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Abstract. We propose a game theoretic model for the spatial distribu-
tion of inspectors on a transportation network. The problem is to spread
out the controls so as to enforce the payment of a transit toll. We formu-
late a linear program to find the control distribution which maximizes
the expected toll revenue, and a mixed integer program for the prob-
lem of minimizing the number of evaders. Furthermore, we show that
the problem of finding an optimal mixed strategy for a coalition of N
inspectors can be solved efficiently by a column generation procedure.
Finally, we give experimental results from an application to the truck
toll on German motorways.

Keywords: Stackelberg game, Polymatrix game, Controls in transporta-
tion networks.

1 Introduction

In this article, we study from a theoretical point of view the problem of allocat-
ing inspectors to spatial locations of a transportation network, in order to enforce
the payment of a transit fee. The question of setting an optimal level of control in
transportation networks has been addressed by several authors, but to the best
of our knowledge, none of them takes the topology of the network and the spatial
distribution of the inspectors into account. Simple game theoretic models have
been proposed to model the effect of the control intensity on the behaviour of the
users of the network [4], to find an optimal trade-off between the control costs
and the revenue from the network fee [1], or to evaluate the effect of giving some
information (about the controls) to the users [6]. More recently, an approach to
optimize the schedules of inspectors in public transportation networks was pro-
posed by DSB S-tog in Denmark [7]. In contrast to our problem, the authors of
the latter article focus on temporal scheduling and assume an evasion rate which
does not depend on the control intensity. The present paper is motivated by an
application to the enforcement of a truck toll in Germany, which we present next.

Truck toll on German motorways. In 2005 Germany introduced a distance-
based toll for commercial trucks weighing twelve tonnes or more in order to

V. Krishnamurthy et al. (Eds.): GameNets 2012, LNICST 105, pp. 224–235, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



A Stackelberg Game 225

fund growing investments for maintenance and extensions of motorways. The
enforcement of the toll is the responsibility of the German Federal Office for
Goods Transport (BAG), who has the task to carry out a network-wide control,
with an intensity which is proportional to spatial and time dependent traffic
distributions. It is implemented by a combination of 300 automatic stationary
gantry bridges and by tours of 300 control vehicles on the entire highway network.
In this paper, we present some theoretical work obtained in the framework of
our cooperation with the BAG, whose final goal is to develop an optimization
tool to schedule the control tours of the inspectors. This real-world problem
is subject to a variety of legal constraints, which we handle by mixed integer
programming [2]. We propose a game theoretic approach to optimize the spatial
distribution of the controls with respect to two different objectives: (i) maximize
the (expected) monetary profit of the government; (ii) minimize the number
of evaders. The goal of this study is twofold. On the one hand, we want to
evaluate the reasonableness of current BAG’s methodology (control intensities
proportional to traffic volumes). On the other hand, we plan to use in a follow-
up work the distributions computed in this article as a target of the real-world
problem.

Specificity of the applied problem and assumptions made in this article. The
model presented in this article is not limited to the case of motorway networks.
It applies to any situation where the individuals in transit can be controlled
on each section of their route through a network. A strong assumption of our
model however is that we know the set of routed demands of the network, i.e. the
number of individuals taking each possible route. In our model, the drivers do
not have the choice of their route between their source and destination. We plan
to search in this direction for future work. In particular, it might be relevant to
consider that the drivers can take some sections of a trunk road to avoid the toll
motorway.

We do not pretend that our model is representative of all the complexity of
the drivers’ reaction to inspectors’ behavior, in particular because certain facts
are particularly hard to model. For example, the perception of the penalty is not
the same for all truck drivers. If an evader is caught with a second offense, he
may get a higher fine in a trial.

In this article, we assume that the users of the network act on a selfish be-
haviour, and decide to pay or to evade so as to minimize the expected cost of
their trip. This is obviously wrong, since there is certainly a large fraction of
honest people who always pay the toll. However, we claim that our simplified
model still leads to significant spatial distributions of the controls, because: (i)
the number of evaders that we compute in this model corresponds to the num-
ber of network users for which it is more interesting to evade the toll; (ii) hence,
the toll revenue in this model is a lower bound for the true revenue; (iii) if the
fraction of honest drivers is the same on every route, we could solve the problem
by considering the remaining fraction of crafty drivers only, which would lead to
the same results.
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Organization and contribution. We present our model in Section 2. We show
that the optimal distribution of controls (with respect to the aforementioned
goals) is the optimal strategy of the inspectors in a Stackelberg game, and can
be found by mean of mathematical programming formulations. Then we exhibit
in Section 2.3 a relation between the optimal solution of our model and the Nash
equilibriums of a particular polymatrix game. Finally, experimental results from
the application to the truck toll in Germany are presented in Section 3.

2 A Network Spot-Checking Game

We make use of the standard notation [n] := {1, . . . , n} and we denote vectors by
boldface lower case letters. We model the transportation network by a directed
graph G = (V, E). We assume that the users of the network are distributed over
a set of routes R = {r1, . . . , rm}, where each ri ⊂ E. In addition, we are given
the demand xi of each route, that is, the number of users that take the route
ri per unity of time (typically one hour; we assume a constant demand, i.e., we
do not take the diurnal variations of the traffic into account). We denote by
ye :=

∑
{i∈[m]: ri�e} xi the number of users passing through edge e per unity of

time.
Every user of the route ri has to pay a toll fee Ti, but he may also decide

to evade the toll, with the risk to pay a penalty Pi if he gets controlled. We
assume that the inspectors have a total capacity of control κ. This means that
κ individuals can be controlled per unity of time. We consider two manners of
spreading out the controls over the network in the next subsections. In the first
one, we simply assume that the control force can be arbitrarily distributed over
the network. The second one is a more theoretical approach, where we consider
all possible allocations of a finite number of inspectors over the sections e ∈ E,
and we search for the best mixed strategy combining these allocations.

2.1 Arbitrarily Splittable Controls

We denote by q ∈ ΔE the distribution of the controls, where ΔE is the set of
all probability distributions over E:

ΔE := {q ∈ [0, 1]|E| :
∑

e∈E

qe = 1}.

Each coordinate of q represents the proportion of the total capacity of control κ
that is allocated to the corresponding edge, i.e., κqe individuals can be controlled
on the section e per unity of time.

Strategy of the users. We denote by πi the probability for a user of the route
ri to be controlled during its trip. We assume a stationary regime in which the
users have learned the values of the probability πi. Hence, a user of the route ri

will pay if πi is above the threshold Ti

Pi
, and evade if it is below. In other words,



A Stackelberg Game 227

the proportion pi of payers on the route ri minimizes the average cost per user
of this route:

λi := min(Ti, Piπi) = min
pi∈[0,1]

(
piTi + (1 − pi)Piπi

)
.

A user passing on the section e has a probability (κqe

ye
∧ 1) to be controlled on

this section, where we have used the notation a ∧ b := min(a, b). Hence, the
probability πi of being controlled during a trip on route ri can be expressed as
a function of the control distribution q:

πi = 1 −
∏

e∈ri

(
1 − (

κqe

ye
∧ 1)

)
.

In this section, we will use the classical approximation

πi � π′
i :=

∑

e∈ri

(
κqe

ye
∧ 1), (1)

which is valid when the right hand side of Equation (1) is small. In the experi-
ments presented in Section 3, we obtain values of π′

i that never exceed 0.2. Note
that this approximation is equivalent to assuming that a user pays twice the fine
if he is caught twice.

Strategy of the inspectors. We think of the set of inspectors as a single player
who splits the total control force κ according to a distribution q ∈ ΔE , called
the mixed strategy of the controller. Similarly, the users of the route ri ∈ R
are considered as a single player (called the ith user), who pays the toll with
a probability pi and tries to evade with the complementary probability 1 − pi.
We say that the ith user plays with mixed strategy pi = [pi, 1 − pi]T ∈ Δ2. Our
assumption that the users have the ability to learn the control distribution q can
be described in the framework of a Stackelberg game, in which the controller is the
leader, who makes the first move, while the users are followers who react to the
leader’s action. The controller knows that the users will adjust their strategies
pi depending on the control distribution q, and plays accordingly. We can now
formulate the problem of optimally distributing the controls over the networks,
with respect to two distinct objectives.

Maximizing the profit. If the controller wants to maximize the total revenue
generated by the toll, which is, by construction, equal to the total loss of the
users, the problem to solve is:

max
q∈ΔE

∑

i∈[m]

xiλi = max
q∈ΔE

∑

i

xi min(Ti, Piπ
′
i), (2)

where π′
i depends on q through Equation (1). If the costs of the controls must

be taken into account, and the cost for a control on section e is ce, then we can
solve:

max
q∈Δ−

E

∑

i∈[m]

xi min(Ti, Piπ
′
i) −

∑

e∈E

qeκce, (3)
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where Δ−
E := {q ∈ [0, 1]|E| :

∑
e∈E qe ≤ 1} (we do not necessarily use all the

control capacity). It is not difficult to see that there must be an optimum such
that ∀e ∈ E, κqe

ye
≤ 1, because the controller never has interest to place more

capacity of control on a section than the number of users that pass through
it. If we impose this constraint, the expression of π′

i simplifies to
∑

e∈ri

κqe

ye
, and

Problem (3) becomes a linear program:

max
q∈Δ−

E
λ∈Rm

∑

i

xiλi −
∑

e∈E

qeκce (4)

s. t. ∀i ∈ [m], λi ≤ Pi

∑

e∈ri

κqe

ye

∀i ∈ [m], λi ≤ Ti

∀e ∈ E, κqe ≤ ye.

Minimizing the number of evaders. If the goal of the controller is to minimize
the number of evaders, the problem to solve is:

min
q∈ΔE

∑

{i∈[m]: Piπ′
i<Ti}

xi.

Note that we have chosen to consider here that the ith user is paying when the
threshold π′

i = Ti

Pi
is reached but not exceeded. We can formulate this problem

as a mixed integer program (MIP), by introducing a binary variable δi which is
forced to take the value 1 when π′

i < Ti

Pi
:

min
q∈ΔE

δ∈{0;1}m

∑

i

xiδi (5)

s. t. ∀i ∈ [m],
Ti

Pi
≤
∑

e∈ri

κqe

ye
+ δi

∀e ∈ E, κqe ≤ ye.

2.2 Coalition of a Finite Number of Controllers

In this section, we consider a more realistic setting, in which N inspectors, each
having a capacity of control κ

N , play a cooperative game in order to maximize
the revenue generated from the toll. A strategy of the coalition of controllers
consists of a vector n ∈ SN := {n ∈ N

|E| :
∑

e∈E ne = N} that indicates
how many inspectors are allocated to each edge of the network. We assume that
the inspectors play with a mixed strategy q ∈ ΔSN , i.e. they choose the spatial
distribution n ∈ SN with the probability qn. With this setting, the probability
for a user of the route ri to be controlled during its trip becomes

π̄i =
∑

n∈SN

qn

(

1 −
∏

e∈ri

(
1 − (

neκ

Nye
∧ 1)

)
)

︸ ︷︷ ︸
αn,i

.
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As in Section 2.1, the problem to maximize the revenue generated from the toll
can be formulated as an LP (we do not consider control costs for the sake of
simplicity). Note that this time, we do not need to take a linear approximation
of π̄i, because αn,i is a fixed parameter:

max
q∈ΔSN

λ∈Rm

∑

i

xiλi

s. t. ∀i ∈ [m], λi ≤ Ti (6a)

∀i ∈ [m], λi ≤
∑

n∈Sn

qnPiαn,i. (6b)

Although the number of strategies of the inspectors’ coalition is exponential with
respect to N , we will see that this problem can be solved efficiently by column
generation. Let vn denote the vector of R

m with coordinates vn,i = Piαn,i. From
a geometrical point of view, the constraint (6b) restricts λ to the polyhedron P
which is defined as the convex hull of the vertices (vn)n∈SN , plus the cone of
nonpositive vectors:

P = {v + z : v ∈ convex-hull({vn : n ∈ SN}), z ∈ R
m
−}. (7)

The next proposition shows that if the capacity of control κ is smaller than the
traffic on every edge, then P has no more than |E| extreme points, so that we
can impose qn = 0 for almost all n ∈ SN .

Proposition 1. Assume that ∀e ∈ E, κ ≤ ye, and denote by ñ(e) the allocation
where all the inspectors are concentrated on edge e. Then, every extreme point
of P is of the form vñ(e) for an e ∈ E. Hence, Problem (6) has a solution in
which qn = 0 for all n ∈ SN \ {ñ(e) : e ∈ E}.
Proof. It is clear that the extreme points of convex-hull(SN ) are the vectors of
the form ñ(e) := [0, . . . , 0, N, 0, . . . , 0]T , with the nonzero in position e. The
application n �→ un, which maps SN onto R

m, and where

un,i := Pi

∑

e∈ri

neκ

Nye

is linear, and hence the extreme points of the polyhedron with vertices (un)n∈SN

are among the images of the extreme points of convex-hull(SN ), that is, the
vectors uñ(e) (e ∈ E). Let n ∈ SN . Since κ ≤ ye for all e, the expression of vn,i

can be simplified to:

vn,i = Pi

(

1 −
∏

e∈ri

(1 − neκ

Nye
)

)

≤ un,i,

where the inequality follows from the log-concavity of x �→ ∏
i(1−xi). Moreover

the equality is attained for the vectors of the type vñ(e), because the product
consists of only one factor (or even 0 factor if e /∈ ri), i.e., ∀e ∈ E we have
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vñ(e) = uñ(e). This shows that un ∈ P , because it can be written as a convex
combination of the vectors (vñ(e))e∈E . Finally, if n is not of the type ñ(e), i.e.,
max
e∈E

ne < N , then we know that un is not an extreme point of P , and hence

the vector vn, which can be written as un + z for a vector z ∈ R
m
− is not an

extreme point of P .

If κ > ye for some e ∈ E, then some other extreme points will appear. How-
ever, we expect the solution to be sparse and we can solve Problem (6) by
column generation. In addition to the columns corresponding to the variable λ,
we start with the columns that correspond to the fully concentrated allocations
(qñ(e))e∈E . After each iteration, the subproblem that we must solve to add a
new column is the maximization of the reduced cost μT vn − μ0, where μ ≥ 0
is the current dual variable associated with the constraints (6b), and μ0 is the
dual of the constraint

∑
n qn ≤ 1:

max
n

⎧
⎨

⎩

∑

i∈[m]

μiPi

(

1 −
∏

e∈ri

(
1 − (

neκ

Nye
∧ 1)

)
)

− μ0 : n ∈ SN

⎫
⎬

⎭
(8)

We use a greedy heuristic to find an approximate solution of Problem (8): we
start from the configuration n(0) = 0 without any inspector, and for k =
1, . . . , N we add an inspector on the section which causes the largest possible
increase of the reduced cost:

∀e ∈ E, n(k)
e =

{
n

(k−1)
e + 1 if e = ek

n
(k−1)
e otherwise,

where ek ∈ argmax
e′∈E

∑

i∈[m]

μiPi

(

1 −
∏

e∈ri

(
1 − (n(k−1)

e + δe,e′ )κ
Nye

∧ 1
)
)

.

In the above equation, δ stands for the Kronecker delta function. We use the
vector n(N) generated by this greedy procedure as an approximation for the
solution of (8), and we add the column vn(N) in the linear program. Finally, we
solve this augemented linear program and repeat the above procedure.

An argument justifying this greedy method is that if we use the same approx-
imation as in Equation (1), the objective of Problem (8) becomes separable and
concave, and it is well known that the greedy procedure finds the optimum (see
e.g. [5]). The column generation procedure can be stopped when the optimal
value of Problem (8) is 0, which guarantees that no other column can increase
the value of Problem (6). In practice, we stop the column generation as soon as
the reduced cost of the strategy n(N) returned by the greedy procedure is 0.

2.3 Relation with Polymatrix Games

A polymatrix game is a multiplayer game in which the payoff of player i is the
sum of the partial payoffs received from a bimatrix game against each other
player:
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Payoff(i) =
∑

j �=i

pi
T Aij pj .

In this section, we establish a relation between the solutions of the model (3)
presented above and the Nash equilibriums of a particular polymatrix game. For
the model without costs (2), it is not difficult to write the payoff of the controller
as the sum of partial payoffs from zero-sum bimatrix games played against each
user (recall that pi = [pi, 1 − pi]T ):

Payoff(controller) =
∑

i

xiλi =
∑

i

Loss(user i) =
∑

i

pT
i Aiq,

where Ai is the 2 × |E|−matrix with elements

∀e ∈ E, (Ai)1,e = xiTi; (Ai)2,e =
{ κ

ye
xiPi if e ∈ ri;
0 otherwise.

This particular polymatrix game has a special structure, since the interaction
between the players can be modelled by a star graph with the controller in the
central node, and each edge represents a zero-sum game between a user and the
controller. Modulo the additional constraint κqe ≤ ye, which bounds from above
the mixed strategy of the controller, any Nash equilibrium (q, p1, . . . , pm) of
this polymatrix game gives a solution q to the Stackelberg competition problem
studied in Section 2.1. The model with control costs (3) can also be formulated
in this way, by adding a new player who has a single strategy. This player plays
a zero-sum game against the controller, whose payoff is the sum of the control
costs

∑
e ceqe.

Interestingly, the fact that Problem (3) is representable by a LP is strongly
related to the fact that every partial game is zero-sum. We point out a recent
paper of Daskalakis and Papadimitriou [3], who have generalized the Neumann’s
minmax theorem to the case of zero-sum polymatrix games. In the introduction
of the latter article, the authors moreover notice that for any star network, we
can find an equilibrium of a zero-sum polymatrix game by solving a LP.

3 Experimental Results

We have solved the models presented in this paper for several regions of the
German motorways network, based on real traffic data (averaged over time). We
present here a brief analysis of our results. On Figure 1, we have represented
the mixed strategy of the controller that maximizes the revenue from the toll
(without control costs, for κ = 60 controls per hour), for the regions of Berlin-
Brandenburg and North Rhine-Westphalia (NRW). The graphs corresponding
to these regions consist of 57 nodes (resp. 111) and 120 directed edges (resp.
264), and we have taken in consideration 1095 routes (resp. 4905). We have used
a toll fee of 0.176e per kilometer, and a penalty of 400e that does not depend
on the route.
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Berlin

Brandenburg

Control rate

Cottbus

(a)

Düsseldorf

Duisburg

Dortmund

Wuppertal

Control rate

(b)

Fig. 1. Mixed strategy of the controller which maximizes the revenue (2), for the regions
of Berlin-Brandenburg (a), and NRW (b). The widths of the sections indicate the traffic
volumes.

For the region of Berlin-Brandenburg, we have plotted the evolution of the
number of evaders and the revenue generated from the toll as a function of κ on
Figure 2. Just to give an idea of the order of magnitudes, there is an average of
1620 trucks per hour in this instance. The strategies that maximize the revenue
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Fig. 2. Evolution of the number of evaders (a) and of the toll revenue (b) with κ, for
the region of Berlin-Brandenburg

and that minimize the number of evaders are compared to the case where the
controls are proportional to the traffic. Several conclusions can be drawn from
this Figure: first, the “proportional” strategy is not so bad in terms of revenue,
however a difference of up to 4% with the max_revenue strategy is observed.
Second, the number of evaders decreases much faster when the controls are dis-
tributed with respect to this goal. For κ = 55, the evasion rate achieved by the
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control distribution that is proportional to the traffic (resp. that maximizes the
revenue) is of 97% (resp. 54%), while we can achieve an evasion rate of 31% with
the min_evaders strategy. Third, both the max_revenue and the min_evaders
strategies create a situation in which it is in the interest of no driver to evade
for κ ≥ 80.3. In contrast, there is still 2% of the drivers who had better evade
with the proportional strategy for κ = 115.

We have also computed the optimal mixed strategy for a coalition of N = 13
inspectors, with the column generation procedure described in Section 2.2. For
κ = 60, we found that the N inspectors should be simultaneously allocated to a
common section 84% of the time. The column generation procedure, which allows
to consider the strategies where the inspectors are spread over the network, yields
an increase of revenue of only 1.84%. An intuitive explanation is that spreading
out the inspectors leads to potentially controlling several times the same driver.
Moreover, most of the traffic passes only through sections where ye ≥ κ, so that
vñ(e) is an extreme point of P (cf. Equation (7)).

4 Conclusion and Perspectives

We have presented a novel approach based on a Stackelberg game to spread
out the controls over a transportation network, in order to enforce the payment
of a transit toll. To the best of our knowledge, this is the first article which
studies the distribution of controls while taking the topology of the network
into account. The problem of distributing the controls so as to maximize the
expected toll revenue (resp. minimize the number of evaders) was formulated as
a linear program (resp. mixed integer program), and we have drawn a parallel
with polymatrix games. Experimental results suggest that this approach can
lead to significant improvements compared to the strategy which consists in
controlling each section proportionally to the traffic volumes, especially when
the goal is to minimize the number of toll evaders.

We have also shown that our model can be extended to deal with the prob-
lem of simultaneously deploying N controllers over the network. Despite the
apparent complexity of this problem, we were able to find a solution by column
generation in our experiments. The optimal strategy assigns most of the time
the N controllers to the same section.

In future work, we want to improve the behavioral model of the users. A key
point seems to be the perception of the probability to be controlled as a function
of the control distributions, which can very different for several users [1]. We also
want to introduce some time dynamics in the model, since the diurnal variations
of the traffic can be very important.
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