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Abstract. We consider a Cournot oligopoly model where multiple sup-
pliers (oligopolists) compete by choosing quantities. We compare the
social welfare achieved at a Cournot equilibrium to the maximum pos-
sible, for the case where the inverse market demand function is convex.
We establish a lower bound on the efficiency of Cournot equilibria in
terms of a scalar parameter derived from the inverse demand function.
Our results provide nontrivial quantitative bounds on the loss of social
welfare and aggregate profit for several convex inverse demand functions
that appear in the economics literature.
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1 Introduction

In a book on oligopoly theory (see Chapter 2.4 of [6]), Friedman raises an in-
teresting question on the relation between Cournot equilibria and competitive
equilibria: “is the Cournot equilibrium close, in some reasonable sense, to the
competitive equilibrium?” While a competitive equilibrium is generally socially
optimal, a Cournot (Nash) equilibrium can yield arbitrarily high efficiency loss
in general [8]. The concept of efficiency loss is intimately related to the concept
of “price of anarchy,” advanced by Koutsoupias and Papadimitriou in a seminal
paper [11]; it provides a natural measure of the difference between a Cournot
equilibrium and a socially optimal competitive equilibrium.

For Cournot oligopoly with affine demand functions, various efficiency bounds
have been reported in recent works [9][10]. Convex demand functions, such as
the negative exponential and the constant elasticity demand curves, have been
widely used in oligopoly analysis and marketing research [2,4,14]. The efficiency
loss in a Cournot oligopoly with some specific forms of convex inverse demand
functions1 has received some recent attention. For a particular form of convex
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1 Since a demand function is generally nonincreasing, the convexity of a demand func-
tion implies that the corresponding inverse demand function is also convex. For
a Cournot oligopoly model with non-concave inverse demand functions, existence
results for Cournot equilibria can be found in [12,1].
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inverse demand functions, i.e., p(q) = α−βqγ , the authors of [3] show that when
γ > 0, the worst case efficiency loss occurs when an efficient supplier has to share
the market with infinitely many inefficient suppliers. The authors of [7] consider
a class of inverse demand functions that solve a certain differential equation (for
example, constant elasticity inverse demand functions belong to this class), and
establish efficiency lower bounds that depend on equilibrium market shares, the
market demand, and the number of suppliers.

For Cournot oligopolies with general convex and nonincreasing demand func-
tions, we establish a lower bound on the efficiency of Cournot equilibria in terms
of a scalar parameter c/d derived from the inverse demand function, namely, the
ratio of the slope of the inverse demand function at the Cournot equilibrium, c,
to the average slope of the inverse demand function between the Cournot equi-
librium and a social optimum, d. For convex and nonincreasing inverse demand
functions, we have c ≥ d; for affine inverse demand functions, we have c/d = 1.
In the latter case, our efficiency bound is f(1) = 2/3, which is consistent with the
bound derived in [9]. More generally, the ratio c/d can be viewed as a measure
of nonlinearity of the inverse demand function.

The rest of the paper is organized as follows. In the next section, we formulate
the model and provide some mathematical preliminaries on Cournot equilibria
that will be useful later, including the fact that efficiency lower bounds can be
obtained by restricting to linear cost functions. In Section 3, we consider affine
inverse demand functions and derive a refined lower bound on the efficiency of
Cournot equilibria that depends on a small amount of ex post information. We
also show this bound to be tight. In Section 4, we consider a more general model,
involving convex inverse demand functions. We show that for convex inverse de-
mand functions, and for the purpose of studying the worst case efficiency loss, it
suffices to restrict to a special class of piecewise linear inverse demand functions.
This leads to the main result of the paper, a lower bound on the efficiency of
Cournot equilibria (Theorem 2). Based on this theorem, in Section 5 we derive a
corollary that provides an efficiency lower bound that can be calculated without
detailed information on Cournot equilibria, and apply it to various commonly
encountered convex inverse demand functions. Finally, in Section 6, we make
some brief concluding remarks. Most proofs are omitted and can be found in an
extended version of the paper [13].

2 Formulation and Preliminaries

In this section, we first define the Cournot competition model that we study,
and introduce several main assumptions that we will be working with. In Sec-
tion 2.1, we present conditions for a nonnegative vector to be a social optimum or
a Cournot equilibrium. Then, in Section 2.2, we define the efficiency of a Cournot
equilibrium. In Sections 2.3 and 2.4, we derive some properties of Cournot equi-
libria that will be useful later, but which may also be of some independent
interest. For example, we show that the worst case efficiency occurs when the
cost functions are linear.
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We consider a market for a single homogeneous good with inverse demand
function p : [0,∞) → [0,∞) and N suppliers. Supplier n ∈ {1, 2, . . . , N} has a
cost function Cn : [0,∞) → [0,∞). Each supplier n chooses a nonnegative real
number xn, which is the amount of the good to be supplied by her. The strategy
profile x = (x1, x2, . . . , xN ) results in a total supply denoted by X =

∑N
n=1 xn,

and a corresponding market price p(X). The payoff to supplier n is

πn(xn,x−n) = xnp(X)− Cn(xn),

where we have used the standard notation x−n to indicate the vector x with the
component xn omitted. In the sequel, we will use ∂−p and ∂+p to denote the
left and right derivatives of p, respectively.

Assumption 1. For any n, the cost function Cn : [0,∞) → [0,∞) is con-
vex, continuous, and nondecreasing on [0,∞), and continuously differentiable
on (0,∞). Furthermore, Cn(0) = 0.

Assumption 2. The inverse demand function p : [0,∞) → [0,∞) is contin-
uous, nonnegative, and nonincreasing, with p(0) > 0. Its right derivative at 0
exists and at every q > 0, its left and right derivatives also exist.

Note that we do not yet assume that the inverse demand function is convex. The
reason is that some of the results to be derived in this section are valid even in
the absence of such a convexity assumption. Note also that some parts of our
assumptions are redundant, but are included for easy reference. For example,
if Cn(·) is convex and nonnegative, with Cn(0) = 0, then it is automatically
continuous and nondecreasing.

Definition 1. The optimal social welfare is the optimal objective value in
the following optimization problem,

maximize

∫ X

0

p(q) dq −
N∑

n=1

Cn(xn)

subject to xn ≥ 0, n = 1, 2, . . . , N,

(1)

where X =
∑N

n=1 xn.

In the above definition,
∫ X

0
p(q) dq is the aggregate consumer surplus and

∑N
n=1 Cn(xn) is the total cost of the suppliers. For a model with a nonincreasing

continuous inverse demand function and continuous convex cost functions, the
following assumption guarantees the existence of an optimal solution to (1).

Assumption 3. There exists some R > 0 such that p(R) ≤ minn{C′
n(0)}.

The social optimization problem (1) may admit multiple optimal solutions. How-
ever, they must all result in the same price. We note that the differentiability of
the cost functions is crucial for this result to hold.

Proposition 1. Suppose that Assumptions 1 and 2 hold. All optimal solutions
to (1) result in the same price.
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2.1 Optimality and Equilibrium Conditions

We observe that under Assumption 1 and 2, the objective function in (1) is
concave. Hence, we have the following necessary and sufficient conditions for a
vector xS to achieve the optimal social welfare:

{
C′

n(x
S
n) = p

(
XS

)
, if xS

n > 0,

C′
n(0) ≥ p

(
XS

)
, if xS

n = 0,
(2)

where XS =
∑N

n=1 x
S
n .

We have the following equilibrium conditions for a strategy profile x. In par-
ticular, under Assumptions 1 and 2, if x is a Cournot equilibrium, then

C′
n(xn) ≤ p (X) + xn · ∂−p (X) , if xn > 0, (3)

C′
n(xn) ≥ p (X) + xn · ∂+p (X) , (4)

where again X =
∑N

n=1 xn. Note, however, that in the absence of further as-
sumptions, the payoff of supplier n need not be a concave function of xn and
these conditions are, in general, not sufficient.

We will say that a nonnegative vector x is a Cournot candidate if it sat-
isfies the necessary conditions (3)-(4). Note that for a given model, the set of
Cournot equilibria is a subset of the set of Cournot candidates. Most of the re-
sults obtained in this section, including the efficiency lower bound in Proposition
5, apply to all Cournot candidates.

For convex inverse demand functions, the necessary conditions (3)-(4) can be
further refined.

Proposition 2. Suppose that Assumptions 1 and 2 hold, and that the inverse
demand function p(·) is convex. If x is a Cournot candidate with X =

∑N
n=1 xn >

0, then p(·) must be differentiable at X, i.e.,

∂−p (X) = ∂+p (X) .

Because of the above proposition, when Assumptions 1 and 2 hold and the inverse
demand function is convex, we have the following necessary (and, by definition,
sufficient) conditions for a nonzero vector x to be a Cournot candidate:

{
C′

n(xn) = p (X) + xnp
′(X), if xn > 0,

C′
n(0) ≥ p (X) + xnp

′(X), if xn = 0.
(5)

2.2 Efficiency of Cournot Equilibria

As shown in [5], if p(0) > minn{C′
n(0)}, then the aggregate supply at a Cournot

equilibrium is positive; see Proposition 3 below for a slight generalization. If on
the other hand p(0) ≤ minn{C′

n(0)}, then the model is uninteresting, because
no supplier has an incentive to produce and the optimal social welfare is zero.
This motivates the assumption that follows.
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Assumption 4. The price at zero supply is larger than the minimum marginal
cost of the suppliers, i.e.,

p(0) > min
n

{C′
n(0)}.

Proposition 3. Suppose that Assumptions 1, 2, and 4 hold. If x is a Cournot
candidate, then X > 0.

Under Assumption 4, at least one supplier has an incentive to choose a positive
quantity, which leads us to the next result.

Proposition 4. Suppose that Assumptions 1-4 hold. Then, the social welfare
achieved at a Cournot candidate, as well as the optimal social welfare [cf. (1)],
are positive.

We now define the efficiency of a nonnegative vector x as the ratio of the social
welfare that it achieves to the optimal social welfare.

Definition 2. Suppose that Assumptions 1-4 hold. The efficiency of a non-
negative vector x = (x1, . . . , xN ) is defined as

γ(x) =

∫ X

0

p(q) dq −
N∑

n=1

Cn(xn)

∫ XS

0

p(q) dq −
N∑

n=1

Cn(x
S
n)

, (6)

where xS =(xS
1 , . . . , x

S
N ) is an optimal solution of the optimization problem in

(1) and XS =
∑N

n=1 x
S
n.

We note that γ(x) is well defined: because of Assumption 4 and Proposition
4, the denominator on the right-hand side of (6) is guaranteed to be positive.
Furthermore, even if there are multiple socially optimal solutions xS , the value
of the denominator is the same for all such xS . Note that γ(x) ≤ 1 for every
nonnegative vector x. Furthermore, if x is a Cournot candidate, then γ(x) > 0,
by Proposition 4.

2.3 Restricting to Linear Cost Functions

Proposition 5. Suppose that Assumptions 1-4 hold and that p(·) is convex. Let
x be a Cournot candidate which is not socially optimal, and let αn = C′

n(xn).
Consider a modified model in which we replace the cost function of each supplier
n by a new function Cn(·), defined by

Cn(x) = αnx, ∀ x ≥ 0.

Then, for the modified model, Assumptions 1-4 still hold, the vector x is a
Cournot candidate, and its efficiency, denoted by γ(x), satisfies 0 < γ(x) ≤ γ(x).
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If x is a Cournot equilibrium, then it satisfies Eqs. (3)-(4), and therefore is
a Cournot candidate. Hence, Proposition 5 applies to all Cournot equilibria
that are not socially optimal. We note that if a Cournot candidate x is socially
optimal for the original model, then the optimal social welfare in the modified
model could be zero, in which case γ(x) = 1, but γ(x) is undefined; see the
example that follows.

Example 1. Consider a model involving two suppliers (N = 2). The cost function
of supplier n is Cn(x) = x2, for n = 1, 2. The inverse demand function is constant,
with p(q) = 1 for any q ≥ 0. It is not hard to see that the vector (1/2, 1/2) is
a Cournot candidate, which is also socially optimal. In the modified model, we
have Cn(x) = x, for n = 1, 2. The optimal social welfare achieved in the modified
model is zero. �

To lower bound the efficiency of a Cournot equilibrium in the original model, it
suffices to lower bound the efficiency achieved at a worst Cournot candidate for
a modified model. Accordingly, and for the purpose of deriving lower bounds, we
can (and will) restrict to the case of linear cost functions, and study the worst
case efficiency over all Cournot candidates.

2.4 Other Properties of Cournot Candidates

In this subsection, we collect a few useful and intuitive properties of Cournot
candidates. We show that at a Cournot candidate there are two possibilities:
either p(X) > p(XS) and X < XS , or p(X) = p(XS) (Proposition 6); in the
latter case, under the additional assumption that p(·) is convex, a Cournot can-
didate is socially optimal (Proposition 7). In either case, imperfect competition
can never result in a price that is less than the socially optimal price.

Proposition 6. Suppose that Assumptions 1-4 hold. Let x and xS be a Cournot
candidate and an optimal solution to (1), respectively. If p(X) �= p(XS), then
p(X) > p(XS) and X < XS.

For the case where p(X) = p(XS), Proposition 6 does not provide any compari-
son between X and XS. While one usually has X < XS (imperfect competition
results in lower quantities), it is also possible that X > XS , as in the following
example.

Example 2. Consider a model involving two suppliers (N = 2). The cost function
of each supplier is linear, with slope equal to 1. The inverse demand function is
convex, of the form

p(q) =

{
2− q, if 0 ≤ q ≤ 1,
1, if 1 < q.

It is not hard to see that any nonnegative vector xS that satisfies xS
1 + xS

2 ≥ 1
is socially optimal; xS

1 = xS
2 = 1/2 is one such vector. On the other hand, it can

be verified that x1 = x2 = 1 is a Cournot equilibrium. Hence, in this example,
2 = X > XS = 1. �
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Proposition 7. Suppose that Assumptions 1-4 hold and that the inverse de-
mand function is convex. Let x and xS be a Cournot candidate and an optimal
solution to (1), respectively. If p(X) = p(XS), then p′(X) = 0 and γ(x) = 1.

Proposition 1 shows that all social optima lead to a unique “socially optimal”
price. Combining with Proposition 7, we conclude that if p(·) is convex, a Cournot
candidate is socially optimal if and only if it results in the socially optimal price.

2.5 Concave Inverse Demand Functions

In this section, we argue that the case of concave inverse demand functions is
fundamentally different. For this reason, the study of the concave case would
require a very different line of analysis, and is not considered further in this
paper.

According to Proposition 7, if the inverse demand function is convex and
if the price at a Cournot equilibrium equals the price at a socially optimal
point, then the Cournot equilibrium is socially optimal. For nonconvex inverse
demand functions, this is not necessarily true: a socially optimal price can be
associated with a socially suboptimal Cournot equilibrium, as demonstrated by
the following example.

Example 3. Consider a model involving two suppliers (N = 2), with C1(x) = x
and C2(x) = x2. The inverse demand function is concave on the interval where
it is positive, of the form

p(q) =

{
1, if 0 ≤ q ≤ 1,
max{0,−M(q − 1) + 1}, if 1 < q,

where M > 2. It is not hard to see that the vector (0.5, 0.5) satisfies the opti-
mality conditions in (2), and is therefore socially optimal. We now argue that
(1/M, 1−1/M) is a Cournot equilibrium. Given the action x2 = 1/M of supplier
2, any action on the interval [0, 1− 1/M ] is a best response for supplier 1. Given
the action x1 = 1− (1/M) of supplier 1, a simple calculation shows that

arg max
x∈[0,∞)

{
x · p(x+ 1− 1/M)− x2

}
= 1/M.

Hence, (1/M, 1 − 1/M) is a Cournot equilibrium. Note that X = XS = 1,
so that p(X) = p(XS). However, the optimal social welfare is 0.25, while the
social welfare achieved at the Cournot equilibrium is 1/M − 1/M2. By consid-
ering arbitrarily large M , the corresponding efficiency can be made arbitrarily
small. �

The preceding example shows that arbitrarily high efficiency losses are possible,
even if X = XS. The possibility of inefficient allocations even when the price
is the correct one opens up the possibility of substantial inefficiencies that are
hard to bound.
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3 Affine Inverse Demand Functions

In this section, we establish an efficiency lower bound for Cournot oligopoly
models with affine inverse demand functions, of the form:

p(q) =

{
b− aq, if 0 ≤ q ≤ b/a,
0, if b/a < q,

(7)

where a and b are positive constants.

Theorem 1. Suppose that Assumption 1 holds (convex cost functions), and that
the inverse demand function is affine, of the form (7). Suppose also that b >
minn{C′

n(0)} (Assumption 4). Let x be a Cournot equilibrium, and let αn =
C′

n(xn). Let also

β =
aX

b−minn{αn} ,

If X > b/a, then x is socially optimal. Otherwise:

(a) We have 1/2 ≤ β < 1.
(b) The efficiency of x satisfies,

γ(x) ≥ g(β) = 3β2 − 4β + 2.

(c) The bound in part (b) is tight. That is, for every β ∈ [1/2, 1) and every ε > 0,
there exists a model with a Cournot equilibrium whose efficiency is no more
than g(β)+ε.

(d) The function g(β) is minimized at β = 2/3 and the worst case efficiency is
2/3.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.65

0.7
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0.8

0.85

0.9

0.95

1

β

g(
β)

(2/3, 2/3)

Fig. 1. A tight lower bound on the efficiency of Cournot equilibria for the case of affine
inverse demand functions
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The lower bound g(β) is illustrated in Fig. 1. For the special case where all the
cost functions are linear, of the form Cn(xn) = αn, Theorem 1 has an interesting
interpretation. We first note that β = X/XS, which is the ratio of the aggregate
supply at the Cournot equilibrium to that at a social optimum. Clearly, if β
is close to 1 we expect the efficiency loss due to the difference XS − X to be
small. However, efficiency losses may also arise if the total supply at a Cournot
equilibrium is not provided by the most efficient suppliers. Our result shows that,
for the affine case, β can be used to lower bound the total efficiency loss due
to this second factor as well. Somewhat surprisingly, the worst case efficiency
also tends to be somewhat better for low β, that is, when β approaches 1/2, as
compared to intermediate values (β ≈ 2/3).

4 Convex Inverse Demand Functions

In this section, we first show that in order to study the worst-case efficiency of
Cournot equilibria, it suffices to consider a particular form of piecewise linear
inverse demand functions. We then introduce the main result of this section,
an efficiency lower bound that holds for Cournot oligopoly models with convex
inverse demand functions.

Proposition 8. Suppose that Assumptions 1-4 hold, and that the inverse de-
mand function is convex. Let x and xS be a Cournot candidate and an optimal
solution to (1), respectively. Assume that p(X) �= p(XS) and let c = |p′(X)|.
Consider a modified model in which we replace the inverse demand function by
a new function p0(·), defined by

p0(q) =

⎧
⎨

⎩

−c(q −X) + p(X), if 0 ≤ q ≤ X,

max
{
0, p(XS)−p(X)

XS−X (q −X) + p(X)
}
, if X < q.

(8)

Then, for the modified model, with inverse demand function p0(·), the vector xS

remains socially optimal, and the efficiency of x, denoted by γ0(x), satisfies

γ0(x) ≤ γ(x).

Proof. Proof Since p(X) �= p(XS), Proposition 6 implies that X < XS, so that
p0(·) is well defined. Since the necessary and sufficient optimality conditions in
(2) only involve the value of the inverse demand function at XS, which has been
unchanged, the vector xS remains socially optimal for the modified model.

Let

A =

∫ X

0

p0(q) dq, B =

∫ XS

X

p(q) dq,

and

C =

∫ XS

X

(p0(q)− p(q)) dq, D =

∫ X

0

(p(q)− p0(q)) dq.
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Aggregate supply

P
ric

e

 XS

p(q)

p0(q)

 X

A

D

B

Socially optimal point

Cournot equilibrium

C

Fig. 2. The efficiency of a Cournot equilibrium cannot increase if we replace the inverse
demand function by the piecewise linear function p0(·). The function p0(·) is tangent to
the inverse demand function p(·) at the equilibrium point, and connects the Cournot
equilibrium point with the socially optimal point.

See Fig. 2 for an illustration of p(·) and a graphical interpretation of A, B, C,
D. Note that since p(·) is convex, we have C ≥ 0 and D ≥ 0. The efficiency of x
in the original model with inverse demand function p(·), is

0 < γ(x) =
A+D −∑N

n=1 Cn(xn)

A+B +D −∑N
n=1 Cn(xS

n)
≤ 1,

where the first inequality is true because the social welfare achieved at any
Cournot candidate is positive (Proposition 4). The efficiency of x in the modified
model is

γ0(x) =
A−∑N

n=1 Cn(xn)

A+B + C −∑N
n=1 Cn(xS

n)
.

Note that the denominators in the above formulas for γ(x) and γ0(x) are all
positive, by Proposition 4.

If A − ∑N
n=1 Cn(xn) ≤ 0, then γ0(x) ≤ 0 and the result is clearly true. We

can therefore assume that A−∑N
n=1 Cn(xn) > 0. We then have

0 < γ0(x) =

A−
N∑

n=1
Cn(xn)

A+B + C −
N∑

n=1
Cn(xS

n)

≤
A+D −

N∑

n=1
Cn(xn)

A+B + C +D −
N∑

n=1
Cn(xS

n)

≤
A+D −

N∑

n=1
Cn(xn)

A+B +D −
N∑

n=1
Cn(xS

n)

= γ(x) ≤ 1,

which proves the desired result. �
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Note that unless p(·) happens to be linear on the interval [X,XS], the function
p0(·) is not differentiable at X and, according to Proposition 2, x cannot be a
Cournot candidate for the modified model. Nevertheless, p0(·) can still be used
to derive a lower bound on the efficiency of Cournot candidates in the original
model.

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c/d

f(
c/

d)

(1,2/3)

Fig. 3. Plot of the lower bound on the efficiency of a Cournot equilibrium in a Cournot
oligopoly with convex inverse demand functions, as a function of the ratio c/d

Theorem 2. Suppose that Assumptions 1-4 hold, and that the inverse demand
function is convex. Let x and xS be a Cournot equilibrium and a solution to (1),
respectively. Then, the following hold.

(a) If p(X) = p(XS), then γ(x) = 1.
(b) If p(X) �= p(XS), let c = |p′(X)|, d = |(p(XS) − p(X))/(XS − X)|, and

c = c/d. We have c ≥ 1 and

1 > γ(x) ≥ f(c) =
φ2 + 2

φ2 + 2φ+ c
, (9)

where

φ = max

{
2− c+

√
c2 − 4c+ 12

2
, 1

}

.

Remark 1. We do not know whether the lower bound in Theorem 2 is tight. The
difficulty in proving tightness is due to the fact that the vector x need not be a
Cournot equilibrium in the modified model. �

The lower bound established in part (b) is depicted in Fig. 2. If p(·) is affine,
then c = c/d = 1. From (9), it can be verified that f(1) = 2/3, which agrees
with the lower bound in [9] for the affine case. We note that the lower bound
f(c) is monotonically decreasing in c, over the domain [1,∞). When c ∈ [1, 3),
φ is at least 1, and monotonically decreasing in c. When c ≥ 3, φ = 1.
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5 Corollaries and Applications

For a given inverse demand function p(·), the lower bound derived in Theorem
2 requires some knowledge on the Cournot candidate and the social optimum,
namely, the aggregate supplies X and XS. We will derive an efficiency lower
bound that does not require knowledge of X and XS, and apply it to various
convex inverse demand functions that have been considered in the economics
literature.

Corollary 1. Suppose that Assumptions 1-4 hold and that p(·) is convex. Let2

s = inf{q | p(q) = min
n

C′
n(0)}, t = inf

{
q
∣
∣ min

n
C′

n(q) ≥ p(q) + q∂+p(q)
}
.

(10)
If ∂−p(s) < 0, then the efficiency of a Cournot candidate is at least
f (∂+p(t)/∂−p(s)).

Note that if there exists a “best” supplier n such that C′
n(x) ≤ C′

m(x), for any
other supplier m and any x > 0, then the parameters s and t depend only on
p(·) and C′

n(·).
Example 4. Suppose that Assumptions 1, 3, and 4 hold, and that there is a
best supplier, whose cost function is linear with a slope c ≥ 0. Consider inverse
demand functions of the form (cf. Eq. (6) in [2])

p(q) = max{0, α− β log q}, 0 < q, (11)

where α and β are positive constants.3 Through a simple calculation we obtain

s = exp

(
α− c

β

)

, t = exp

(
α− β − c

β

)

.

From Corollary 1 we obtain that for every Cournot equilibrium x,

γ(x) ≥ f

(
exp ((α − c)/β)

exp ((α− β − c)/β)

)

= f (exp (1)) ≥ 0.5237. (12)

Now we argue that the efficiency lower bound (12) holds even without the as-
sumption that there is a best supplier associated with a linear cost function. From
Proposition 5, the efficiency of any Cournot equilibrium x will not increase if
the cost function of each supplier n is replaced by

Cn(x) = C′
n(xn)x, ∀x ≥ 0.

2 Under Assumption 3, the existence of the real numbers defined in (10) is guaranteed.
3 In fact, p(0) is undefined. This turns out to not be an issue: for a small enough
ε > 0, we can guarantee that no supplier chooses a quantity below ε. Furthermore,
limε↓0

∫ ε

0
p(q) dq = 0. For this reason, the details of the inverse demand function in

the vicinity of zero are immaterial as far as the chosen quantities or the resulting
social welfare are concerned.
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Let c = minn C
′
n(xn)}. Since the efficiency lower bound in (12) holds for the

modified model with linear cost functions, it applies whenever the inverse de-
mand function is of the form (11). �

Example 5. Suppose that Assumptions 1, 3, and 4 hold, and that there is a
best supplier, whose cost function is linear with a slope c ≥ 0. Consider inverse
demand functions of the form (cf. Eq. (5) in [2])

p(q) = max{α− βqδ, 0}, 0 < δ ≤ 1, (13)

where α and β are positive constants. Note that if δ = 1, then p(·) is affine; if
0 < δ ≤ 1, then p(·) is convex. Assumption 4 implies that α > χ. Through a
simple calculation we have

s =

(
α− c

β

)1/δ

, t =

(
α− c

β(δ + 1)

)1/δ

.

From Corollary 1 we know that for every Cournot equilibrium x,

γ(x) ≥ f

(−βδtδ−1

−βδsδ−1

)

= f
(
(δ + 1)

1−δ
δ

)
.

Using the argument in Example 4, we conclude that this lower bound also applies
to the case of general convex cost functions. �

6 Conclusion

It is well known that Cournot oligopoly can yield arbitrarily high efficiency
loss in general; for details, see [8]. For Cournot oligopoly with convex market
demand and cost functions, results such as those provided in Theorem 2 show
that the efficiency loss of a Cournot equilibrium can be bounded away from
zero by a function of a scalar parameter that captures quantitative properties of
the inverse demand function. With additional information on the cost functions,
the efficiency lower bounds can be further refined. Our results apply to various
convex inverse demand functions that have been considered in the economics
literature.
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