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Abstract. We introduce a competitive rate allocation game in which
two receivers compete to forward the data from a transmitter to a des-
tination in exchange for a payment proportional to the amount of for-
warded data. At each time slot the channel from the transmitter to each
receiver is an independent random variable with two states, high or low,
affecting the amount of data that can be transmitted. Receivers make
"bids" on the state of their channel and the transmitter allocates rate
accordingly. Receivers are rewarded for successful transmissions and pe-
nalized for unsuccessful transmissions. The goal of the transmitter is to
set the penalties in such a way that even if the receivers are selfish, the
data forwarded is close to the optimal transmission rate. We first model
this problem as a single shot game in which the receivers know the chan-
nel probability distributions but the transmitter does not, and show that
it is possible for the transmitter to set penalties so as to ensure that both
receivers have a dominant strategy and the corresponding Price of An-
archy is bounded by 2. We show, moreover, that this is in a sense the
best possible bound. We next consider the case when receivers have in-
complete information on the distributions, and numerically evaluate the
performance of a distributed online learning algorithm based on the well-
known UCB1 policy for this case. From simulations, we find that use of
UCB1 policy yields a performance close to the dominant strategy.

Keywords: competitive rate allocation game, Nash equilibrium, online
learning.

1 Introduction

Optimizing throughput is one of the central problems in wireless networking
research. To make good use of the available wireless channels, the transmitter
must allocate rate efficiently. We study in this paper a simple yet fundamental
rate allocation problem in which the transmitter does not precisely know the
state of the channels, and the corresponding receivers are selfish.

In this problem, there is one transmitter that must allocate rates to two differ-
ent receivers to forward data on its behalf to a given destination (see illustration
in figure 1). The two channels from the transmitter to each receiver are indepen-
dent channels with two states: high or low. The channel states are assumed to
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Fig. 1. Illustration of problem

be i.i.d. Bernoulli random variables. Initially we assume that the receivers both
know each others channel parameters, but the transmitter does not. At each
time, the receivers communicate to the transmitter a binary bid corresponding
to the possible state of their respective channels. The transmitter responds to
these bids by deciding whether to send aggressively (at a high, or very high rate)
or conservatively (at a low rate) on one or both channels. Specifically when both
receivers bid low, the transmitter sends data at a low rate R1 over both channels.
And when both receivers bid high, the transmitter splits its power to send data
at a high rate R2 over both channels. When one of the receivers bids low and the
other bids high, the transmitter sends data at a very high rate R3 over the latter
channel. When the sender sends data at a high or very high rate, we assume
that there is a failure and nothing gets sent if the transmission channel actually
turns out to be bad. In this case, the sender levies a penalty on the receivers.
But whenever data is successfully sent, it pays the receiver a fee proportional to
the rate obtained.

There are two roles in this setting: the receivers and the transmitter. The
receivers want to get as much reward as possible, avoiding the penalties. Since
the transmitter’s rate allocation is a competitive resource that directly affects the
receivers’ utilities, the setting can be modeled as a two player, non-cooperative
game. On the other hand, the transmitter is the game designer: it can choose
the penalties in order to influence how the receivers play the game. The goal of
the transmitter is to transmit as much data as possible and, without knowledge
of the receiver’s channel states, to guarantee that the total transmission is not
much worse than the optimal. In this paper we prove that there is a way to set
the penalty terms such that both receivers have dominant strategies, and the
data forwarded by two receivers is at least 1/2 of the optimal, in other words,
that the Price of Anarchy from the transmitter’s point of view is at most 2.

If the underlying channels’ states are known we can assume that the two
receivers will play their dominant strategies if they have one. However, if the
underlying channel status is unknown, the receivers need to learn which action
is more beneficial. Assuming that the underlying channel state is drawn from
an unknown underlying distribution at each time slot, we show that modeling
each payers’ choice of action as a multi-armed bandit leads to desirable results.
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In this paper we adapt UCB1 algorithm [1], which there are two arms for each
receiver, each arm corresponding to an action: bidding high or bidding low.
From the simulations, we find that the UCB1 algorithm gives a performance
which is close to the dominant strategy, and, when both receivers use UCB1 to
choose their strategies, it can give even better payoffs than playing the dominant
strategy.

Related Work: Game theory, which is a mathematical tool for analyzing
the interaction of two or more decision makers, has been used in wireless com-
munications by many authors [2], [3]. While we are not aware of other papers
that have addressed exactly the same formulation as discussed here, other re-
searchers have explored related game theoretic problems pertaining to power
allocation over multiple channels. For instance, the authors of [4] formulate a
multiuser power control problem as a noncooperative game, show the existence
and uniqueness of a Nash equilibrium for a two-player version game and pro-
pose a water-filling algoirhtm which reaches the Nash equilibrium efficiently; and
the authors of [5] study a power allocation game for orthogonal multiple access
channels, prove that there exists a unique equilibrium of this game when the
channels are static and show that a simple distributed learning schema based
on the replicator dynamics converges to equilibrium exponentially fast. Unlike
most of the prior works, our formulation and analysis is not focused on optimiz-
ing the power allocation per se, but rather on issues of information asymmetry
between the transmitter and receivers and the design of appropriate penalties
levied by the transmitter to ensure that the receiver’s selfishness do not hurt
performance too much. Somewhat related to the formulation in this paper are
two recent papers on non-game-theoretic formulations for a transmitter to decide
on the whether to send conservatively or aggressively over a single (known or
unknown) Markovian channel [6] [7]. Although we consider a simpler Bernoulli
channels here in which case the transmitter’s decisions would be simplified, our
formulation focuses on strategic interactions between two receivers. In the case of
unknown stochastic payoffs, we consider the use of a multi-armed bandit-based
learning algorithm. Relatively little is known about the performance of such on-
line learning algorithms in game formulations, though it has been shown that
they do not always converge to Nash equilibria [8].

2 Problem Formulation

In the rate allocation game we consider two receivers and one transmitter. The
transmitter uses the two receivers to forward data to the destination. The channel
from the transmitter to each receiver has one of the two states at each time slot:
low (L or 0) or high (H or 1). The two channels are independent with each other
and their state comes from an i.i.d. distribution. We denote pi (i = 0, 1) as
the probability that channel i is in state high at any time. Before transmitting,
neither the receivers nor the transmitter know the state of the channel. At the
beginning of each time slot, each receiver makes a "bid" (high or low). The
transmitter allocates rate to the receivers according to the bids sent. At the end
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of the time slot both receivers observe whether or not their transmission was
successful. A transmission is not successful if the respective channel is in a low
state but has been assumed to be in a high state.

Since the channel state is unknown in advance, the receivers’ bid may lead to
an unsuccessful transmission. If the the transmission is successful, the receiver
is paid an amount proportional to the transmission rate. Otherwise, it will get a
penalty (negative reward). Table 1 shows the reward functions for each receiver.

Table 1.

Bid Actual State Other Channel Bid Reward

L L L R1

H 0

L H L R1

H 0

H L L −C
H −D

H H L R3

H R2

Throughout the rest of the paper we will assume that R1 < R2 < R3 < 2R2.
C and D are the penalties that the receivers get for making a high bid when
their channel state is low.

There are two roles in this game setting: the transmitter and the receivers.
The transmitter wants to carry as much data as possible to the destination. It
is not interested in penalizing the receivers, but only uses the penalty to give
incentive to the receivers to make good guesses. The receivers are only interested
in the reward and they don’t lose any utility from transmitting more data.

3 Parameters Known Cases - Receivers’ Perspective

Table 2 shows the relationship between the expected rewards for the two receivers
as a normal form game. In each cell, the first value corresponds to the reward
for receiver 1, and the second value corresponds to the reward for receiver 2.

Table 2.
���������Receiver 1

Receiver 2 L H

L (R1, R1) (0, p2R3 − (1 − p2)C)

H (p1R3 − (1 − p1)C, 0) (p1R2 − (1 − p1)D, p2R2 − (1 − p2)D)
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3.1 Mixed Nash Equilibrium

We denote by XYi the expected reward for receiver i (i = 1, 2) when receiver 1
bids X, receiver 2 bids Y (where X and Y are high or low).

LL1 = R1, (1)
LL2 = R1,

LH1 = 0,

LH2 = p2R3 − (1 − p2)C,

HL1 = p1R3 − (1 − p1)C,

HL2 = 0,

HH1 = p1R2 − (1 − p1)D,

HH2 = p2R2 − (1 − p2)D.

Let receiver 1 bid high with probability q1, and receiver 2 bid high with prob-
ability q2. At Nash equilibrium, receiver 1 selects the probability such that the
utility function for receiver 2 is the same for both bidding high and bidding low.
Therefore we have:

(1 − q1)LL2 = (1 − q1)LH2 + q1HH2. (2)

Similarly for receiver 2:

(1 − q2) × LL1 = (1 − q2)HL1 + q2HH1. (3)

Solving 2 and 3 we get :

q1 =
−C + Cp2 − R1 + p2R3

−C + D + Cp2 − Dp2 − R1 − p2R2 + p2R3
, (4)

q2 =
−C + Cp1 − R1 + p1R3

−C + D + Cp1 − Dp1 − R1 − p1R2 + p1R3
. (5)

Setting q1 and q2 to be 0 or 1, we can find a relationship between the values of
p1 and p2 and the existence of a pure Nash equilibrium.

If q1 = 0 and q2 = 0, then p1 = C+R1
C+R3

p2 = C+R1
C+R3

.

If q1 = 0 and q2 = 1, then p1 = D
D+R2

p2 = C+R1
C+R3

.

If q1 = 1 and q2 = 0, then p1 = C+R1
C+R3

p2 = D
D+R2

.

If q1 = 1 and q2 = 1, then p1 = D
D+R2

p2 = D
D+R2

.

(6)

Denote

b1 = min{C + R1

C + R3
,

D

D + R2
}, (7)

b2 = max{C + R1

C + R3
,

D

D + R2
}. (8)
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Theorem 1. If p1 /∈ [b1, b2] or p2 /∈ [b1, b2], then there exists a unique pure Nash
equilibrium.

Proof. Let p1 < b1, thus p1 < C+R1
C+R3

and p1 < D
D+R2

HL1 = p1R3 − (1 − p1)C < b1(R3 + C) − C ≤ R1,

HH1 = p1R2 − (1 − p1)D < b1(R2 + D) − D ≤ 0.

Thus receiver 1 has a dominating strategy for bidding low. When receiver 1 bids
low, the optimal action for receiver 2 is bidding low if LL2 > LH2, and high
otherwise.

Let p1 > b2, thus p1 > C+R1
C+R3

and p1 > D
D+R2

HL1 = p1R3 − (1 − p1)C > b2(R3 + C) − C ≥ R1,

HH1 = p1R2 − (1 − p1)D > b2(R2 + D) − D ≥ 0.

Thus the dominating strategy for receiver 1 is bidding high. When receiver 1
bids high, the optimal action for receiver 2 is bidding high if HL2 < HH2 and
low otherwise.

Similarly for p2 /∈ [b1, b2].

Lemma 1. If p1 ∈ (b1, b2) and p2 ∈ (b1, b2), there exists more than one Nash
equilibrium.

Proof. Let p1 ∈ (b1, b2) and p2 ∈ (b1, b2), then there are two possible scenarios:
Scenario 1: b1 = C+R1

C+R3
, b2 = D

D+R2
, then

LH2 = p2R3 − (1 − p2)C = p2(R3 + C) − C > b1(R3 + C) − C = R1.

Similarly, HL1 > R1.

HH1 = p1R2 − (1 − p1)D = p1(R2 + D) − D < b2(R2 + D) = 0.

Similarly, HH2 < 0.
The payoff matrix for receivers will become as Table 3 shown:

Table 3.
���������Receiver 1

Receiver 2 L H

L (R1, R1) (0, > R1)

H (> R1, 0) (< 0, < 0)

There are two Nash equilibrium: when one receiver bids high, the other re-
ceiver bids low.

Scenario 2: b1 = D
D+R2

, b2 = C+R1
C+R3

, then

LH2 = p2R3 − (1 − p2)C = p2(R3 + C) − C < b2(R3 + C) − C = R1.
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Similarly, HL1 < R1.

HH1 = p1R2 − (1 − p1)D = p1(R2 + D) − D > b2(R2 + D) = 0.

Similarly, HH2 > 0.
The payoff matrix for receivers will become as Table 5 shown:

Table 4.
���������Receiver 1

Receiver 2 L H

L (R1, R1) (0, < R1)

H (< R1, 0) (> 0, > 0)

There are two Nash equilibrium: both bid high, or both bid low.

In the range of (b1, b2)×(b1, b2), if both receivers play mixed Nash equilibrium,
their utility could become much worse than they play pure Nash equilibrium.

If the mixed Nash equilibrium is used. The expected total utility function for
each receiver are:

U1 = (1 − q1)(1 − q2)R1 + q1(1 − p1)(1 − q2)(−C), (9)
+q1(1 − p1)q2(−D) + q1p1(1 − q2)R3 + q1p1q2R2.

U2 = (1 − q2)(1 − q1)R1 + q2(1 − p2)(1 − q1)(−C), (10)
+q2(1 − p2)q1(−D) + q2p2(1 − q1)R3 + q2p2q1R2.

In cases where b1 = D
D+R2

, b2 = C+R1
C+R3

, when p1 → b1+, p2 → b1+, we have
q1 → 1 and q2 → 1. Substituting in Eq. (10) and Eq. (11), we can get U1 → 0
and U2 → 0, which is much worse than they just play LL Nash equilibrium.
Both receivers suffer if they play mixed Nash equilibrium.

For simplicity, we want to set C and D such that we only have pure Nash
equilibrium, independent of the probability distributions p1 and p2.

Lemma 2. Given C, there exists a D, such that there only exist pure Nash
equilibrium.

Proof. When D = −CR2−R1R2
R1−R3

, we can get b1 = b2, there only exists pure Nash
equilibrium region.

Lemma 3. If there only exists pure Nash equilibrium both receivers have a dom-
inant strategy.

Proof. If we only have pure Nash equilibrium then we must have b1 = b2 = p.
There are four possible scenarios:

Scenarios 1: p1 < p and p2 < p,
The payoff matrix for receivers will become as Table 5 shown:
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Table 5.
���������Receiver 1

Receiver 2 L H

L (R1, R1) (0, < R1)

H (< R1, 0) (< 0, < 0)

The dominant strategies for both receivers are bidding low.
Similarly, we have
Scenario 2: p1 < p and p2 > p, dominant strategy for receiver 1 is bidding low

and dominant strategy for receiver 2 is bidding high.
Scenario 3: p1 > p and p2 < p, dominant strategy for receiver 1 is bidding

high and dominant strategy for receiver 2 is bidding low.
Scenario 4: p1 > p and p2 > p, dominant strategy for both receivers is bidding

high.

4 Parameters Known Cases - Transmitter’ Perspective

In this section, we consider the amount of data which can be sent by the two
receivers. Think the transmitter asks the two receivers to forward its data. What
the transmitter really cares about is how much data is sent. In this case, when
sending fails, we consider the data sent is 0. The penalty term C and D are to
let the receivers adjust their bidding, but for transmitter, it does not get such a
penalty.

Table 6 represents the expected rewards table got from the transmitter’s view:

Table 6.
���������Receiver 1

Receiver 2 L H

L (R1, R1) (0, p2R3)

H (p1R3, 0) (p1R2, p2R2)

Utility functions from the transmitter’s point of view:

VLL = R1 + R1, (11)
VHL = p1R3, (12)
VLH = p2R3, (13)

VHH = p1R2 + p2R2. (14)
(15)

Price of Anarchy (PoA):
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PoA =
maxs∈S V (s)
mins∈NE V (s)

. (16)

where S is the strategy set, NE is the Nash equilibrium set, and V (s) = {VLL, VHL,
VLH , VHH}.
Theorem 2. If C = R1R3−R1R2

R2−R1
and D = R1R2

R2−R1
, then PoA < 2.

Proof. If C = R1R3−R1R2
R2−R1

and D = R1R2
R2−R1

, then b1 = b2 = R1
R2

. There only exists
pure Nash equilibrium.

Let p = R1
R2

,
If p1 < p and p2 < p,

VLL = 2R1, (17)
VHL = p1R3 < R1R3

R2
< 2R1, (18)

VLH = p2R3 < R1R3
R2

< 2R1, (19)
VHH = p1R2 + p2R2 < 2R1. (20)

(21)

The optimal is LL. The Nash equilibrium is also LL. Thus PoA = 1.
If p1 < p and p2 > p,

VLL = 2R1 < 2p2R2 < 2p2R3, (22)
VHL = p1R3 < p2R3, (23)

VLH = p2R3, (24)
VHH = p1R2 + p2R2 < 2p2R2 < 2p2R3. (25)

(26)

The optimal is at most 2p2R3. The Nash equilibrium is LH. Thus PoA < 2.
If p1 > p and p2 < p, similar to the p1 < p and p2 > p case.
If p1 > p and p2 > p,

VLL = 2R1 < 2p1R2, (27)
VHL = p1R3 < 2p1R2, (28)
VLH = p2R3 < 2p2R2, (29)
VHH = p1R2 + p2R2. (30)

(31)

The optimal is at most 2(p1R2 + p2R2). Nash equilibrium is HH. Thus PoA < 2

Lemma 4. In the rate allocation game, for any fixed penalties C and D, there
exist p1 and p2 such that the PoA is at least 2R1

R3
.

Proof. Assume that p1 = 0 and p2 = 1. Then the table 7 shows the receivers’
payoff matrices and table 8 shows the transmitter’s payoff.
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Table 7. Receivers’ payoff for p1 = 0 and p2 = 1

���������Receiver 1
Receiver 2 L H

L (R1, R1) (0, R3)

H (0, 0) (−C,R2)

Table 8. Transmitter’s payoff for p1 = 0 and p2 = 1

���������Receiver 1
Receiver 2 L H

L (2R1) (R3)

H (0) (R2)

Since R3 > R1, then the only Nash equilibrium in this instance of the game is
(L, H) for a transmitter utility of R3. If 2R1 > R3 then the optimal solution
from the transmitter perspective is (L, L) for an utility of 2R1.

The Price of Anarchy is at least 2R1
R3 .

Corollary 1. The Price of Anarchy for the rate allocation game over all in-
stances can be arbitrarily close to 2 for any C and D.

Proof. Setting R1 = R2 + ε = R3 + 2ε (ε → 0+) in the lemma 4 leads to a
PoA → 2.

This corollary implies that our result in Theorem 2 showing how that the PoA
can be bounded by 2 is essentially tight in the sense that no better guarantee
could be provided that applies to all problem parameters.

5 Online Learning Using Multi-armed Bandits
Algorithms

When the channels’ status are known, and C and D are set as described in The-
orem 2, both receivers have dominant strategies. However, when the channels’
status are unknown, the receivers need to try both actions: sending with high
data rate or sending with low data rate. The underlying channels are stochastic,
even to each receiver, the probability that the channel will be good is unknown.
Multi-armed bandits are handy tool to tackle the stochastic channel problems,
so we adopt the well known UCB1 algorithm [1] to figure out the optimal strate-
gies for each receiver. The arms correspond to actions: bidding high or low, each
receiver only records the average rewards and number of plays and play by the
UCB1 algorithm in a distributed manner without taking into account the other
receiver’s actions.

We recap the UCB1 algorithm in Alg. 1, normalizing the rewards in our case
to lie between 0 and 1.
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Algorithm 1. Online learning using UCB1
There are two arms corresponding to each receiver: bidding high or bidding low. Let
xl be the rewards which represents the average reward gained by each receiver by
playing arm l (l = H, L), nl represents how many times the arm l is played.
Initialization: Initially, playing each arm once, store the initial rewards in xl, and
set nl = 1.
for time slot n = 1, 2, · · · do

Select the arm with highest value of x̄l+D
R3+D

+
√

2ln(n)
nl

. Play the selected arm for a
time slot. Update the average reward of the selected arm as well as nl of the selected
arm.
end for

6 Simulations

In this section we present some simulation results showing that the UCB1 learn-
ing algorithm performs well. In all simulations we fix the penalties C and D as
in theorem 2 which leaves each receiver with a dominant strategy, but which is
not usually known by the receivers. In the figures below we show how the UCB1
learning algorithm compares with playing the dominant strategy (if the receiver
knew it) and determine that using UCB1 does not lose much utility in average,
and sometimes is better than the dominant strategy.

First, in figure 2, we assume that receiver 2 knows its probability for the state
of the channel being high, and plays its own dominant strategy. In this case
receiver 1 would be better off if it knew the probability of its state and would
play the dominant strategy. However, playing UCB1 does not lose much utility
in average. Figure 2 shows for each R1 as a fraction of R3, the average payoff
over multiple games in which R2, p1 and p2 are distributed over their entire
domain.

In figure 3 we show the average payoff over multiple choices of R2, p1 and p2,
when receiver 1 plays either the dominant strategy or the UCB1 strategy, and
receiver 2 plays the UCB1 strategy. We can see here that the dominant strategy
is only better in average for large values of R1 and for small values of R1 playing
UCB1 brings better payoff.

Figure 4 and 5 show the same scenarios from the transmitter’s perspective.
Figure 4 compares the optimal average utility the transmitter could get from each
game to the average utility the transmitter gets from receiver 1 using UCB1
or receiver 1 using its dominant strategy, when receiver 2 plays its dominant
strategy. We notice that both strategies give almost the same payoff to the
transmitter, especially when the value of R1 is much smaller compared to R3.
This happens because when receiver 1 uses UCB1 against a player that uses
its dominant strategy then receiver 1 will quickly learn to play its dominant
strategy as well. Figure 5 shows how the transmitter optimal payoff compares to
the transmitter payoff when the receiver 2 uses the UCB1. When both receivers
use the UCB1 algorithm to choose their strategies, the transmitter payoff is
better than when one receiver uses the dominant strategy and the other receiver
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Fig. 2. Receiver 1 payoff against receiver 2 using dominant strategy
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Fig. 3. Receiver 1 payoff against receiver 2 using UCB1 strategy

uses the UCB1 learning algorithm. When both receivers are using the UCB1
learning algorithm the receivers don’t play the Nash equilibrium when that is
much worse than cooperating. This is why the UCB1 sometimes performs better
than the dominant strategy.

Finally, figure 6 shows how the transmission rate varies when receivers use the
UCB1 learning algorithm, compared to the optimal transmission rate. In this
simulation we vary the actual probabilities of the two channels while keeping
the rewards unchanged, and we observe that when the two channels are equally
good the UCB1 algorithm obtains almost optimal transmission rate.

We now consider two specific problem instances to illustrate the performance
when UCB1 is adopted by both receivers. In both cases, we assume the following
parameters hold:
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Fig. 4. Transmitter payoff when one receiver uses dominant strategy
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Fig. 5. Transmitter payoff when one receiver uses UCB1 strategy

R1 = 40, R2 = 45, R3 = 60, C = 120, D = 360, T = 105, b1 = b2 = 8/9.

Example 1: Probability parameters p1 = 6/9, p2 = 7.9/9

In this case, the payoff matrix from the receivers’ point of view is shown in table
10:

The optimal action (from the transmitter’s perspective) is both receivers bid-
ding low. When both receivers apply UCB1, we find that for receiver 1, the
number of times out of 100,000 that it bids high is 657, the number of times it
bids low is 99343; for receiver 2, the number of times it bids high is 39814, and
the number of times it bids low is 60186.
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Fig. 6. Normalized transmitter payoff with respect to optimum when both play UCB1
as a function of the two channel parameters

Table 9.
���������Receiver 1

Receiver 2 L H

L (40, 40) (0, 38)

H (0, 0) (−90,−4.5)

Example 2: Probability parameters: p1 = 6/9, p2 = 8.1/9
The payoff matrix from the receivers’ point of view is shown in table 10:

Table 10.
���������Receiver 1

Receiver 2 L H

L (40, 40) (0, 42)

H (0, 0) (−90, 4.5)

In this case, the optimal action (from the transmitter’s perspective) is receiver
1 bidding low, receiver 2 bidding high. for Receiver 1, the number of times out
of 100,000 that it bids high is 622, the number of times it bids low is 99378; for
Receiver 2, the number of times it bids high is 62706, and the number of times
it bids low is 62706.

These examples illustrate how the distributed learning algorithm is sensitive
to the underlying channel parameters and learns to play the right bid over a
sufficient period of time, although as expected, the regret is higher when the
channel parameter is close to b1.
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7 Conclusion

We have presented and investigated a competitive rate allocation game in which
two selfish receivers compete to forward the data from a transmitter to a des-
tination for a rate-proportional fee. We showed that even if the transmitter is
unaware of the stochastic parameters of the two channels, it can set penalties
for failures in such a way that the two receivers’ strategic bids yield a total rate
that is not less than half of the best possible rate it could achieve if it had knowl-
edge of the channel parameters. We have also studied the challenging case when
the underlying channel is unknown, resulting in a game with unknown stochas-
tic payoffs. For this game, we numerically evaluated the use of the well-known
UCB1 strategy for multi-armed bandits, and showed that it gives performance
close to the dominant strategies (in the case the payoffs are known) or sometimes
even better. In future work, we would like to obtain more rigorous results for
the game with unknown stochastic payoffs.
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