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Abstract. In any system of networks, such as the Internet, a network
must take some measure of security into account when deciding whether
to allow incoming traffic, and how to configure various filters when mak-
ing routing decisions. Existing methods tend to rely on the quality of
specific hosts in making such decisions, resulting in mostly reactive se-
curity policies. In this study we investigate the notion of reputation of a
network, and focus on constructing mechanisms that incentivizes the par-
ticipation of networks to provide information about themselves as well as
others. Such information is collected by a centralized reputation agent,
who then computes a reputation index for each network. We use a simple
mechanism to demonstrate that not only a network has the incentive to
provide information about itself (even though it is in general not true),
but also that this information can help decrease the estimation error.
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1 Introduction

This paper studies the followingmechanismdesign problem: in a distributedmulti-
agent system where each agent possesses beliefs (or perceptions) of each other,
while the truth about an agent is only known to that agent itself and it may have
an interest in withholding the truth, how to constructmechanisms with the proper
incentives for agents to participate in a collective effort to arrive at the correct
perceptions of all participants without violating privacy and self-interest.

Our main motivation lies in the desire to enhance network security through
establishing the right quantitative assessment of the overall security posture of
different networks at a global level; such a quantitative measure can then be used
to construct sophisticated security policies that are proactive in nature, which are
distinctly different from current solutions that typically tackle specific security
problems. Such quantitative measure can also provide guidance to networks’
human operators to more appropriately allocate resources in prioritizing tasks –
after all, the health of a network is very much a function of the due diligence of
its human administrators.
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Consider a systemof inter-connectednetworks. Eachnetwork has access to statis-
tics gleaned from inbound and outbound traffic to a set of other networks. From
these statistics it can form certain opinions about the quality or “cleanliness” of
these other networks, and actions are routinely taken based on such opinions. For
instance, network administratorsmay choose to block a highpercentage of inbound
traffic from a network observed to send out a large number of spams. Such peer
network-network observations are often incomplete – a network does not get to
see the entire traffic profile of another network – and can be biased. Thus two net-
works’ view of a common third network may or may not be consistent.

The true quality of a network ultimately can only be known to that network
itself, though sometimes a network may not have or choose to use the resources
needed to obtain this knowledge. It is however not necessarily in the network’s
self-interest to truthfully disclose this information: a network has incentive to
inflate other’s perception about itself. This is because this perceived high qual-
ity often leads to higher visibility and less blocked outbound traffic from this
network. Similarly, a network may or may not wish to disclose truthfully what it
observes about others for a variety of privacy considerations. On the other hand,
it is typically in the interest of all networks to have the correct perception about
other networks. This is because this correct view of others can help the system
administrator determine the correct security configurations.

In this paper we set out to examine the validity and usefulness of a reputation
system, where a central reputation agent solicits input from networks regarding
their perceptions of themselves and others, and computes a reputation index
for each network as a measure/indicator of the health or security posture of a
network. These reputation indices are then broadcast to all networks; a network
can in turn combine such reputation information with its local observations to
take proactive measures to maintain “good” reputation and/or improve its own
reputation over time, and take proactive measures to protect themselves against
networks with “bad” reputations. The ultimate goal of this type of architecture
is to improve global network security, which has been championed by and is
gaining support from network operators’ organizations, see e.g., [10].

The design and analysis of such a system must observe two key features. The
first is that participation in such a system is completely voluntary, and therefore
it is critical for the system to adopt mechanisms that can incentivize networks
to participate. The second is that networks may not report truthfully to the
reputation agent even if they choose to participate in such a collaborative effort,
and therefore it is crucial for any mechanism adopted by the system to either
provide the right incentive to induce truth revelation, or be able to function
despite untruthful input from networks.

It should be noted that a wide variety of systems have been developed to deter-
mine host reputation by monitoring different types of data. Darknet monitors [2],
DNS sensors [1], scanning detection, firewall logs [3], web access logs, and ssh brute
force attack reports are all examples of systems that can report on hosts that have
engaged in potentially suspicious behavior. The most commonly used host repu-
tation systems are related to determining illegitimate email messages or SPAM.
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A wide range of different organizations such as SPAMHAUS [12], SpamCop [6],
Shadowserver [14], and Barracuda [11], independently operate their own reputa-
tion lists, which are largely generated by observing unauthorized email activity
directed at monitored spamtraps. In addition, organizations such as Team Cymru
[8], Shadowserver, and Damballa [7] generate similar reputation lists by analyzing
malware or even DNS activity. There is however a significant difference between
assessing individual hosts’ reputation vs. defining reputation as a notion for a net-
work. Host reputation lists by themselves cannot directly be used in developing a
consistent security policy due to the dynamic nature of host addresses.

Besides the security context, there has been a large volume of literature on the
use of reputation in peer-to-peer (P2P) systems and other related social network
settings. Specifically, a large population and the anonymity of individuals in
such social settings make it difficult to sustain cooperative behavior among self-
interested individuals [5]. Reputation has thus been used in such systems as
an incentive mechanism for individuals to cooperate and behave according to
a certain social norm in general [15], and to reciprocate in P2P systems in
particular [4,13,9]. While the focus of social network studies is on the effect of
changing reputation has on individuals, the focus of our study in its present form
is on how to make network reputation an accurate representation of a network’s
security posture. Accordingly, our emphasis is on how to incentivize participation
from networks, while user participation in a P2P system is a given (i.e., by default
reputation only applies to an active user already in a P2P system).

Our main findings are summarized as follows. We propose a reputation mech-
anism which induces a network to participate in the collective assessment of its
own reputation. We first show that for two networks (Section 3), a network’s par-
ticipation can result in a higher mean estimated reputation and at the same time
lower estimation error, thus benefiting both itself and the system. This remains
true even if the observations of the other network is biased. We further show in
Section 4 that these results extend to the case of multiple interacting networks.

2 The Model, Main Assumptions, and Preliminaries

2.1 The Model

Consider a system of K inter-connected networks, denoted by N1, N2, · · · , NK .
Network Ni’s overall health condition is described by a quantity rii, which will
also be referred to as the true or real reputation of Ni, or simply the truth. We
will assume without loss of generality that these true quantities are normalized,
i.e., rii ∈ [0, 1], for all i = 1, 2, · · · ,K.

There is a central reputation agent, who solicits and collects a vector
(Xij)j∈K of reports from each network Ni. It consists of cross-reports Xij , i, j =
1, 2, · · · ,K, j �= i, which represent Ni’s assessment of Nj ’s quality, and self-
reports Xii, i = 1, 2, · · · ,K, which are the networks’ self-advertised quality mea-
sure disclosed to the reputation agent. The reputation agent’s goal is to compute
a reputation index denoted by r̂i, which is an estimate of rii for each network
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Ni using a certain mechanism with the above inputs collected from the net-
works. This index/estimate will then be used by peer networks to regulate their
interactions with Ni.

2.2 Assumptions

We assume that each network Ni is aware of its own conditions and therefore
knows rii precisely, but this is in general its private information. While it is
technically feasible for any network to obtain rii by closely monitoring its own
hosts and traffic, it is by no means always the case due to reasons such as resource
constraints.

We also assume that a network Ni can sufficiently monitor inbound traffic
from network Nj so as to form an estimate of Nj ’s condition, denoted by Rij ,
based on its observations. However, Ni’s observation is in general an incomplete
view of Nj , and may contain error depending on the monitoring and estimation
technique used. We will thus assume that Rij is described by a Normal distribu-
tion N (μij , σ

2
ij), which itself may be unbiased (μij = rjj) or biased (μij �= rjj).

We will further assume that this distribution is known to network Nj (a relax-
ation of this assumption is also considered later). The reason for this assumption
is that Nj can closely monitor its outbound traffic to Ni, and therefore may suf-
ficiently infer how it is perceived by Ni. On the other hand, Ni itself may or
may not be aware of the distribution N (μij , σ

2
ij).

A reputation mechanism specifies a method used by the reputation agent to
compute the reputation indices, i.e., how the input reports are used to generate
output estimates. We assume the mechanism is common knowledge among all
K participating networks.

A participating network Ni’s objective is assumed to be characterized by the
following two elements: (1) it wishes to obtain from the system as accurate as
possible a reputation estimate r̂j on networks Nj other than itself, and (2) it
wishes to obtain as high as possible an estimated reputation r̂i on itself. It must
therefore report to the reputation agent a carefully chosen (Xij)j∈K , using its
private information rii, its knowledge of the distributions (Rji)j∈K\i, and its
knowledge of the mechanism, to increase (or inflate) as much as possible r̂i
while keeping r̂j close to rjj . The reason for adopting the above assumption is
because, as pointed out earlier, accurate assessment of other networks’ security
posture can help a network configure its policies appropriately, and thus correct
perception of other networks is critical. On the other hand, a network has an
interest in inflating its own reputation so as to achieve better visibility and less
traffic blocked by other networks, etc. Note that these two elements do not fully
define a network’s preference model (or utility function). We are simply assuming
that a network’s preference is increasing in the accuracy of others’ reputation
estimate and increasing in its own reputation estimate, and that this is public
knowledge1.

1 How the preference increases with these estimates and how these two elements are
weighed remain the network’s private information and do not factor into the present
analysis.
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Note also that the objective assumed above may not capture the nature of a
malicious network, who may or may not care about the estimated perceptions
about itself and others. Recall that our basic intent through this work is to
provide reputation estimate as a quantitative measure so that networks may
adopt and develop better security policies and be incentivized to improve their
security posture through a variety of tools they already have. Malicious networks
are not expected to react in this manner. On the other hand, it must be admitted
that their participation in this reputation system, which cannot be ruled out as
malicious intent may not be a priori knowledge, can very well lead to skewed
estimates, thereby rendering the system less than useful. The hope is that a
critical mass of non-malicious networks will outweigh this effect, but this needs
to be more precisely established and is an important subject of future study.

2.3 Candidate Mechanisms and Rationale

One simple mechanism that can be used by the reputation agent is to take the
estimate r̂i to be the average of the cross-reports Xji and the self-report Xii. It
can be easily seen that in this case, Ni will always choose to report Xii = 1, and
thus the self-reports will bear no information. The mechanism can be modified
to take the average of only the cross-reports (Xji)j∈K\i as the estimate. If cross-
reports are unbiased, then r̂i can be made arbitrarily close to rii as the number of
networks increases. We will later take the mean absolute error of this mechanism,
which we will refer to as the averaging mechanism, as a benchmark in evaluating
the performance of other mechanisms.

An alternative to completely ignoring Ni’s self-report is to induce or incen-
tivizeNi to provide useful information in its self-report even if it is not the precise
truth rii. With this in mind, a good mechanism might on one hand convince Ni

that it can help contribute to a desired, high estimate r̂i by supplying input Xii,
while on the other hand try to use the cross-reports, which are estimates of the
truth rii, to assess Ni’s self-report and threaten with punishment if it is judged
to be overly misleading.

Also, note that it is reasonable to design a mechanism in which Ni’s cross-
reports are not used in calculating its own reputation estimate. By doing so,
we ensure that the cross-reports are reported truthfully2. To see why this is the
case, note that by its cross-reports Ni can now only hope to increase its utility
by altering r̂j . Now Ni’s best estimate of rjj is Rij , which it knows will be used
as a basis for the estimate r̂j . On the other hand, due to its lack of knowledge of
rjj , Ni can’t use a specific utility function to see how it can strategically choose
Xij so as to increase its utility. By this argument, for the rest of the paper we will
assume that the cross-reports are reported truthfully, and that this is common
knowledge.

It is worthwhile to emphasize that the above reasoning on truthful cross-
reports derives from accounting for the direct effect of the cross-reports on the

2 This is conceptually similar to not using a user’s own bid in calculating the price
charged to him in the context of auction, a technique commonly used to induce
truthful implementation.
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final estimates. One might argue that a network could potentially improve its
relative position by providing false cross-reports of other networks so as to lower
their reputation indices, i.e., it can make itself look better by comparison. A
close inspection of the situation reveals, however, that there is no clear incentive
for a network to exploit such indirect effect of their cross-reports either.

One reason is that the proposed reputation system is not a ranking system,
where making other entities look worse would indeed improve the standing of
oneself. The reputation index is a value normalized between [0, 1], a more or
less absolute scale. It is more advisable that a network tighten its security mea-
sures against all networks with low indices rather than favor the highest-indexed
among them.

But more importantly and perhaps more subtly, badmouthing another net-
work is not necessarily in the best interest of a network. Suppose that after
sending a low cross-report Xij , Ni subsequently receives a low r̂j from the rep-
utation agent. Due to its lack of knowledge of other networks’ cross-reports,
Ni cannot reasonably tell whether this low estimate r̂j is a consequence of its
own low cross-report, or if it is because Nj was observed to be poor(er) by
other networks and thus r̂j is in fact reflecting Nj ’s true reputation (unless a set
of networks collude and jointly target a particular network). This ambiguity is
against Ni’s interest in obtaining accurate estimates of other networks; therefore
bashing is not a profitable deviation from truthful reporting.

3 A Two-Network Scenario

3.1 The Proposed Mechanism

We start by considering only two networks and extend the result to multiple
networks in the next section. We will examine the following way of computing
the reputation index r̂1 for N1, where ε is a fixed and known constant. The
expression for r̂2 is similar, thus for the remainder of this section we will only
focus on N1.

r̂1(X11, X21) =

{
X21+X11

2 if X11 ∈ [X21 − ε,X21 + ε]
X21 − |X11 −X21| if X11 /∈ [X21 − ε,X21 + ε]

(1)

In essence, the reputation agent takes the average of self-report X11 and cross-
report X21 if the two are sufficiently close, or else punishes N1 for reporting
significantly differently. Note that this is only one of many possibilities that
reflect the idea of weighing between averaging and punishing; for instance, we
can also choose to punish only when the self-report is higher than the cross-
report, and so on.

3.2 Choice of Self-report

As stated earlier, we assume N1 believes N2’s cross-report is a sample of a
random variable with distribution X21 ∼ N (μ, σ2). As a result, the choice of
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the self-report X11 is determined by the solution of the optimization problem
maxX11 E[r̂1]. Using (1), E[r̂1] eventually simplifies to (with F () and f() denot-
ing the cdf and pdf, respectively):

E[r̂1] = X11 +
ε
2 (F (X11 + ε)− 3F (X11 − ε))

− 1
2

∫ X11+ε

X11−ε

F (x)dx − 2

∫ X11−ε

−∞
F (x)dx . (2)

Taking the derivative with respect to X11 we obtain:

dE

dX11
= 1 +

ε

2
[f(X11 + ε)− 3f(X11 − ε)]− 1

2
[F (X11 + ε) + 3F (X11 − ε)].(3)

We next re-write ε = aσ; this expression of ε reflects how the reputation agent
can limit the variation in the self-report using its knowledge of this variation σ 3.
Replacing X21 ∼ N (μ, σ2) and ε = aσ in (3), and making the change of variable
y := X11−μ

aσ results in:

a√
2π

(e
−( a(y+1)√

2
)2 − 3e

−(a(y−1)√
2

)2
)− 1

2
(erf(

a(y + 1)√
2

) + 3erf(
a(y − 1)√

2
)) = 0 . (4)

Therefore, if y solves (4) for a given a, the optimal value for X11 would be
X∗

11 = μ+aσy. Equation (4) can be solved numerically for a, resulting in Figure
1. It’s interesting to see in that in Figure 1 we always have y < 1, and as a
consequence X∗

11 < μ + ε. This means that N1 is choosing a self-report within
its prediction of the acceptable range. Also note that this self-report is always
positively biased, reflecting N1’s interest in increasing r̂1.

3.3 Value of Cross-Report and Self-report

We next examine how close the resulting reputation estimate r̂1 is to the real
quality r11 by calculating the mean absolute error (MAE) and comparing it
to that of the averaging mechanism; from this we further illustrate the roles
and values of cross-report and self-report. We do this separately for two cases,
where the cross-report comes from an unbiased distribution and a biased distri-
bution, respectively. Note that in both cases the averaging mechanism for the
two-network scenario reduces to taking the cross-report as the estimate, i.e. the
averaging mechanism has an estimate of E[X21] for N1.

Unbiased Cross-Report. We now compare the performance of (1) to the
averaging mechanism.

3 Note that we are assuming σ is known by the reputation agent as well as the net-
works. σ can be thought of as a measure of the variation of N2’s estimate, which
depends on the nature of its observation and the algorithm it uses for the estimate.
While this is not entirely an unreasonable assumption, it ultimately needs to be
verified through analysis of real data.
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Define em := E[|r̂1 − r11|] as the MAE of the mechanism described in (1)
with ε = aσ. As already derived, N1’s self-report is set to X∗

11 = μ + aσy,
where y solves (4) for a given a; N2’s cross-report X21 is set to R21 (truthful
reporting); and R21 is assumed to be unbiased. With these assumptions, we find
the following expression for em

4:

em =
1

2

∫ μ+a(y+1)σ

μ−ayσ

xf(x)dx − 1

2

∫ μ−ayσ

μ+a(y−1)σ

xf(x)dx

− 2

∫ μ+a(y−1)σ

−∞
xf(x)dx + ayσ + (μ− ayσ) F (μ− ayσ)

+ (μ+ ayσ)
(3
2
F (μ+ a(y − 1)σ)− 1

2
F (μ+ a(y + 1)σ)

)
. (5)

As seen in (5), em is a function of a. Thus we can optimize the choice of a by
solving the problem mina em. Taking the derivative of (5) we get:

dem
da

=
σ

2

(
a√
2π

(e−
(a(y+1))2

2 − 3e−
(a(y−1))2

2 ) + (ay + y′)
(
2 + erf(

ay√
2
) +

a√
2π

(e−
(a(y+1))2

2 + 3e−
(a(y−1))2

2 )− 1

2

(
erf(a(y+1)√

2
)− 3erf(a(y−1)√

2
)
)))

. (6)
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Fig. 3. Est. reputation vs.
a, r11 = 0.75, σ2 = 0.1

As seen in (6), the optimal choice of a does not depend on the specific values of
μ and σ. Therefore, the same mechanism can be used for any set of networks.
Equation (6) can be solved numerically, and is zero at two values: at a = 0,
which indicates a local maximum, and at a ≈ 1.7, where it has a minimum. This
can been seen from Figure 2, which shows the MAE of the proposed mechanism
compared to that of the averaging mechanism. Under the averaging mechanism

the MAE is E[|R21 − r11|] =
√

2
πσ. We see that for a large range of a values the

mechanism given in (1) results in smaller estimation error. This suggests that
N1’s self-report can significantly benefit the system as well as all networks other
than N1.

4 The calculations here are possible if y ≤ 1
2
, which based on Figure 1 is a valid

assumption for moderate values of a.
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We next examine whether there is incentive for N1 to provide this self-report,
i.e., does it benefit N1 itself? Figure 3 compares N1’s estimated reputation r̂i
under the proposed mechanism to that under the averaging mechanism, in which
case it is simply N2’s cross-report X21, and E[X21] = μ when unbiased.

Taking Figs 2 and 3 together, we see that there is a region, a ∈ [2, 2.5] in which
the presence of the self-report helps N1 obtain a higher estimated reputation,
while helping the system reduce its estimation error on N1. This is a region that
is mutually beneficial to both N1 and the system, and N1 clearly has an incentive
to participate and provide the self-report.

Biased Cross-Report. We now turn to the case where the cross-report X21

comes from the biased distribution N (r11 + b, σ2), where b is the bias term, a
fact unknown to both N2 and the reputation mechanism. We will thus assume
that the mechanism used remains that given by (1) with the optimal value of a
obtained previously.

First consider the case that N1 is also not aware of the bias, and again chooses
X∗

11 = r11+ayσ. The calculation of the error is the same, leading to (5). However,
here F and f are those of the Normal distribution N (r11+ b, σ2). Therefore, the
new minimum error and the value of a where it occurs are different. Figure 4
shows the MAE for three different values of the bias. As seen from the figure,
the error increases for b = −0.1σ, and decreases for b = 0.1σ compared to the
unbiased case. This is because for the negative bias, N1 is not adapting its self-
advertised reputation accordingly. This makes the mechanism operate mainly
in the punishment phase, which introduces larger errors. For the small positive
bias, however, the mechanism works mainly in the averaging phase, and the error
is less than both the biased and unbiased cases. The latter follows from the fact
that punishment phases happen more often in the unbiased case. Note however
that for larger values of positive bias, the error will eventually exceed that of the
unbiased case.
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Next we consider the case where X21 ∼ N (r11+b, σ2) as before but this bias is
known to N1. N1 will accordingly adapt its self-report to be X∗

11 = r11+b+ayσ.
Figure 5 shows a comparison in this case. The results show that the selected
positive bias increases the error, while the negative bias can decrease the error
compared to the unbiased case.
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The assumption of a known bias has the following two intuitively appealing
interpretations. The first is where N1 has deliberately sent its traffic through N2

in such a way so as to bias the cross-report. As expected, it’s in the interest of N1

to introduce a positive bias in N2’s evaluation of itself. If this is what N1 chooses
to do then arguably the mechanism has already achieved its goal of improving
networks’ security posture – after all, N2 now sees a healthier and cleaner version
of N1 which is welcomed! The second case is where given the mechanism, N2

knows that N1 will introduce a positive bias in its self-report, and consequently
counter-acts by sending a negatively biased version of its observation. To find
the optimal choice for this deliberately introduced bias we proceed as follows.
Define μ := r11 + b. To see how the mean absolute error behaves, we find an
expression for em at any given a.5

em = (μ− r11 + ayσ) +
1

2

∫ μ+a(y+1)σ

2r11−μ−ayσ

xf(x)dx − 1

2

∫ 2r11−μ−ayσ

μ+a(y−1)σ

xf(x)dx

− 2

∫ μ+a(y−1)σ

−∞
xf(x)dx + (2r11 − μ− ayσ) F (2r11 − μ− ayσ)

+ (μ+ ayσ)(
3

2
F (μ+ a(y − 1)σ)− 1

2
F (μ+ a(y + 1)σ)) . (7)

where F and f are the cdf and pdf of the biased distribution. To find the value
of b at which the error is minimized, we take the derivative of (7), resulting in:

dem
dμ

= 1− 2F (2r11 − μ− ayσ) = 0 . (8)

Solving (8) will show that for a given a, the MAE is minimized at b∗ = −ayσ
2 . As

a result, the final reports sent by the two networks will be X∗
11 = r11 +

ayσ
2 and

X∗
21 = R21 − ayσ

2 , which in turn increases the chance of having the mechanism
operate in the averaging phase, thus decreasing the error.

As in the unbiased case, we also compare the estimated reputation r̂1 in this
case to highlight that there is incentive for N1 to provide self-report, shown
in Figure 6. A comparison between Figs. 5 and 6 reflects the tradeoff between
achieving a lower estimation error and helping N1 achieve a higher estimated
reputation. In the case of positive bias, even though N1 benefits from providing
a self-report for smaller values of a compared to the unbiased case, the system
can use a more limited range of a to decrease MAE compared to the averaging
mechanim. Similarly, larger values of a are required for incentivizing N1’s partic-
ipation when the cross-report is negatively biased, while the MAE improvement
is achieved for a larger range of a.

4 Extension to a Multi-network Scenario

We now consider the case with more than two participating networks. The pro-
posed mechanism can be extended as follows. The reputation agent now receives

5 The following calculations are for moderate values of bias b ∈ [−ayσ,−ayσ + aσ
2
].
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more cross-reports on the basis of which it will judge Ni. In the simplest case, the
agent can take the average of all the cross-reports to get X0i :=

1
K−1Σj∈K\iXji,

and derive r̂i using:

r̂i(Xii, X0i) =

{
X0i+Xii

2 if Xii ∈ [X0i − ε,X0i + ε]
X0i − |Xii −X0i| if Xii /∈ [X0i − ε,X0i + ε]

. (9)

Another alternative is using a weighted version of the cross-reports in this mech-
anism. We defer this discussion to later in the section. For the mechanism defined
in (9), we again have two cases, one where the cross-reports are unbiased, and
one where they are biased. In the second case, we further distinguish between
the cases where the bias itself is of a non-skewed distribution and where the bias
distribution is skewed.

4.1 Unbiased Cross-Reports

We will assume Xji ∼ N (μji, σ
2
ji), and that these distributions are independent.

Thus X0i also has a Normal distribution given by N (
Σj∈K\iμji

K−1 ,
Σj∈K\iσ2

ji

(K−1)2 ). The

optimization problem for Ni is the same as before resulting in X∗
ii = μ′ + ayσ′,

with μ′ and σ′2 being the mean and variance of X0i. Note that in this case the
reputation agent is using ε = aσ′.

If all cross-reports are unbiased, i.e., μji = rii, and σji = σ, we have X0i ∼
N (rii,

σ2

K−1 ). To find the optimal choice of a we will need to solve (6) again, with
the only difference that σ is replaced by σ′. Therefore, the optimal choice of a,
which is independent of the mean or variance of the reports, will be the same
as before. This result can be verified in Figures 7 and 8, which show the MAE
of collections of 3 and 10 networks respectively. Furthermore, as expected the
error decreases as the number of networks increases in this case.

4.2 Biased Cross-Reports

Now assume that the cross-reports are biased and that the bias term it-
self comes from a Normal distribution. We re-write Xji = Rji + Bji, where
Rji ∼ N (rii, σ

2
ji), and Bji ∼ N (bji, σ

2
b,ji). Therefore, assuming independence, in

general we have:

X0i ∼ N (rii +

∑
j∈K\i bji
K − 1

,

∑
j∈K\i (σ

2
ji + σ2

b,ji)

(K − 1)2
) . (10)

Non-skewed Bias Distribution. If the bias distribution has zero mean (bji =
0) and all variance terms are the same: σji = σ and σb,ji = σb, then (10)

is simplified to X0i ∼ N(rii, σ
′′2), where σ′′2 =

σ2+σ2
b

K−1 . The calculation of the
optimal self-report is given by the same optimization problem as before, resulting
in X∗

ii = rii + ayσ′′. Figures 9 and 10 show the simulation results for K = 3
and K = 10 respectively. As expected, biased cross-reports result in larger error
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Fig. 7. MAE, 3 Networks,
Unbiased Cross-Reports
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Fig. 8. MAE, 10 Net-
works, Unbiased Cross-
Reports
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Fig. 9. MAE, 3 Networks,
non-skewed bias distribution
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Fig. 10. MAE, 10 Net-
works, non-skewed bias
distribution
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Fig. 11. MAE, 10 Net-
works, skewed bias
distribution
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Fig. 12. Est. Reputation,
10 Networks, skewed bias
distribution

compared to unbiased cross-reports: the fact that σ′′ > σ′ in the unbiased case
allows N1 to introduce a larger inflation in its self-report, thus increasing the
MAE in general.

Skewed Bias Distribution. If we assume that all bias terms are from the
same distribution but this distribution is skewed itself, i.e. B0i ∼ N (b0i, σb),
then negatively biased cross-reports can result in lower MAE compared to a
non-skewed bias distribution, while positively biased cross-reports can increase
the error. Figure 11 verifies this property of the mechanism in a collection of 10
networks, and for a negative value of b0i.

In all of the above cases, we need the range of a to be such that using the
proposed mechanism is mutually beneficial for the system and the individual
networks. Our numerical results show that, when cross-reports are unbiased,
the values of a for which it is individually rational for a network to participate
does not change as the number of networks increases. Also, this range remains
unchanged if the cross-reports have a non-skewed bias distribution. In the case
of skewed bias distribution a similar behavior as the two-network scenario is
observed, where individual networks have more incentive to participate in the
estimation of their own reputation when there is a positive bias in the cross-
reports, and are less inclined to do so in the presence of a negative bias.

Figure 12 illustrates these results. As seen in the figure, for unbiaed cross-
reports, the range for which networks are incentivized to participate is again
roughly a ∈ [2, 2.5] despite the increase in the number of networks. The figure
also shows the effect of a choice of b = −0.1σ for cross-reports with skewed
bias. A careful study of this figure along with Figure 11 indicates that the same
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tradeoff described in section 3 holds between minimizing error and providing
incentive for participation.

4.3 Weighted Mean of Cross-Reports

So far, we have assumed the reputation agent takes a simple average of the cross-
reports to judge the truthfulness of the self-report. Assume that as suggested
earlier, the agent forms the weighted mean:

X0i :=

∑
j∈K\i wjXji∑

j∈K\i wj
(11)

where w := (wj)j∈K\i is a vector of weights, also specified by the reputation
agent. One reasonable choice for w could be a vector of previously computed
reputations r̂j , with the goal of allowing the more reputable networks to have a
higher influence on the estimate. We proceed by analyzing the performance of
this alternative mechanism.

Unbiased Cross-Reports. Assume Xji ∼ N(rii, σ
2
ji). By adopting this as-

sumption, we focus on a scenario where all networks have an unbiased view
of Ni, but potentially different accuracy as reflected by different values of σji,
with smaller variances corresponding to more precise estimates. Consequently,

the weighted mean in (11) has a distribution X0i ∼ N(rii,
∑

j∈K\i wj
2σ2

ji

(
∑

j∈K\i wj)2
). Thus

except for the change in the equivalent variance, the overall problem remains
the same as the one discussed earlier6. Since an increased variance increases the
MAE, in order to have a better estimate using the weighted average compared

to the simple average, we would need
∑

j∈K\i wj
2σ2

ji

(
∑

j∈K\i wj)2
≤

∑
j∈K\i σ

2
ji

(K−1)2 .

In the special case σji = σ, ∀j, the Cauchy-Schwarz inequality implies
∑

j∈K\i wj
2

(
∑

j∈K\i wj)2
≥ 1

K−1 , with equality at wj = w0, ∀j. This is true independent

of the choice of w, and therefore the weighted average will always have higher
estimation error. Figure 13 shows this result for a random choice of the vector
w.

Next consider the case where σji’s are different. Without lose of generality
assume that the coefficients are normalized such that they sum to 1. In order to
achieve lower estimation error, we want to choose w such that

∑
j∈K\i wj

2σ2
ji ≤∑

j∈K\i
1

(K−1)2σ
2
ji. This rearrangement shows clearly that for the inequality to

hold, it suffices to put more weight on the smaller σji, i.e., more weight on
those with more accurate observations. It follows that if more reputable networks
(higher r̂j) also have more accurate observations (smaller σji), then selecting
weights according to existing reputation reduces the estimation error. Figure 14
shows the results for 3 networks when σ31 < σ21, and the weights are chosen
accordingly to be w = (0.45, 0.55).

6 In fact, using a simple average of cross-reports is a special case of this problem by
using equal wj and σji.
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Fig. 13. MAE, 3 Networks, Weighted
Averages, Equal Variances
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Fig. 14. MAE, 3 Networks, Weighted
Averages, Different Variances
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Fig. 15. MAE, 3 Networks, Weighted
Averages, Skewed Bias
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Fig. 16. Est. Reputation, 3 Networks,
Weighted Averages, Skewed Bias

Biased Cross-Reports. Assume now Xji ∼ N(rii+ bji, σ
2
ji+σ2

b,ji). Then (11)

results in X0i ∼ N(rii +
∑

j∈K\i wjbji
∑

j∈K\i wj
,
∑

j∈K\i wj
2(σ2

ji+σ2
b,ji)

(
∑

j∈K\i wj)2
). The case of equally

distributed bias terms is very similar to before, and it will only add a bias term
to the mean of the equivalent X01. Therefore, we only focus on the case where
bji’s are different.

In this case we have two ways of improving the result over the simple averag-
ing. Following our previous discussion, putting more weight on the cross-reports
that have smaller variances will decrease the final variance and thus the esti-
mation error. On the other hand, if we put more weight on smaller bias terms,
the overall bias will decrease. As already discussed in the beginning of this sec-
tion, positively biased cross-reports increase the estimation error. Thus, having
a smaller bias term will improve the MAE. Figure 15 shows the results for 3
networks, where N3 has a better estimate than N2, by which we mean both
0 < b31 < b21 and σ31 < σ21. The weights are chosen such that w3 > w2.

Finally, we check networks’ incentives under the weighted version of the mech-
anism. Based on our previous observation, we expect a similar tradeoff here
as well: the lower MAE comes at the cost of the reduction in the range of a
that makes the mechanism individually rational. This effect is illustrated in
Figure 16.

5 Discussion and Conclusion

We demonstrated the feasibility of designing network reputation mechanisms
that can incentivize networks to participate in the collective effort of determining
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their health conditions by providing information about themselves and others.
We showed that our mechanism can allow both the participants and the system
to benefit. Furthermore, the mechanism remains robust even if we relax the
assumption of unbiased initial estimation. As a byproduct of this analysis, we
observed how once the mechanism is fixed, networks can improve the assessment
even further by strategically choosing their cross-reports. We also verified that
the same results hold as the number of participating networks increases.

This is only the first step toward building a comprehensive global reputation
system; there remain many interesting and challenging problems to pursue.

To begin, the mechanisms proposed here (simple and weighted averages) are
just two of many possible choices. In particular, it would be desirable to relax
the assumption of having known variances, σ2

ij , throughout the system, and see
if it is possible to design alternative mechanisms that can achieve the same or
better performance. Secondly, in practice it is possible for the reputation agent
to obtain direct observations of its own as additional input to the estimation.
This may allow us to relax the assumption that the cross-reports are truthful
(though as we have argued this is a reasonable assumption in and by itself).
Thirdly, it would be very interesting to analyze the effect of the presence of a
small percentage of malicious networks as discussed in the paper.

At an architectural level, it would be of great interest to design a distributed
mechanism without the need for a central reputation agent. One possibility is
to follow a gossip-like procedure, where neighboring networks update their re-
spective estimates using values provided by other networks through a similar
averaging-punishment process to ensure that peer networks provide useful if not
entire true information. It would be interesting to see what type of computa-
tion will lead to system-wide convergence to accurate estimates of the networks’
health conditions.
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