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Abstract. Primary user emulation attack, which targets distabilizing
the queuing dynamics of cognitive radio networks, is studied using game
theoretic argument. The attack and defense are modeled as a stochas-
tic game. The Nash equilibrium of the game is studied. In particular,
the Lyapunov drift is considered as the reward in each round. Explicit
expressions of the Nash equilibrium strategies are obtained.
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1 Introduction

Cognitive radio has attracted substantial studies since its birth in 1999 [14].
In cognitive radio systems, users without license (called secondary users) are
allowed to use the licensed spectrum that licensed users (called primary users)
are not using, thus improving the spectrum utilization efficiency. When primary
users emerge, the secondary users must quit the corresponding channels. To
ensure no interference to primary user traffic, the secondary user must sense the
spectrum periodically to determine the existence of primary users.

Such a dynamical spectrum access mechanism, particularly the spectrum sens-
ing mechanism, also incurs vulnerabilities for the communication system. One
serious threat is the primary user emulation (PUE) attack [1], in which the at-
tacker sends out signal similar to that of primary users during the spectrum
sensing period such that the secondary users will be ‘scared’ away even if there
is no primary user, since it is difficult to distinguish the signals from primary
users and the attacker. Such an attack is very efficient since the attacker needs
only very weak power consumption, due to the high requirement on the spectrum
sensing sensitivity of secondary users.

Most existing studies on PUE attack fall in the topics of proactive detection of
attacker [1] or passive frequency hopping [11]. Due to the difficulty of detecting
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the attacker, we will focus on the frequency hopping for avoiding PUE, in which
the secondary users randomly choose channels to sense such that the attacker
cannot always block the traffic in the cognitive radio network. Such an attack
and defense procedure is essentially a game, which is coined ‘dogfight in spec-
trum’ in [11] and has been studied using game theoretic argument. In previous
studies, only single hop communications, such as point to point communications
or multiple access, are considered and total throughput is considered as the game
reward (cost) for the defender (attacker). However, in many practical applica-
tions like sensor networks, the traffics are multihop and have constant average
traffic volumes, thus forming a queuing dynamics since each secondary user has
a buffer to store the received packets. Hence, the ultimate goal of the game is to
stabilize / destabilize the queuing dynamics, thus making the game a queuing
aware one. Note that the optimal scheduling strategy of stabilizing a queuing
system in wireless communication network is obtained in the seminal work [20].
However, there has not been any study on the game for stabilizing/destabilizing
queuing systems, which is of significant importance for the security of various
queuing systems. In this paper, we will model this queuing aware dogfight in spec-
trum as a stochastic game, in which the actions are the channels to sense/block
and the rewards are the metrics related to the queue stability such as the Lya-
punov drift and back pressure. We will first study the centralized case, in which
both the cognitive radio network and attackers are controlled by centralized
controllers, thus making the game a two-player one. Then, we will extend it to
the more practical situation, in which each player can observe only local system
state, based on which it makes the decision of action. Different from graphical
games in which each player has its own reward, in our situation, the attackers
and secondary users form two coalitions whose rewards are the sum of the local
rewards and each player devotes to increase the coalition reward. Such a ‘local-
decision-global-reward’ brings significant difference from the graphical games.
For both cases, we will provide the game formulation, the Nash equilibrium and
value of the general situation, and discussions for special cases. Note that, for
simplicity, we assume that the attackers know the queuing situation of the cogni-
tive radio network, which can be realized by eavesdropping the control messages
in the network.

In summary, our major contribution includes

– Study the network wide PUE attack with the awareness of queuing dynamics,
which extends the PUE attack in single hop systems.

– Study the game of stabilizing/destabilizing queuing systems, which extends
the decision problems of network stabilization.

The study will deepen our understanding on the security of cognitive radio net-
works, as well as that of general queuing systems. It will help the design of a
robust cognitive radio network which can effectively combat the PUE attack in
the network range.

The remainder of this paper is organized as follows. The existing work re-
lated to this paper will be introduced in Section 2. The system model will be
explained in Section 3. The centralized and decentralized games will be discussed
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in Sections 4 and 5, respectively. Numerical results will be provided in Section
6. Finally, the conclusion will be drawn in Section 7.

2 Related Works

In this section, we provide a brief survey of the existing works related to this
paper. Note that there are huge number of studies in each of the topics. Hence,
the introduction is far from exhaustive.

2.1 Security Issues in Cognitive Radio Networks

In contrast to traditional wireless communication networks, two types of new
attacks emerge in the context of cognitive radio network, namely the false re-
port attack and PUE. The former one occurs only in collaborative spectrum
sensing in which secondary users exchange information or send the observations
to a fusion center in order to improve the performance of spectrum sensing. In
such a collaboration, a malicious node can send faked report to the center or
the neighbors. Hence, various approaches have been proposed to detect such an
attack and the corresponding attacker. For example, a Bayesian framework is
applied in [23] and [24] to detect the attacker. In [17], a trust system is used
to evaluate the trustworthiness of each collaborating secondary user. We have
explained the mechanism of PUE attack which also attracted significant studies.
In [7], a mechanism is proposed to detect the PUE attack based on the approach
proposed in [1]. In [21], the emulation attack is modeled as a Bayesian game
and the Nash equilibrium is analyzed. In contrast to these studies, we study the
attack and defense with multiple players in networks and the goal of destabiliz-
ing/stabilizing the queuing dynamics, instead of the spectrum sensing precision
or the system throughput.

2.2 Stability of Queuing Systems

A key task in queuing systems is to stabilize the queuing dynamics; otherwise
the buffers containing the packets will overflow, thus causing packet loss. In the
seminal work [20], Tassiulas and Ephremides found a scheduling algorithm for
wireless communication networks achieving the optimal throughput region. The
algorithm was extended to the context of cognitive radio networks by incorpo-
rating impact of primary users [22]. In [15], a ‘drift-plus-penalty’ cost function is
proposed to achieve the tradeoff between the queuing stability and other factors
like delay. Note that the algorithm proposed in [20] is centralized, i.e., a center
will make the decision of scheduling based on the queuing situations of each
node, which is impractical in most applications. In recent years, the scheduling
algorithm has been extended to the decentralized case at the cost of reasonable
performance loss [25][27]. Although the scheduling algorithm and the correspond-
ing queuing stability have been widely studied, there have been few studies on
the queuing dynamics aware attack and defense using the tool of game theory.
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2.3 Games

The analysis in this paper is based on game theory. Due to the features of the
queuing aware dogfight in spectrum, our study concerns both stochastic games
and graphical games since the reward is dependent on the system state and the
players form a graph (network).

Stochastic Game. Many queuing systems can be modeled as Markov systems
in which the future evolution of system is based on only the current system state.
Hence, the corresponding game also requires a Markov framework, in which the
reward is dependent on the system state. Games in a Markov system are called
stochastic games and were studied by Shapley [19]. In stochastic games, the Nash
equilibrium, or the game value, is characterized by the combination of dynamic
programming and the value of one-snapshot games. A comprehensive introduc-
tion on stochastic games can be found in [5]. Note that the classical results in
[5][19] are based on the assumption that all players have perfect information of
the system state. In many situations, this assumption is invalid. For example, in
the context of PUE attack on queuing dynamics in cognitive radio network, the
attackers may not perfectly know the queuing situations of each secondary user.
However, the computation of Nash equilibrium in stochastic games with partial
observation is still an open problem. Hence, we focus on the case of perfect state
information in this paper.

Graphical Game. As more studies are paid to various types of networks, such
as social networks and communication networks, game theory is also extended
from the traditional structureless setup (e.g., two players or multiple layers form-
ing a complete graph) to the scenarios with network structures (called graphical
game) [16]. In such games, the players form a graph or a network in which
the corresponding topology plays an important role in the game. In one type of
graphical game, each player has its own payoff. The algorithm for computing the
Nash equilibrium has been studied in [4], [8] and [9]. In another type of graphi-
cal game, the players form two coalitions and each player aims to maximize the
coalition reward equaling the sum of individual rewards. Such a game has been
studied in [3] and [26]. An excellent summary can be found in [2].

3 System Model

The system model consists of the models of cognitive radio networks, data flows
and primary user emulation attacks.

3.1 Network Model

We consider a cognitive radio network with N secondary users. The topology of
the network can be represented by a graph with N nodes, in which two nodes
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adjacent to each other are able to communicate with each directly. We denote by
n ∼ m if secondary users n and m are neighbors in the network. We assume that
there are totally M licensed channels which may be used by K primary users.
We denote by Nk the set of secondary users that may be affected by primary
user k and denote by Mk the set of channels that primary user k occupies when
it is active. For simplicity, we assume that the activities in different time slots of
each primary user are mutually independent, and the probability of being active
is denoted by pk for primary user k.

The time is divided into time slots, each containing a spectrum sensing period
followed by a data transmission period. At time slot t, the status of channel m
is denoted by sm; i.e., sm = 0 when the channel is not being used by primary
users and sm = 1 otherwise. Due to the limited capability of spectrum sensing, we
assume that each secondary user can sense only one channel during the spectrum
sensing period. It is straightforward to extend to the more generic case in which
multiple channels can be sensed simultaneously. For simplicity, we assume that
the spectrum sensing is perfect; i.e., the output of spectrum sensing is free of
errors.

3.2 Traffic Model

We assume that there are totally F data flows in the cognitive radio network. We
denote by Sf and Df the source node and destination node of flow f , respectively.
We assume that the number of packets arriving at the source node of data flow
f satisfies a Poisson distribution with expectation af . The routing paths of the
F data flows can be represented by an F × N matrix R in which Rfn = 1 if
data flow f passes through secondary user n and Rfn = 0 otherwise. We denote
by In the set of flows passing through secondary user n.

State: queue 
lengths

Action: channel 
selection and 
scheduling

CR

State: queue 
length

Action: the 
channels to jam

Attckers

Reward: 
Lyapunov drift

Fig. 1. Elements of the game

The data flows are packetized using the
same packet length. Each secondary user has
one or more buffers to store the received pack-
ets. In each time slot, the secondary users will
choose one packet, if there is any, and sense
one or more channel for transmission. Suppose
that one channel can support the transmission
of only one data flow. We assume that, if two
secondary users are close to each other, they
are not allowed to sense the same channel due
to the potential collision. We denote by Cn the
set of other secondary users that have intol-
erable co-channel interference with secondary
user n. We assume that there are sufficiently
many channels such that any set of interfer-
ing secondary users can be assigned to different channels and all secondary
users can transmit simultaneously by appropriately allocating the channels; i.e.,
maxn Cn � M .
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When secondary user n decides to transmit to the next hop neighbor j and
an available channel, say m, is found, the packet can be delivered successfully
with probability μnjm which is determined by the channel quality.

3.3 PUE Attack Model

We assume that there are totally L PUE attackers distributed around the cogni-
tive radio network. Each attacker chooses Q (Q ≤ M) channels to attack. During
each spectrum sensing period, each PUE sends interference in the Q channels
such that the secondary users sensing these channels are scared away even if
the channel is actually not being used by primary users. We denote by Vl the
set of potential secondary user victims that could be jammed by attacker l. We
assume that the attackers have certain knowledge about the current state of the
cognitive radio network.

4 Centralized Game

In this section, we consider the centralized case, in which the actions of the
attackers and secondary users are both fully coordinated. Hence, we can assume
that there are two centers making the decisions for the attackers and secondary
users, respectively, such that there are two players in the game.

4.1 Elements of Game

We define the following elements of the game. Obviously, this game is a stochastic
one having the elements of reward, action and state.

– State: The system state, denoted by s, includes the queue lengths of all flows
and all secondary users which are denoted by {qfn}f=1,...,F,n=1,...,N . The
state space is then denoted by S which consists of all possible s. We assume
that the system state is visible to both attackers and secondary users. Note
that, since we assume that the primary users’ activities are independent in
time, the spectrum situation is memoryless. It is easy to extend to the case
in which the spectrum has memory by incorporating the spectrum state into
the system state.

– Actions: We denote by Aa and As the sets of actions of the attackers and
secondary users, respectively. The actions of the attackers, denoted by aa,
include the channels to jam, which are denoted by {cal }l=1,...,L (cl is a vec-

tor containing the Q channels to jam). The action of the secondary users,
denoted by as, includes the assignment of the channels, as well as the sched-
uled flow. We denote by cn(t) and fn(t) the assigned channel and scheduled
flow at secondary user n at time slot t. To avoid co-channel interference, we
have cn(t) �= cm(t) if m ∈ Cn.
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– Reward: The purpose of the attacker is to make the cognitive radio col-
lapse, or equivalently destabilizing the queuing system, while the purpose of
the secondary users is to stabilize the system. Hence, a quantity is needed
to quantify the stability of the system. We define the following Lyapunov
function, which is given by

V (s(t)) =

F∑

f=1

N∑

n=1

q2fn(t), (1)

namely the square sum of all queue lengths. The larger the Lyapunov func-
tion is, the more unstable the system is since there are more packets staying
in the network. Since V (s(t)) can be rewritten as

V (s(t)) = V (s(0)) +

t∑

r=1

V (s(r)) − V (s(r − 1)), (2)

we define d(t) = E [V (s(t)) − V (s(t− 1)], namely the expected Lyapunov
drift [15], as the reward of the attacker. When the Lyapunov drift is positive,
the system becomes more unstable, thus benefiting the attackers. To define
the reward of the secondary user system, we model the game as a zero-sum
one and define −d(t) as the reward of cognitive radio network. For simplicity,
we add a discounting factor 0 < β < 1 to the reward in each time slot such
that the total reward of the attacker is given by

R =
∞∑

t=0

βtd(t), (3)

which simplifies the analysis since it is much easier to analysis the game with
a discounted sum of rewards. Note that this definition is motivated by the
classical works on scheduling queuing network in which the scheduling tries
to minimize the Lyapnov drift in order to stabilize the queues [15][20].

4.2 Attack/Defense Strategies

The attack strategy, denoted by πa, is defined as the condition probability
P (aa|s); i.e., the probability of the action given the current system state. Sim-
ilarly, we can also define the defense strategy, denoted by πs, as P (as|s). We
will first study the Nash equilibrium given the above game configuration via
the Shapley’s Theorem. Then, we will use a simpler definition of reward which
simplifies the analysis.

Nash Equilibrium. First, we follow the standard solution of stochastic games.
For a general stochastic game (not necessary zero-sum), the Nash equilibrium is
defined as the pair of strategies (π∗

s , π
∗
a), which satisfies

R(π∗
s , π

∗
a) ≥ R(π∗

s , πa), ∀πa, (4)

R(π∗
s , π

∗
a) ≤ R(πs, π

∗
a), ∀πs. (5)
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At the Nash equilibrium point, both players have no motivation to change the
strategies specified the equilibrium point; any unilateral deviation from the equi-
librium point can only incur performance degradation of itself.

To find the Nash equilibrium, an auxiliary matrix game proposed by Shapley
[19] is needed. We first define the matrix game conditioned on the system state
s, which is given by

R(s) =

⎛
⎜⎜⎜⎝

d(s, 1, 1) d(s, 1, 2) · · · d(s, 1, |Aa|)
d(s, 2, 1) d(s, 2, 2) · · · d(s, 2, |Aa|)

...
...

. . .
...

d(s, |As|, 1) d(s, |As|, 2) · · · d(s, |As|, |Aa|)

⎞
⎟⎟⎟⎠ ,

in which d(s, a1, a2) is the expected Lyapunov drift when the system state is
s and the actions are a1 and a2 for the attackers and cognitive radio network,
respectively.

We define the value vector of the attacker, denoted by va = (va(1), ..., va(|S|),
whose elements are given by

va(s) = R(s), s = 1, ..., |S|, (6)

where R(s) is the reward of the attackers given the initial state s. Then, an
auxiliary matrix game is defined with the following payoff matrices

R̃(s,va) = R(s) + βT(s,va), s ∈ S, (7)

where the elements in the matrix T(s,va) are defined as

T(s,va)ij =
∑

s′
p(s′|s, i, j)va(s′). (8)

Similarly, we can also define the value vector for the cognitive radio network,
which is denoted by vc.

The following theorem (Shapley, 1953, [19]) discloses the condition of the Nash
equilibrium of the zero-sum stochastic game:

Theorem 1. The value vector at the Nash equilibrium satisfies the following
equations:

va(s) = val [R(s,va)] , s ∈ S, (9)

where the matrix game R(s,va) is in (7).

Once the value vector va is obtained, the optimal action of the attackers is given
by

aa(s) = argmax
j

min
i

(
R̃(s,va)

)

ij
, (10)

while the optimal action of the cognitive radio is given by

ac(s) = argmin
i

max
j

(
R̃(s,va)

)

ij
. (11)
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Myopic Game for Back Pressure. Although the Nash equilibrium exists for
the stochastic game formulation in the previous subsection, it is very difficult to
obtain analytic expression for the equilibrium. We can only obtain the numerical
solution for small systems. Moreover, it is still not clear whether defining the
Lyapunov drift as the reward of each time slot is the optimal choice. In this
subsection, we will study the myopic case in which the attackers and cognitive
radio take myopic strategies by maximizing their rewards in each time slot,
without considering the future evolution. Moreover, we will approximate the
maximization of Lyapunov drift by maximizing the back pressure, which can
simplify the stochastic game to a one-stage normal game.

It is well known that, when there is no attacker, the back pressure of flow f
at secondary user n is given by [20]

Dfn =

{
(qfn − qfj)μnjm, j /∈ Df

qfnμnjm, j ∈ D
, (12)

where j is the next secondary user along flow f and m is the channel for the
transmission from n to j (recall that i ∈ Df means that node i is a destination
node for flow f). [20] has shown that the scheduling algorithm minimizing the
back pressure, which is tightly related to minimizing the Lyapunov drift, can
stabilize the queuing system.

However, when attacks exist, the back pressure is dependent on the attackers’
strategy since the channels selected by the attackers will change the transmission
success probability μnjm. Recall that the actions of attackers and cognitive radio
network are denoted by aa and ac, respectively. Then, the success probability,
as a function of the actions, is given by (recall that Vl is the set of secondary
user that attacker l can attack)

μ̃njm(aa, ac) = μnjmI(m /∈ cal , ∀n ∈ Vl), (13)

where I is the characteristic function of the event that no attacker that can
interfere secondary user n is attacking channel m. Then, the back pressure in
the game is defined as a function of the actions aa and ac, which is given by

D̃fn(aa, ac) =

{
(qfn − qfj) μ̃njm(aa, ac), j /∈ Df

qfnμ̃njm(aa, ac), j ∈ Df
. (14)

Then, the reward of the attacker is given by (recall that fn is the flow scheduled
at secondary user n)

R(aa, ac) = −
N∑

n=1

D̃fn,n(aa, ac), (15)

and the reward of the cognitive radio network is
∑N

n=1 D̃fn,n since the game
is modeled as a zero-sum one. Then, the strategy of the attackers at the Nash
equilibrium is given by

π∗
a = argmax

πa

min
πc

R(πa, πc), (16)
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and the corresponding action of the cognitive radio is given by

π∗
c = argmin

πc

max
πa

R(πa, πc). (17)

The actions at the Nash equilibrium point can be computed using linear pro-
gramming. The challenge is the large number of actions when the network size
or the number of channels is large. We will find the analytic expression for an
example in the sequel. For large system size, we can only use approximations for
exploring the Nash equilibrium.

4.3 Example

In this subsection, we use one example to illustrate the previous discussions,
which also provides insights for networks with larger size. The example is illus-
trated in Fig. 2, in which there is one attacker and three secondary users. We
assume that there are totally two channels over which two data flows are sent
from secondary user 3 to secondary users 1 and 2, respectively. The attacker can
only interfere secondary user 3. For simplicity, we assume that secondary user 3
can sense and transmit over both channels simultaneously; hence, there are only
two possible actions for secondary user 3.

Attacker

3

1 2

Flow 1 Flow 2

PUE
Attack

Cognitive Radio 
Network

Fig. 2. An illustration of the
example

Stochastic Game for Lyapunov Drift.
Due to its small size, the Nash equilibrium of
the example can be obtained by solving equa-
tions. However, we are still unable to obtain
the explicit expression. Below, we consider a
more simplified case in which μ311 	 μ312

and μ322 	 μ321; i.e., secondary user 3 should
use channel 1 to transmit data flow 1 and use
channel 2 to transmit data flow 2. In this case,
the strategy of the cognitive radio network is
fixed; hence, the problem is converted from
a game theoretic one to a single sided deci-
sion one. Then, the attacker needs to decide
whether to jam data flow 1 (thus sending sig-
nal over channel 1) or jam data flow 2 (thus sending signal over channel 2). The
following proposition provides the optimal strategy for the attacker.

Proposition 1. Consider the above simplified case. We assume that the trans-
mission success probability is μ and the new packet arrival rate is λ, both identi-
cal for the two data flows. The optimal strategy of the attacker to maximize the
Lyapunov function is to choose the channel to jam the data flow having a larger
queue length.

One Stage Game for Back Pressure. Now we consider the one stage game
for maximizing or minimizing the back pressure. Fix a certain time slot and



202 H. Li et al.

drop the index of time for simplicity. It is easy to verify that the reward for the
cognitive radio can be represented by a matrix, which is given by

(
q32μ322 q31μ312

q31μ311 q32μ321

)
. (18)

The Nash equilibrium of this matrix game is provided in the following proposi-
tion. The proof is a straightforward application of the conclusion in [5]; hence,
we omit the proof due to the limited space.

Proposition 2. We denote by πa
j the probability that the attacker attacks chan-

nel j, j = 1, 2, and by πc
k the probability that secondary user 3 transmits data flow

1 over channel k while transmitting data flow 2 over the other channel, k = 1, 2.
The Nash equilibrium of the matrix game in (18) is given by the following cases:

– If the following inequality holds; i.e.,

{
(q32μ322 − q31μ312)(q32μ321 − q31μ311) > 0
(q32μ322 − q31μ311)(q32μ321 − q31μ312) > 0

, (19)

the equilibrium strategies are given by

{
πa
1 = q32μ321−q31μ311

q32μ322−q31μ312+q32μ321−q31μ311

πc
1 = q32μ321−q31μ312

q32μ322−q31μ311+q32μ321−q31μ312

. (20)

– If the first equality in (19) does not hold, then we have the following possi-
bilities:
• q32μ322 ≥ q31μ312 and q32μ321 < q31μ311, or q32μ322 > q31μ312 and
q32μ321 ≤ q31μ311: secondary user 3 should always transmit data flow 1
over channel 1; the attacker should attack channel 1 if q31μ311 > q32μ322

and attack channel 2 otherwise.
• q32μ322 < q31μ312 and q32μ321 ≥ q31μ311, or q32μ322 ≤ q31μ312 and
q32μ321 > q31μ311: secondary user 3 should always transmit data flow 1
over channel 2; the attacker should attack channel 1 if q32μ321 > q31μ312

and attack channel 2 otherwise.
• q32μ322 = q31μ312 and q32μ321 = q31μ311: secondary user 3 can choose
either action; the attacker should attack channel 1 if q32μ321 > q31μ312

and attack channel 2 otherwise.
– If the second equality in (19) does not hold, then we have the following pos-

sibilities:
• q32μ322 ≤ q31μ311 and q31μ312 < q32μ321, or q32μ322 < q31μ311 and
q31μ312 ≤ q32μ321: the attacker should always attack channel 1; secondary
user 3 should transmit data flow 1 over channel 1, if q32μ322 > q31μ312,
and transmit over channel 2 otherwise.

• q32μ322 ≥ q31μ311 and q31μ312 > q32μ321, or q32μ322 > q31μ311 and
q31μ312 ≥ q32μ321: the attacker should always attack channel 2; secondary
user 3 should transmit data flow 1 over channel 1, if q31μ311 > q32μ321,
and transmit over channel 2 otherwise..
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• q32μ322 = q31μ311 and q32μ321 = q31μ312: the attacker can attack any
channel; secondary user 3 should transmit flow 3 over channel 1 if
q32μ322 > q31μ312 and attack channel 2 otherwise..

Remark 1. We can draw the following conclusions from the Nash equilibrium:

– When all channels have the same quality, the attacker should attack each
channel with probability 0.5, which is independent of the queue lengths.

– Suppose μ311 = μ322 	 μ312 = μ321; i.e., it is much desirable to transmit
data flow 1 over channel 1 and data flow 2 over channel 2, the attacker should
attack the channel more desirable for the data flow with more queue length.
In this situation, the queue length information is useful.

4.4 Stability Analysis

Now we analyze the stability of the queuing dynamics. We first provide a brief
introduction to the queuing stability when there is no attacker. Then, we consider
the case when attacker exists.

Stability Without Attacker. When there is no attacker, the stability of queu-
ing networks has been analyzed for single channel case in [20], which is easy to
extend to the multichannel case. We denote by a L-dimensional vector f the sums
of data flow rates of the links; i.e., fl stands for the total data rates through link
l, l = 1, ..., L. We denote by S the set of all vectors of transmission success prob-
abilities, each dimension corresponding to a link and each vector corresponding
to one possible channel assignment. Then, if we can find a vector c ∈ co(S) such
that f < c, then the queue is stabilizable. When f > c, the queues cannot be
stabilized. The proofs follow those of Lemma 3.2 and Lemma 3.3 in [20].

A B

12

3 4

5 6

Fig. 3. An illustration of the de-
centralized game

Stability Subject to Attacker. When
attacker(s) exists, the capacity vector c is
changed since the transmission success prob-
ability is decreased due to the PUE attack.
Since the attack actions are dynamical, de-
pending on the queue situations, each vector
in S also becomes dynamical. Hence, it is diffi-
cult to analyze the stability analytically. Here
we just provide a qualitative observation. For
a certain link l, if the total flow rate fl is close
to the capacity cl, then it is more possible that
there is a long queue at the transmitter. As we have seen in the example, the
attacker tends to attack secondary users with longer queues by jamming the
channels more possibly available to the secondary user, given that the channel
conditions are similar. Then, cl is further decreased, thus making the attacker
more focused on link l.

For the simple example in Fig. 2, when the attacker and the network carry
out the one-stage game, we have the following corollary of Prop. 1:
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Corollary 1. A necessary condition for q1 → ∞ and q2 being finite is

(
μ312

μ311 + μ312

)2

μ311 +

(
μ311

μ311 + μ312

)2

μ312 < f1, (21)

and

μ312μ311 (μ321 + μ322)

(μ311 + μ312)
2 > f2. (22)

Proof. The proof is simple. We notice

c1 = (1− πa
1 )π

c
1μ311 + πa

1 (1− πc
1)μ312, (23)

and

c2 = πa
1π

c
1μ321 + (1− πa

1 ) (1− πc
1)μ322. (24)

Then, we simply substitute the conclusion in Prop. 1 into the above expressions
of c1 and c2.

5 Decentralized Game

As we have discussed in the previous section, the centralized game is difficult to
analyze due to the large action space and state space; moreover, the centralized
controls of the attackers and cognitive radio network are impractical in applica-
tions. Hence, we study the decentralized game for both attackers and cognitive
radio network. An illustration is given in Fig. 3, in which we consider two at-
tackers, namely A and B, and six secondary users, namely 1, 2, 3, 4, 5 and 6. A
key feature for the decentralized game is that each attacker/secondary user is a
player and each player makes decision based on the states of its neighbors/direct
victims. For example, secondary user 2 makes its decision based on the state of
secondary user 4, while attacker A makes its decision based on the states of
secondary users 2 and 3.

Based on the big picture described above, we define the elements of the game
as follows:

– System state: Due to the locality assumption, each player does not nec-
essarily know the queue lengths of all secondary user and all flows. For
attacker l, its state is sal = {qfn}n∈Vl,f∈In

, i.e., the queuing situations of
all secondary users that it may attack. For secondary user n, its state is
sal = {qfm}n∼m,f∈Im

, i.e., the queuing situations of all neighboring sec-
ondary users.

– Strategy: As we have assumed, each player knows only the states of its
neighbors. Hence, its action is also dependent on only the neighbors. We de-
fine the strategy of a player as the distribution of action given the states
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of its neighbors and itself1. For each attacker, the strategy is given by
P (a| {qfn}n∈Vl,f∈In

), a = 1, ...,M . For each secondary user n, the strat-

egy is given by P (a| {qfn}m∼n,f∈Im
). The overall strategy of the cognitive

radio network (attacker) is the product of the strategies of each secondary
user (attacker); i.e.,

{
πa =

∏M
m=1 π

m
a

πc =
∏N

n=1 π
n
c

. (25)

Note that the key difference between the decentralized game and the central-
ized one is the structure of the strategy; i.e., the decentralized game has a
product space for the strategy while the centralized does not.

– Reward: Again, we consider the Laypunov drift as the reward. For secondary
user n, its reward is given by

rn(t) =
∑

f∈Im

q2fn(t− 1)− q2fn(t). (26)

The total reward of the coalition of secondary users is then given by

R(t) =
N∑

n=1

rn(t)

= V (t− 1)− V (t), (27)

which is equal to the negative of the Laypunov drift.
The situation is slightly more complicated for the attacker coalition. Nat-
urally, we can define the reward of attacker k as −∑

n∈Nk
rn(t). However,

if we simply add up the individual rewards of the attackers as the total re-
ward of the attacker coalition, it may not be equal to the negative of R(t),
since the sets of secondary users affected by different attackers may overlap.
Hence, we assume that, before launching the attack, the attacker divide the
secondary users into disjoint sets and each attacker takes the rewards from
only one set of secondary users, denoted by Ñk for attacker k. Then, we
define −∑

n∈Ñk
rn(t) as the reward of attacker k; thus, the total reward of

the attacker coalition is equal to the negative of the reward of the secondary
user coalition.
Then, the reward of the secondary user coalition is given by

Rs = E

[ ∞∑

t=1

βtR(t)

]
, (28)

1 The more general strategy should include the history, namely the previous actions
and previous system states, into the condition of the probability distribution of
actions. It is still not clear whether the Markov assumption in the strategy loses any
information. For the case of time average reward, it has been shown in [2] that, when
the strategy of one coalition is fixed, the Markov strategy can achieve the optimal
reward for the other coalition.
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where β is the discounting factor. We can also consider the mean reward;
however, it is much more complicated.

For the PUE attack game, we define the value of the game as follows [2].

Definition 1. The value of the PUE attack game is given by

sup
πc

inf
πa

Rc = inf
πa

sup
πc

Rc, (29)

if both sides exist.

The following proposition shows the existence of the value of the decentralized
stochastic game. The proof is similar to that of Theorem 4.16 in [2], where the
reward is the average of rewards.

Proposition 3. The value of the decentralized game, defined in (29) exists.

The proof and more discussions will be made in the journal version.

6 Numerical Results
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Fig. 4. Rate region subject to
PUE attacks

In this section, we use numerical results to
demonstrate the theoretical analysis. In Fig.
4, we show the rate region subject to PUE
attacks for the network in Fig. 2. The strate-
gies are obtained by solving the equations in
the Shapley’s Theorem, using numerical ap-
proach [5]. Since there are infinitely many pos-
sible queue lengths, thus resulting in infinitely
many system states, we merge all the cases
with more than 9 packets in a queue into one
state. We judge whether a given set of rates is
stable by carrying out the simulation for the
queuing dynamics; if one of the queues has
more than 50 packets after 2000 time slots, we
claim that the rates are unstable. We tested
the case of Nash equilibrium, uniformly choosing the actions and no PUE attack.
The region of each case is the area below the corresponding curve. We observe
that the PUE attack can cause a significant reduction of the rate region.

7 Conclusions

In this paper, we have studied multiple attackers and an arbitrary cognitive radio
network with multiple data flows, where the goal of the game is to stabilize
(destabilize) the queuing dynamics by the secondary users (attackers). Both
the centralized and decentralized cases of the game have been considered. The
Lyapunov drift and the back pressure are considered as the game rewards for
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the stochastic game case and the myopic strategy case, respectively. The value
functions and Nash equilibriums have been obtained for the general case, while
the explicit expressions are obtained for simple but typical scenarios. Numerical
simulations have been carried out to demonstrate the analysis.
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