user updates
its strategy using its local CSI and by monitoring the channel utilization. We
prove that the constrained rate maximization can be formulated as an exact po-
tential game [I3]. In potential games, the incentive of all players to change their
strategy can be expressed in a one global function, the potential function. The
existence of a bounded potential function corresponding to the constrained rate
maximization problem implies that the convergence of the proposed algorithm
is guaranteed. Furthermore, the convergence is in finite time, starting from any
point and using any updating dynamics across users.

The rest of this paper is organized as follows. In section 2] we present
the network model and game formulation. In section [l and @l we discuss the
unconstrained and the constrained rate maximization problems, respectively. In
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section we provide simulation results to demonstrate the algorithm
performance.

2 Network Model and Game Formulation

In this paper we consider a wireless network containing N users who trans-
mit over K orthogonal collision channels. The users transmit using the slotted
ALOHA scheme. In each time slot each user is allowed to access a single channel.
A transmission can be successful only if no other user tries to access the same
channel simultaneously. In this paper we denote the collision-free achievable rate
of user n at channel k by u,, (k). Furthermore, we define a virtual zero-rate chan-
nel u,(0) =0, ,Vn, i.e., accessing a channel k = 0 refers to no-transmission.
The collision-free rate vector of user n in all K 4+ 1 channels is given by:

Uy £ [ (0) un (1) un(2) -+ un(K)] 1)
and the collision-free rate matrix of all N users in all K 41 channels is given by:

Ué UQ(O) U2(1) U2(2) UQ(K) . (2)

un(0) un (1) un () - un (K)

Let py (k) be the probability that user n tries to access channel k. Let P, be the
the set of all probability vectors of user n in all K 4+ 1 channels. A probability
vector p,, € P, of user n is given by:

Pn £ [ n(o) pn(]-) pn(2) e pn(K)] ) (3)

Let P be the set of all probability matrices of all N users in all K + 1 channels.
The probability matrix P € P is given by:

pN.(O) pn(1) pn(2) -+ p(K)
where Zf:() pn(k) =1Vn.

Let P_,, be the set of all probability matrices of all IV users in all K + 1
channels, except user n. The probability matrix P_,, € P_,, is given by:

p1(0) p(1) pi(2) - pi(K)

o [Pro1(0) paca (1) ps(2) -+ puor ()
P 1 (0) prer (1) Pt (2) - pua (K | (5)

pn(0) px(1) py(2) - pw(K)



80 K. Cohen, A. Leshem, and E. Zehavi

We focus in this paper on stationary access strategies, where each user decides
whether or not to access a channel based on the current utility matrix and all
other users’ strategy.

Definition 1: A stationary strategy for user n is a mapping from {P_,, u,}
to pn € Ph.

Remark 1: Note that u, depends on the local CSI of user n, which can be
obtained by a pilot signal in practical implementations. On the other hand, in
the sequel we show that user n does not need the complete information on the
matrix P_,, to update its strategy, but only to monitor the channel utilization
by other users, defined by:

N

wk) 21— I Q-pilk). (6)

i=1 ,i#n

Remark 2: We refer the probability matrix P as the multi-strategy contained
all users’ strategy, and P_,, as the multi-strategy contained all users’ strategy
except the strategy of user n.

When user n perfectly monitors the k" channel utilization, it observes:

N

va(k) £ 1—gu(k) = [ (1-mik), (7

i=1 i#n

which is the probability that the k" channel is available.
Since a collision occurs when more than one user tries to access the same
channel, the achievable rate of user n in the k** channel is given by:

(k) 2 up (k)v, (k) . (8)

Hence, the achievable expected rate of user n is given by:

K
R, = Rn(pna P—n) = an(k)rn(k) . (9)
k=1

In this paper, we consider a distributed rate maximization problem, where each
user tries to maximize its own expected rate subject to a total transmission
probability constraint:

Pn

K
max R, st Y pu(k) < Praa - (10)
k=1

We are interested in unconstrained (i.e., Pphq = 1) and constrained (i.e., Pz <
1) NEP solutions of this game. A NEP for our model is a multi-strategy P, given
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in @), which is self-sustaining in the sense that non of the users can increase its
utility by unilaterally modifying its strategy p.

Definition 2: A multi-strategy P is a Nash Equilibrium Point (NEP) if

Ro(PnsP—1) 2 Bu(Bn, P—y) V1,V - a

Formally, we define the non-cooperative multi-channel ALOHA game in this pa-
per as follows:

Definition 3: The non-cooperative multi-channel ALOHA game (I0) is given
by I' = (N, P, R), where N = {1,2, ..., N} denotes the set of players (or users),
P denotes the set of multi-strategies and R : P — RY denotes the payoff (i.e.,
rate) function.

Next, we examine the unconstrained and constrained NEP solutions of this

game ([I0).

3 Unconstrained Rate Maximization

In this section, we characterize unconstrained NEP solutions of this game (I0).
Here, we set Pq, = 1 in ([I0). When considering unconstrained solutions, we are
mainly interested in the case where K > N to avoid collisions. Practically, each
user monitors the channel utilization v, (k) for all k =1, ..., K (i.e., the complete
P_,, is not required), and tries to access only a single available channel, which
is the best response to all users’ strategy P_,, (B).

Theorem 1. Assume that Ppa. =1 in ({I0). Then:

a) For any NEP, each user’s probability vector is a standard unit vector with
probability 1 (i.e., each user tries to access a single channel with probability one
and does not try to access other channels).

b) The network converges to a NEP in N iterations.

Proof. The proof is given in [14].

We infer from Theorem [I] that the unconstrained distributed rate maximization
is equivalent to a channel assignment problem, where each user chooses a single
channel. Once a channel is taken by some user, no other user can access the
same channel, since it has a zero utility. A good distributed solution to (I0)
is obtained via distributed opportunistic access [I5] combined with the Gale-
Shapley algorithm [I6] to achieve a stable channel assignment, as was done
in [45]. For details the reader is referred to [14].
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In the general case where N = K any permutation that avoids a collision
is a NEP. For instance, in the case of 3 users and 3 channels, the following
multi-strategy is a NEP:

0010
P=10100] , (12)
0001

since any user that unilaterally modifies its strategy gets a zero utility (due to
collision or no-transmission). In this case we have N! NEPs.

In the case where K > N any permutation that avoids a collision and max-
imizes every users’ rate (given other users’ strategies) is a NEP. For instance,
consider the case of 2 users and 3 channels and assume that u1(3) < u1(2) and
u2(3) < ug(1l). The following multi-strategy is a NEP:

0010
P{Ol()()}’ (13)

since non of the users can increase its utility by unilaterally modifying its strategy
Pr. As a result, there exist (K- (K —1)--- (K — N + 1)) NEPs at most.

In the case where N > K any permutation is a NEP if at least K users access
different K channels. For instance, in the case of 3 users and 2 channels, the
following multi-strategy is a NEP:

001
P=(010], (14)
010

since any user that unilaterally modifies its strategy gets a zero utility (due to
a collision or accessing the virtual channel). Note that a better NEP can be
obtained if users 2 or 3 access the virtual channel (i.e., do not transmit).

4 Constrained Rate Maximization

We now discuss the more interesting case, where N > K. In this case, uncon-
strained solutions lead to collisions or to zero utilities for some users. Therefore,
constrained solutions should be used. According to Theorem[I] setting Ppqe < 1
is necessary to avoid collisions (otherwise, all users access a single channel with
probability one). First, we show the following result:

Theorem 2. Assume that Ppa, < 1 in (I0). Let r,(k*) = max {rn(k)}, where
rn(k) is defined in (8). Then, each user n plays the strategy: ’

1= Pz, ifk=0
pn(k) = Prae, fk=Fk" (15)
0, otherwise

with probability 1.
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Proof. The proof is given in [14].

We infer from Theorem [2] that in each iteration each user will access a single
channel with probability P,,., and will not try to access other channels. However,
in contrast to the unconstrained solutions, other users can still access occupied
channels, since the utility is strictly positive in all channels. We discuss the
convergence later.

As a result of Theorem 2] we obtain a best response algorithm, given in Table
[ The proposed algorithm solves the constrained rate maximization problem
([I@). In the initialization step, each user selects the channel with the maximal
collision-free rate u, (k). This can be done by all users simultaneously in a single
iteration. Then, each user occasionally monitors the channels utilization and
updates its strategy by selecting the channel with the maximal achievable rate
rn (k) given the channels utilization.

Table 1. Proposed best response algorithm

% initializing
- foralln=1,..., N users do:

- estimate u, (k) for all k = 1,..., K
- k* « arg max {un(k)}

- pn(k*) — Pmaac

- end for

end initializing
- repeat:

- estimate v, (k) forall k =1,..., K
- compute 7, (k) = u,(k)v, (k)

forallk=1,... K
- k* + arg max {rn(k)}

- pn(k*) — Pmaac

- until convergence

Next, we examine the convergence of the proposed algorithm. In contrast to
the unconstrained solutions, convergence of the algorithm is not guaranteed in
N iterations. However, in the following we use the theory of potential games to
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show that the constrained rate maximization (I0) indeed converges in finite time.
In potential games, the incentive of all players to change their strategy can be
expressed as a single global function, the potential function. In exact potential
games, the improvement that each player can get by unilaterally changing its
strategy equals to the improvement in the potential function. Hence, any local
maximum of the potential function is a NEP. The existence of an exact bounded
potential function corresponding to the constrained rate maximization problem
(I0) implies that the convergence of the proposed algorithm is guaranteed. Fur-
thermore, the convergence is in finite time, starting from any point and using
any updating dynamics across users.

Definition 4 [I3]: A game I' = (N, P, ]:2), is an exact potential game if there is
an exact potential function ¢ : P — R such that for every user n € N and for
every P_,, € P_,, the following holds:

Ra(p?, P-y) = Ra(p}), P_y)
- ¢(p£7,2)a P—?L) - ¢(p7(11)7P—n) 3 (16)

Theorem 3. The constrained rate mazimization (I0) can be formulated as an
exact potential game. Specifically, a global bounded exact potential function exists
to this game.

Proof. The proof is given in [14].

Corollary 1: Any sequential update dynamics of the multi-channel ALOHA game
(@) converges to a NEP in finite time, starting from any point. Specifically, the
proposed best response algorithm, given in Table [T converges to a NEP in finite
time.

5 Simulation Results

In this section we provide numerical examples to illustrate the algorithm per-
formance. Here, we focus on the constrained rate maximization. We simulated a
network with N = 30 users, K = 10 channels, and the following parameters: the
channels are distributed according to Rayleigh fading distribution, i.i.d across
users and channels. The bandwidth W of each channel was set to 10MHz, and
the SNR was set to 20dB. The entries of the collision-free rate matrix U are
un(k) = Wlog(1l + SNR)Mbps. We set Pq. = K/N = 1/3. We compare be-
tween two algorithms: 1) The totally greedy algorithm, in the sense that each user
transmits over the channel that maximizes its collision-free rate w, (k) without
considering the channel utilization; 2) The proposed best response algorithm,
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given in Table [l We initialize the proposed algorithm by the totally greedy
algorithm solution, as described in Table [1l

In Fig. and we present the average density of the rates achieved
by the proposed algorithm and by the totally greedy algorithm, respectively. It
can be seen that the rates variance achieved by the proposed algorithm is much
lower than the rates variance achieved by the the totally greedy algorithm. In
Table 2l we compare between the algorithms performance. It can be seen that
the average rate achieved by the proposed best response algorithm outperforms
the average rate achieved by the totally greedy algorithm by roughly 15%. The
average number of iterations until convergence of the proposed best response
algorithm is less than 9.

Table 2. Performance comparison

Proposed algorithm Totally greedy

Average rate [Mbps] 11.56 10.08
Variance 1.45 34.16

Average number of
iterations 8.75 1

6 Conclusion

In this paper we investigated the problem of distributed rate maximization of
networks applying the multi-channel ALOHA random access protocol. We char-
acterized the NEPs of the network when users solve the unconstrained rate
maximization. In this case, for any NEP, we obtained that each user tries to
access a single channel with probability one and does not try to access other
channels. Next, we limited each user’s total access probability and solved the
problem under a total probability constraint, to overcome the problem of col-
lisions when the number of users is much larger than the number of channels.
We characterized the NEPs when user rates are subject to a total transmission
probability constraint. We proposed a simple best-response algorithm that solves
the constrained rate maximization, where each user updates its strategy using
its local CSI and by monitoring the channel utilization. We used the theory
of potential games to prove convergence of the proposed algorithm. Finally, we
provided numerical examples to demonstrate the algorithms performance.
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‘ Il Proposed algorithm

8 9 12 13 14

10 11
Achievable rate [Mbps]
(a) Performance of the proposed best response algorithm, given
in Table [

5

45 ‘ I Totally greedy algorithm

0 5 10 15 20 25 30
Achievable rate [Mbps]

(b) Performance of the totally greedy algorithm.

Fig. 1. Average density of the rates achieved by the proposed algorithm and by the
totally greedy algorithm
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