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Abstract. In this paper, we propose a quantification of the vulnerabil-
ity of a communication network where links are subject to failures due to
the actions of a strategic adversary. We model the adversarial nature of
the problem as a 2-player game between a network manager who chooses
a spanning tree of the network as communication infrastructure and an
attacker who is trying to disrupt the communication by attacking a link.
We use previously proposed models for the value of a network to derive
payoffs of the players and propose the network’s expected loss-in-value
as a metric for vulnerability. In the process, we generalize the notion of
betweenness centrality: a metric largely used in Graph Theory to mea-
sure the relative importance of a link within a network. Furthermore, by
computing and analyzing the Nash equilibria of the game, we determine
the actions of both the attacker and the defender. The analysis reveals
the existence of subsets of links that are more critical than the others. We
characterize these critical subsets of links and compare them for the dif-
ferent network value models. The comparison shows that critical subsets
depend both on the value model and on the connectivity of the network.

Keywords: Vulnerability Metric, Value of Communication Network,
Spanning Tree, Betweenness Centrality, Critical Links, Nash Equilib-
rium.

1 Introduction

“...one cannot manage a problem if one cannot measure it...”

This study is an effort to derive a metric that quantifies the vulnerability of a
communication network when the links are subject to failures due to the actions
of a strategic attacker. Such a metric can serve as guidance when designing
new networks in adversarial environments. Also, knowing such a value helps
identify the most critical/vulnerable links and/or nodes of the network, which
is an important step towards improving an existing network. We quantify the
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vulnerability as the loss-in-value of a network when links are attacked by an
adversary. Naturally, the first question towards such quantification is: “what is
the value of a communication network?”

The value of a network depends on several parameters including the number
of agents who can communicate over it. It is widely accepted that the utility of
a network increases as it adds more members: the more members a network has,
the more valuable it is. But, there ends the consensus. There is no unanimity
on how much this value increases when new members are added, and there is
very little (if not zero) agreement on how important a given node or link is for
a network. Experts also do not concur on how much value a given network has.

Attempts to assess the utility of a communication network as a function of the
number of its members include the proposition by David Sarnoff [1] who viewed
the value of a network as a linear function of its number of nodes O(n). Robert
Metcalfe [7] has suggested that the value of a network grows as a function of
the total number of possible connections (O(n2)). David Reed ([4], [16], [17])
has proposed an exponential (O(2n)) model for the utility of a network. For
Briscoe et. al. ([13], [3]) a more reasonable approximation of the value of a
network as a function of the number of nodes is O(nlog(n)). Finally, the authors
of the present paper have considered a power law model where the value of a
network is estimated as O(n1+a), a ≤ 1. The parameter a is a design parameter
and needs to be specified. Details of these value models are discussed later in
section 2.1.

Each of these very generic models is suitable for a particular network setting,
as we will see later. However, they all have a number of limitations; two of which
are particularly of interest to us: They do not take into account the topology of
the network nor do they consider the way in which traffic is being carried over the
network. In this paper, we build upon these models and use them in the process
to quantify the vulnerability of a network. More precisely, we use the models
as a proof of concept for defining the importance of network links relative to
spanning trees. With this definition, we are implicitly considering networks where
information flow over spanning trees. The topology is also taken into account
because the set of spanning trees of the network has a one-to-one correspondence
with its topology. We are particularly interested in an adversarial situation where
links are the target of an attacker. We use a game theoretic approach to model
the strategic interaction between the attacker and the defender1.

Our focus on spanning trees is not a limitation as the techniques of the pa-
per can be used to study other scenarios where the network manager chooses
some subset of links (shortest path, Hamiltonian cycle, etc...) and the attacker
is targeting more than one link as can be seen in Gueye [8, Chap. 4]. However,
spanning trees have a number of desirable properties that have made them a cen-
tral concept in communication networking. The Spanning-Tree Protocol (STP-
802.1D 1998–[14] and [15]) is the standard link management protocol used in
Ethernet networks.

1 Throughout this paper the call the defender a “network manager”. The defender can
be a human or an automata that implements the game.
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When communication is carried over a spanning tree, any node can reach any
other node. In that sense, a spanning tree can be said to deliver the maximum
value of the network (indeed this ignores the cost of communication). This value
can be determined by using one of the models cited above. Now, assuming that
information flows over a given spanning tree, two scenarios are possible when a
link of the network fails.

If the link does not belong to the spanning tree, then its failure does not affect
the communication. If, on the other hand, the link belongs to the spanning tree,
then the spanning tree is separated into two subtrees, each of them being a
connected subnetwork and also delivers some value. However, the sum of the
values delivered by the two subnetworks is expected to be less than the value
of the original network. We define the importance of the link, relative to the
spanning tree, to be this loss-in-value (LIV) due to the failure of the link.

Link failures may occur because of random events (faults) such as human
errors and/or machine failures: this is dealt with under the subject of reliability
and fault tolerance [12]. They also can be the result of the action of a malicious
attacker whose goal is to disrupt the communication. It is this type of failure that
is the main concern of this paper. A network manager (defender) would like to
avoid this disruption by choosing an appropriate communication infrastructure.
We model this scenario as a 2-player game where the defender is choosing a
spanning tree to carry the communication in anticipation of an intelligent attack
by a malicious attacker who is trying to inflict the most damage. The adversary
also plans in anticipation of the defense. We use the links’ LIV discussed above
to derive payoffs for both players.

Applying game theoretic models to the security problem is a natural process
and it has recently attracted a lot of interest (see surveys [18], [11]). In this paper,
we set up a game on the graph of a network and consider the Nash equilibrium
concept. We propose the expected LIV of the game for the network manager
as a metric for vulnerability. This value captures how much loss an adversary
can inflict to the network manager by attacking links. By analyzing the Nash
equilibria of the game, we determine the actions of both the attacker and the
defender. The analysis reveals the existence of a set of links that are most critical
for the network. We identify the critical links and compare them for the different
network value models cited above. The comparison shows that the set of critical
links depends on the value model and on the connectivity of the network.

In the process to quantifying the importance of a communication link, we
propose a generalization of the notion of betweenness centrality which, in its
standard form, is defined with respect to shortest paths ([6]). We consider net-
works where information flow over spanning trees, hence we use spanning trees
in lieu of paths. Our generalization allows both the consideration of arbitrary
(instead of binary) weights of the links as well as preference for spanning tree
utilization.

The remainder of this paper is organized as follows. The next section 2.1
discusses the different network value models that we briefly introduced above.
We use these models to compute the relative importance of the links with respect
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to spanning trees. This is shown in section 2.2, followed by our generalization
of the notion of betweenness centrality in section 2.3. The strategic interaction
between the network manager and the attacker is modeled as a 2-player game
which is presented in section 3.1. The Nash equilibrium theorem of the game
is stated in section 3.2 followed by a discussion and analysis of its implications
in section 4. Section 4.1 discusses our choice of metric for the vulnerability of
a network. In section 4.2 we compare the critical subsets of a network for the
different value models cited above. Concluding remarks and future directions are
presented in section 5. All our proofs are presented in the appendix of our online
report [9].

2 On the Value of Communication Networks

The value of a network depends on several parameters including the num-
ber of nodes, the number of links, the topology, and the type of communica-
tion/information that is carried over the network. Assessing such value is a
subjective topic and, to the knowledge of the authors, there is no systematic
quantification of the value of a communication network. Next, we discuss some
attempts that have been made to measure the utility of a network as a function
of its number of nodes.

2.1 Network Value Models

Sarnoff’s Law:
Sarnoff’s law [1] states that the value of a broadcast network is proportional to
the number of users (O(n)). This law was mainly designed for radio/TV broad-
cast networks where the popularity of a program is measured by the number of
listeners/viewers. The high advertising cost during prime time shows and other
popular events can be explained by Sarnoff’s law. Indeed as more viewers are
expected to watch a program, a higher price is charged per second of advertising.
Although Sarnoff’s law has been widely accepted as a good model for broadcast
network, many critics say that it underestimates the value of general communi-
cation networks such as the Internet.

Metcalfe’s Law:
Metcalfe’s law [5] was first formulated by George Gilder (1993) and attributed
to Robert Metcalfe who used it mostly in the context of the Internet. The law
states that the value of a communication network is proportional to the square of
the number of node. Its foundation is the observation that in a general network
with n nodes, each node can establish n− 1 connections. As a consequence, the
total number of undirected connections is equal to n(n − 1)/2 ∼ O(n2). This
observation is particularly true in Ethernet networks where everything is “logi-
cally” connected to everything else. Metcalfe’s law, has long been held up along
side with Moore’s law as the foundation of Internet growth.
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Walrand’s Law:
Walrand’s law generalizes the previous laws by introducing a parameter a. The
intuition behind this law is as follows. Imagine a large tree of degree d that is
rooted at you. Your direct children in the tree are your friends. The children
of these children are the friends of your friends, and so on. Imagine that there
are L ≥ 2 levels. The total number of nodes is n = d(dL − 1)/(d − 1) + 1. If
d is large, this number can be roughly approximated by n ≈ dL. Assume that
you only consider your direct friends i.e., about d people. Then the value of the
network to you is O(d) = O(na) where a = 1/L. If you care about your friends

and their friends (i.e d2 people) then your value of the network is O(n
2
L ). If all

the nodes up to level l ≤ L are important to you (dl nodes), then the network

has a value of O(n
l
L ). Repeating the same reasoning for each user (node), the

total value of the network is approximately equal to O(n ∗ na) = O(n1+a) with
0 < a ≤ 1. The parameter a is a characteristic of the network and needs to be
determined. Notice that if all nodes value children at all levels, the total value
of the network becomes n2 which corresponds to the Metcalfe’s law (a = 2). If
on the other hand a = 0, we get back Sarnoff’s model.

Reed’s Law:
Reed’s law, also called the Group-Forming law, was introduced by David Reed
([16],[4], [17]) to quantify the value of networks that support the construction
of a communicating group. A group forming network resembles a network with
smart nodes that, on-demand, form into such configurations. Indeed, the number
of possible groups that can be formed over a network of n nodes is O(2n). Reed’s
law has been used to explain many new social network phenomenons. Important
messages posted on social networking platforms such as Twitter and Facebook
have been witnessed to spread exponentially fast.

Briscoe, Odlyzko, and Tilly (BOT)’s Law:
Briscoe, Odlyzko and Tilly ([3], [13]), have proposed an O(n log(n)) rule for
the valuation of a network of size n. Their law is mostly inspired by Zipf’s law
that states that if we order a large collection of items by size or popularity, the
second element in the collection will be about half the measure of the first, the
third element will be about 1/3 of the first, and the k-th element will measure
about 1/k of the first. Setting the measure of the first element (arbitrarily) to 1,
the sequence looks like (1, 1/2, 1/3, . . . , 1/k, . . . , 1/n). Now, assuming that each
node in the network assigns value to the other nodes according to Zipf law, then
the total value of the network to any given node will be proportional to the har-
monic sum

∑n−1
i=1

1
i , which approaches log(n). Summing over the nodes, we get

the nlog(n) rule. This growth rate is faster than the linear growth of Sarnoff’s
law and does not have the overestimating downside that is inherent to Reed and
Metcalfe. It also has a diminishing return property that is missing in all the other
models.
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2.2 Assessing Importance of Links via Spanning Trees

Assuming that a model has been determined for the value of a network, we
quantify the importance of a network link with respect to a spanning tree as the
loss-in-value (LIV) when the link fails while communication is carried over the
tree.

a) b) c)

n=8n=8 n1=4 n2=4

Fig. 1. Determining the loss-in-value (LIV) of a network link. a) Complete network of
n = 8 nodes, with link ’e’ of interest shown in bold. b)A particular spanning tree ’T ’
of the graph containing link e. c) When link e is removed network is disconnected in 2
connected components each with 4 nodes.

The LIV of a link e, relative to a given spanning tree T , is determined as
follow (see Figure 1). Assume that communication is carried over T and delivers
a value of f(n) − η(T ), where η(T ) is the cost of maintaining spanning tree
T with f(0) = 0 if the network contains 0 node (i.e is empty). Now assume
that link e of the network fails. If e ∈ T , then T is partitioned into 2 subtrees;
each subtree Ti, i ∈ {1, 2} represents a connected component with ni nodes,
where n1 + n2 = n. The net value of the resulting disconnected network is
f(n1) + f(n2) − η(T ), where f(ni) is the value of the connected component i.
When link e is removed, some exchanges that could be carried on the original
network become impossible. As of such, it is reasonable to assume that f(·) is
such that f(n) ≥ f(n1) + f(n2), which is the case for all the network value
models cited above. We define the importance of link e, relative to spanning
tree T , as this LIV f(n)− (f(n1) + f(n2)) when link e fails. If the link does not
belong to the spanning tree, then removing it will leave the network connected,
hence its LIV is equal to zero. More formally, the importance of link e relative
to T is the (normalized) LIV λ(e, T ):

λ(T, e) = 1− f(n1) + f(n2)

f(n)
. (1)

with the understanding that if e /∈ T , n1 = n and n2 = 0, giving λ(T, e) = 0.
Writing this expression for all spanning trees and all links of the network, we
build the tree-link LIV matrix Λ defined by Λ[T, e] = λ(T, e).

Remark 1. With the definition in (1), the LIV of a link relative to any spanning
tree is always equal to zero under Sarnoff’s law (i.e λ(T, e) = 0, ∀e and T ). As a
consequence we drop Sarnoff’s law in the analysis below. We consider the simple
model (GWA) introduced in [10]. It gives the same normalized LIV of 1 if the
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link e belongs to the spanning tree and 0 otherwise (i.e. λ(T, e) = 1e∈T ). The
model basically assumes that whenever a link on the spanning tree is removed
(i.e. successfully attacked and hence disconnecting the network), the network
loses its entire value.

Table (1) shows the LIV of links for the different models presented above (Sarnoff
replaced by GWA). It is assumed that removing link e divides spanning tree T
into two subtrees with respective n1 and n2 nodes (n1 + n2 = n)

Table 1. Normalized LIV of link e relative to spanning tree T for the different laws.
Removing link e from spanning tree T divides the network into two subnetworks with
respective n1 and n2 nodes (n1 + n2 = n).

Model Normalized LIV

GWA 1e∈T

Metcalfe 1− n2
1+n2

2
n2

Reed 1− 2−n1 − 2−n2

BOT 1− n1 log(n1)+n2 log(n2)
n log(n)

Walrand 1− n1+a
1 +n1+a

2
n1+a

2.3 A Generalization of the betweenness Centrality Measure

The quantification we have described above for the significance of a link is relative
to spanning trees: there is a different value for each different tree. In general, one
would like to get a sense of the importance of a link for the overall communication
process. Betweenness centrality is a measure that have long been used for that
purpose. Next, we propose a quantification of the importance a link within a
network that generalizes the notion of betweenness. We start by recalling the
betweenness centrality measure as it was defined by Freeman [6].

For link e, and nodes i and j, let gi,j be the number of shortest paths between
i and j and let gij(e) the numbers of those paths that contain e. The partial

betweenness measure of e with respect to i and j is defined as ϑij(e) =
gij(e)
gij

and the betweenness of e is defined as ϑ(e) =
∑

i<j ϑij(e). Freeman [6] made
the observation that in the definition of betweenness, gij(e) can be seen as a
weight given to e for a communication between i and j, and 1

gij
can be seen as

a probability (uniform here) of choosing among the several alternative geodesics
that can carry communication between i and j.

Using this observation and using spanning trees (in lieu of shortest paths), we
can easily generalize the betweenness centrality to quantify the importance of a
link as

ϑ(e,λ,α) =
∑

T

αTλ(T, e), (2)
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where the summation is now over spanning trees. The parameter λ(T, e) is the
weight of link e for spanning tree T , and α(T ) is the probabilities (preference)
of using T as communication infrastructure.

In general, λ and α can be determined by considering relevant aspects of the
communication network (e.g. cost of utilizing the links, overall communication
delay, vulnerability of links). In this paper, the parameters λ are chosen to be
equal to the LIV of the links relative to spanning trees, and α is chosen to be
the mixed strategy Nash equilibrium in a game between a network manager and
an attacker. Details of the game are presented next.

3 Game Theoretic Approach

3.1 Game Model

The game is over the links of the network with a topology given by a connected
undirected graph G = (V , E) with |E| = m links and |V| = n nodes. The set of
spanning trees is denoted T ; we let N = |T |.

To get all nodes connected in a cycle-free way, the network manager chooses
a spanning tree T ∈ T of the graph. Running the communication on spanning
tree T requires a maintenance cost of η(T ) to the network manager. If link e is
attacked, the total cost to the manager is η(T )+λ(T, e), where λ(T, e) is the LIV
introduced in (1). The attacker simultaneously selects an edge e ∈ E to attack.
Each edge e ∈ E is associated with some cost μ(e) that an attacker needs to spend
to launch a successful attack on e, and gives an attack reward of λ(T,e). Hence,
the net attack reward is equal to λ(T, e)− μ(e) for the attacker. It is assumed
that the attacker has the option e∅ of not attacking, with λ(T, e∅) = 0, ∀ T , and
μ(e∅) = 0.

We are mainly interested in analyzing mixed strategy Nash equilibria of the
game where the defender chooses α over T to minimize the expected net commu-
nication cost L(α,β) while the attacker is choosing β over E ∪{e∅} to maximize
the expected net reward R(α, β).

L(α,β) =
∑

T∈T
αT

(

η(T ) +
∑

e∈T

βeλ(T, e)

)

, (3)

(4)

R(α,β) =
∑

e∈E
βe

(
∑

T�e

αTλ(T, e)− μ(e)

)

. (5)

In this paper, we have focused on the case where η(T ) = η is constant; hence not
relevant to the optimization of L(α,β), which now becomes the minimization
of

∑
T∈T αT

∑
e∈T βeλ(T, e). As a consequence, we ignore η(T ) for the rest of

this paper. The general case of η(T ) will be considered in subsequent studies.



Metric for Communication Network Vulnerability to Attacks 267

3.2 Nash Equilibrium Theorem

To state the NE theorem of the game, we need to make a certain number of
definitions.

For each subset of edges E ⊆ E , we let ΛE be the matrix Λ where columns
corresponding to links not in E are set to zero. Matrix Λ is defined in section
2.2 and its entries are given in (1).

Definition 1. For any subset of links E ⊆ E, we define the function κ(E)

κ : 2E −→ R+

E �−→ κ(E) = min
{
1′y, y ∈

{
ỹ ∈ R

m
+ | ΛEỹ ≥ 1

}}
. (6)

κ(E) is the value of a linear program (LP) that might be infeasible (e.g. when
a row of ΛE is all zeros). However, its dual is always feasible (see [9, App.E]),
and when the dual LP is bounded, the primal is necessarily feasible [2]. Let yE

be a solution of the primal program whenever the dual LP is bounded. If this
dual is unbounded for some subset E, we let yE = K1m, for an arbitrary large
constant K, where m = |E|, and 1m is the all-ones vector of length m. With this
“fix”, κ(E) = m ∗K when the dual LP is unbounded. Hence, we can define the
following quantities.

Definition 2. The probability distribution induced by E is defined as βE =
yE/κ(E).
The induced expected net reward θ(E) and the maximum induced expected net
reward θ∗ are defined by

θ(E) :=
1

κ(E)
−

∑

e∈E

βE(e)μ(e), and θ∗ := max
E

(θ(E)) . (7)

We call a subset E critical if θ(E) = θ∗ and we let C be the set of all critical
subsets.

Remark 2. – In our online report [9, App.E], we argue that a critical subset E
is such that 0 < κ(E) < ∞, hence its corresponding yE and βE are always
well-defined.

– With the definition of κ(·), if μ = 0, a subset E of links is critical, than any
subset F ⊇ E is critical. In this case, the most critical subset is the critical
subset with the minimum size. More details about this can be found in [9].

Theorem 1. For the game defined above, the following always hold.

1. If θ∗ ≤ 0, then “No Attack” (i.e. β(e∅) = 1) is always an optimal strategy
for the attacker. In this case, the equilibrium strategy (αT , T ∈ T ) for the
defender is such that

ϑ(e,λ,α) =
∑

T∈T
αTλ(T, e) ≤ μ(e), ∀e ∈ E . (8)

The corresponding payoff is 0 for both players.
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2. If θ∗ ≥ 0, then for every probability distribution (γE , E ∈ C) on the set
of critical subsets, the attacker’s strategy (β(e), e ∈ E) defined by β(e) :=∑

E∈E γEβE(e) is in Nash equilibrium with any strategy (αT , T ∈ T ) of the
defender that satisfies the following properties:

{
ϑ(e,λ,α)− μ(e) = θ∗ for all e ∈ E such that β(e) > 0.
ϑ(e,λ,α)− μ(e) ≤ θ∗ for all e ∈ E . (9)

Furthermore, there exists at least one such strategy α.
The corresponding payoffs are θ∗ for the attacker, and r(γ) :=

∑
E∈C

γE

κ(E)

for the defender.
3. If μ = 0, then every Nash equilibrium pair of strategies for the game has the

form described above.

4 Discussion and Analysis

The NE theorem has three parts. If the quantity θ∗ is negative then the attacker
has no incentive to attack. For such choice to hold in an equilibrium, the defender
has to choose his strategy α as given in (8). Such α always exists. When θ∗ ≥ 0
there exists an equilibrium under which the attacker launches an attack that
focuses only on edges of critical subsets. The attack strategies (probability of
attack of the links) are given by convex combinations of the induced distributions
of critical subsets. The corresponding defender’s strategies are given by (9).
When there is no attack cost, the attacker always launches an attack (θ∗ > 0)
and the theorem states that all Nash equilibria of the game have the structure
in 9.

4.1 Vulnerability Metric and the Importance of Links

For simplicity, let’s first assume that there is no attack cost i.e μ = 0. In this case,
θ(E) = 1

κ(E) and θ∗ > 0. Also, a subset of link E is critical if and only if κ(E)

is minimal. Since in this case the game is zero-sum, the defender’s expected loss
is also θ∗ = (minEκ(E)). θ∗ depends only on the graph and the network value
model (f(n)). It measures the worst case loss/risk that the network manager is
expecting in the presence of any (strategic) attacker. Notice that in our setting,
a powerful attacker is one who does not have a cost of attack (i.e. μ = 0). When
θ∗ is high, the potential loss in connectivity is high. When it is low, an attacker
has very little incentive, hence the risk from an attack is low. Hence, θ∗ can be
used as a measure of the risk of disconnectivity in the presence of a strategic
attacker. A graph with a high θ∗ is a very vulnerable one.

This vulnerability metric also corresponds to a quantification of the impor-
tance of the most critical links. This is captured by the inequalities in (9), which,
when μ = 0, become

ϑ(e,λ,α) ≤ θ∗ for all e ∈ E , (10)
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with equality whenever link e is targeted with positive probability (β(e) > 0) at
equilibrium. From (9) we see that β(e) > 0 only if edge e belongs to a critical
subset, and hence is critical. Thus, the attacker focuses its attack only on critical
links, which inflict the maximum loss to the defender.

For the defender, since the game is zero-sum, the Nash equilibrium strategy
corresponds to the min-max strategy. In other words, his choice of α minimizes
the maximum expected loss. Hence, the defender’s equilibrium strategy α can
be interpreted as the best way (in the min-max sense) to choose a spanning
tree in the presence of a strategic adversary. Using this interpretation with our
generalization of betweenness centrality in (2), we get a way to quantify the
importance of the links to the overall communication process. The inequalities
in (10) above say that the links that are the most important to the defender
(i.e. with maximum ϑ(e,λ,α)) are the ones that are targeted by the attacker
(the most critical). This unifies the positive view of importance of links when
it comes to participation to the communication process to the negative view
of criticality when it comes to being the target of a strategic adversary. This
is not surprising because since the attacker’s goal is to cause the maximum
damage to the network, it makes sense that she targets the most important
links.

When the cost of attack is not zero (μ �= 0), our vulnerability metric θ∗ takes
it into account. For instance, if the attacker has to spend too much effort to
successfully launch an attack, to the point where (the expected net reward) θ∗ is
negative, the theorem tells that, unsurprisingly, the attacker will choose to not
launch an attack. To “force” the attacker to hold to such choice (i.e to maintain
the equilibrium), the defender has to randomly pick a spanning tree according
to (8). With this choice, the relative value of any link is less than the amount of
effort needed to attack it (which means that any attack will result to a negative
net-payoff to the attacker). When μ is known, such choice of α can be seen as
a deterrence tactic for the defender.

If the vulnerability θ∗ is greater than zero, than there exists an attack strategy
that only targets critical links. To counter such attack, the defender has to draw
a spanning tree according to the distribution α in (9). For such choice of a tree,
the relative importance of any critical link, offset by the cost of attacking the
link, is equal to θ∗. For any other link, this difference is less than θ∗. In this
case, the criticality of a link is determined not only by how much importance
it has for the network, but also how much it would take for the adversary to
successfully attack it. Hence,when μ ≥ 0, θ∗ is a measure of the willingness of
an attacker to launch an attack. It includes the loss-in-value for the defender as
well as the cost of attack for the attacker.

Observe that when μ ≥ 0 the theorem does not say anything about the
existence of other Nash equilibria. It is our conjecture (verified in all simulations)
that even if there were other equilibria, θ∗ is still the maximum payoff that the
attacker could ever receive. Hence, it measures the worst case scenario for the
defender.
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Fig. 2. Example of critical subsets for different value models. a) GWA model b) BOT,
Walrand, and Metcalfe’s models. c) Reed’s model.

4.2 Critical Subsets and Network Value Models

In this section we discuss how the critical subsets depend on the model used
for the value of the network. Figure 2 shows an example of network with the
critical subsets for the different value models discussed earlier. The example
shows a “core” network (i.e the inner links) and a set of bridges connecting it to
peripheral nodes. A bridge is a single link the removal of which disconnects the
network. In all figures, the critical subset of links is shown the dashed lines. In
this discussion we mainly assume that the attack cost μ is equal to zero.

Figure 2.a shows the critical subset corresponding to the GWA link cost model
introduced in [10] for which λT,e = 1e∈T . With this model, the defender loses
everything (i.e. 1) whenever the attacked link belongs to the chosen spanning
tree. Since a bridge is contained in any spanning tree, attacking a bridge gives
the maximum outcome to the attacker. As a consequence, the critical subsets
correspond to the set of bridges as can be observed in the figure. In fact, with
the GWA value model and Definition 1 of [10], on can easily show that that

κ(E) = |E|
M(E) , whereM(E) = minT (|T ∩ E|). Notice that if E is a disconnecting

set (i.e. removing the edges in E divides the graph into 2 or more connected
components), M(E) ≥ 1. Now, if e is a bridge, |T ∩ {e}| = 1 for all spanning
trees T , implying that M({e}) = 1 and θ({e}) = κ({e}) = 1, which is the
maximum possible value of θ∗. As a consequence, each bridge is a critical subset
and any convex combination over the bridges yields an optimal attack.

Figure 2.b depicts the critical subsets with the Metcalfe, BOT, and Walrand
(a = 0.6) models. For all these models (as well as for Reed’s model), the function
f(x)− (f(x1) + f(x2)), where x1 + x2 = x, is maximized when x1 = x2 = x/2.
This suggests that attacks targeting links that evenly divide (most) spanning
trees are optimal. This conjecture “seems” to be confirmed by the examples
shown in the figure. The most critical links are the innermost or core links of
the network for all three models. The Nash equilibrium attack distributions are
slightly different for the 3 models. The distribution on links (1, 2, 3, 4, 5) is given
in Table 2 for Metcalfe, BOT, and Walrand(a = 0.6) models. Notice that for all
models, the middle link (2) is attacked with a higher probability.
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Table 2. Attack probabilities on links (1, 2, 3, 4, 5) for Metcalfe, BOT, and Walrand
models

Model Attack probability

Metcalfe (0.1875, 0.2500, 0.1875, 0.1875, 0.1875)

BOT (0.1911, 0.2356, 0.1911, 0.1911, 0.1911)

Walrand(a = 0.6) (0.1884, 0.2465, 0.1884, 0.1884, 0.1884)

Although Reed’s (exponential) model also has the same property discussed in
the previous paragraph, the critical subset with Reed is different, as can be seen
in figure 2.c. While Metcalfe, BOT, and Walrand models lead to the core network
being critical, with Reed’s model, the critical links are the links giving access to
the core network. Each of the links is attacked with the same probability. This
might be a little surprising because it contradicts the conjecture that innermost
links tend to be more critical. However, observing the attack’s reward function(
1− f(n1)+f(n−n1)

f(n)

)
as shown in figure 3, Reed’s model coincides with the GWA

model in a wide range of n1. This means that any link that separates (most of
the spanning) into subtrees of n1 and n− n1 nodes gives the maximum reward
to the attacker, for most values of n1. Also, notice that since the core network is
“well connected”, the defender has many options for choosing a spanning tree.
This means that in the core, the attacker has less chances of disrupting the
communication. Links accessing the core, on the other hand, deliver high gain
and better chances of disrupting the communication. Hence, the best strategy
for the attacker is, in this case, to target access to the core. Notice that Metcalfe,
BOT, and Walrand (a ≤ 1) models do not have this optimal tradeoff choice.

By choosing the parameter a to be sufficiently large in the Walrand model,
we have (experimentally) observed that the critical subset moves from being the
core, to corresponding to the one in GWA model (the bridges) for very large
values of a. In fact, with all network topologies we have considered (more than
50), we could always choose the parameter of the Walrand so that the critical
subset matches the one in GWA model. This implies that as the model loss

function
(
1− f(n1)+f(n−n1)

f(n)

)
gets closer to the GWA function 1e∈T , the critical

subset moves away from the inner links to the outer links.
These observations indicate that the critical subsets of a graph depend on the

value model used to setup the game. The value model is however not the only
factor that characterizes the critical subset(s) of a graph. Figure 4 shows the
same network as in the previous example with one additional (core) link. With
this link, the connectivity of the network is enhanced. The critical subset does
not change for the GWA models. However, for all other 4 models, the critical
subset is now the access to the core. This suggests that connectivity is another
factor that characterizes the critical subset(s).

As was observed (with simulations) in the previous example, in this case also,
when the parameter a of Walrand’s model is chosen sufficiently large, the critical
subsets become the same as the GWA critical subsets.
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Fig. 3. Comparison of the loss functions 1 − f(n1)+f(n−n1)
f(n)

when a link belonging to
the chosen spanning tree is cut, dividing it into 2 subtrees of n1 and n − n1 nodes.
(x-axis n1, y-axis 1− f(n1)+f(n−n1)

f(n)
). For GWA, since λTe = 1e∈T , the loss is always

1. The models GWA, Reed, and Walrand (for large values of a), overlap in a wide
region of values of n1.

a) b)

Fig. 4. Example of critical subsets for different value models. a) GWA model b) BOT,
Walrand, Metcalfe and Reed’s models.

5 Conclusion and Future Work

In this study, we quantify the vulnerability of a communication network where
links are subject to failures due to the actions of a strategic attacker. Such a
metric can serve as guidance when designing new communication networks and
determining it is an important step towards improving existing networks.

We build upon previously proposed models for the value of a network, to
quantify the importance of a link, relative to a spanning tree, as the loss-in-value
when communication is carried over the tree and the link is failed by a strate-
gic attacker. We use these values to setup a 2-player game where the defender
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(network manager) chooses a spanning tree of the network as communication
infrastructure and the attacker tries to disrupt the communication by attacking
one link. We propose the equilibrium’s expected loss-in-value as a metric for
the vulnerability of the network. We analyze the set of Nash equilibria of the
game and discuss its implications. The analysis shows the existence of subsets of
links that are more critical than the others. We characterize these sets of critical
subsets and, using examples, we show that such critical subsets depend on the
network value model as well as the connectivity of the graph. The nature of
this dependency is an interesting question that we are planning to investigate in
future studies. Finally, we propose a generalization of the notion of betweenness
centrality that allows different weights for the links as well as preference among
the graph structures that carry the communication (e.g. spanning trees for this
paper).

Several future directions are being considered as a followup to this paper.
First, in here, we have discussed the critical subsets using illustrative exam-
ples. To get a better intuition about the relationship between the value function
and the critical subset of the network, a more rigorous analysis of the game
value function (κ(E)) is needed. With such an analysis we will be able to inte-
grate and understand more realistic (and potentially more complicated) network
value models. Also, in this paper, we use spanning trees to define the relative
importance of links. This implicitly considers only networks in which informa-
tion flows over spanning trees. However, our result is general and can be used to
study games on other type of networks. One interesting extension is the situation
where the network manager chooses p ≥ 1 spanning trees (example p = 2 is the
situation where the manager chooses a communication tree and a backup one),
and the attacker has a budget to attack k ≥ 1 links. Also, we have assumed, in
this paper, that the cost of communicating over any spanning tree is the same.
In the future, we will study versions of the problem where some spanning trees
might be more costly then others. Finally, this study has focused on the failure of
links in a network. Nodes also are subject failures: whether random or strategic.
A more thorough study should consider both links and nodes.
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