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Abstract. In this paper we formulate a contract design problem where
a primary license holder wishes to profit from its excess spectrum ca-
pacity by selling it to potential secondary users/buyers, but needs to
determine how to optimally price it to maximize its profit, knowing that
this excess capacity is stochastic in nature and cannot provide determin-
istic service guarantees to a buyer. We address this problem by adopting
as a reference a traditional spectrum market where the buyer can pur-
chase exclusive access with fixed/deterministic guarantees. We consider
two cases; in one the seller has full information on the buyer, including
its service requirement and quality constraint, and in the other the seller
only knows possible types and their distribution. In the first case we fully
characterize the nature of the optimal contract design. In the second case,
we find the optimal contract design when there are two possible types
and determine a design procedure and show that it is optimal when the
nature of the stochastic channel is common to all possible types.

Keywords: contract design, incentives, quality of service constraint,
secondary spectrum market.

1 Introduction

The scarcity of spectrum resources and the desire to improve spectrum efficiency
have led to extensive research and development in recent years in such concepts
as dynamic spectrum access/sharing, open access, and secondary (spot or short-
term) spectrum market, see e.g., [1, 2].

One of the fundamental premises behind a secondary (and short-term) spec-
trummarket is the existence of excess capacity due to the primary license holder’s
own spectrum under-utilization. However, this excess capacity is typically uncon-
trolled and random, both spatially and temporally, and strongly dependent on the
behavior of the primary users. One may be able to collect statistics and make pre-
dictions, as has been done in numerous spectrum usage studies [3–5], but it is fun-
damentally stochastic in nature. The primary license holder can of course choose
to eliminate the randomness by setting aside resources (e.g., bandwidth) exclu-
sively for secondary users. This will however likely impinge on its current users
and may not be in the interest of its primary business model.
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The alternative is to simply give non-exclusive access to secondary users for
a fee, which allows the secondary users to share a certain amount of bandwidth
simultaneously with its existing licensed users, but only under certain conditions
on the primary traffic/spectrum usage. For instance, a secondary user is given
access but can only use the bandwidth if the current activity by the licensed
users is below a certain level, e.g., as measured by received SNR. This is a typical
scenario under the spectrum overlay and underlay models [6]; many spectrum
sharing schemes proposed in the literature fall under this scenario, see e.g., [7–10].

In this case a secondary user pays (either in the form of money or services in
return) for gaining spectrum access but not for guaranteed use of the spectrum.
This presents a challenge to both the primary and the secondary users: On
one hand, the secondary user must assess its needs and determine whether the
uncertainty in spectrum quality is worth the price asked for and what level of
uncertainty can be tolerated. On the other hand, the primary must decide how
stochastic service quality should be priced so as to remain competitive against
guaranteed (or deterministic) services which the secondary user may be able to
purchase from a traditional market or a different primary license holder.

In this paper we formulate this as a contract problem for the primary user
and seek to address the question of what type of contracts should the primary
design so as to maximize its profit. Within this framework we adopt a reference
point in the form of a traditional spectrum market from where a secondary user
can purchase deterministic or guaranteed service, i.e., exclusive access rights
to certain bandwidth, at a fixed price per unit. This gives the secondary user
a choice to reject the offer from the primary user if it is risk-averse or if the
primary user’s offer is not attractive. This also implies that the price per unit of
bandwidth offered by the primary user must reflect its stochastic quality.

Work most relevant to the study presented in this paper includes [11], which
considers a contract problem where the secondary users help relay primary user’s
data and in return are allowed to send their own data, as well as [12], which
considers the convexity of an optimal portfolio of different stochastic purchases,
under two types of bandwidth shortage constraints. The work in [12] however
considers only the perspective of the buyer but not the seller.

Our main results are as follows. We formally present the contract design prob-
lem in Section 2, and consider two cases. In the first case the seller is assumed to
have full information on the buyer, including its service requirement and qual-
ity constraint. For in this case we fully characterize the optimal contract design
(Section 3). In the second case the buyer belongs to a set of types and the seller
knows only the set and its distribution but not the buyer’s exact type. We again
fully characterize the nature of the optimal contract design when the number
of types is limited to two. In the case of having more than two possible types
of buyer, we assume that the channel condition is common among the buyers.
Under this assumption, we determine the optimal contract when the seller can
design as many contract as the it wants. When the number of contracts is limited,
we describe a design procedure and prove the optimality (Section 4).
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2 Model and Assumptions

The basic idea underlying our model is to capture the value of secondary spec-
trum service, which is random and non-guaranteed in nature, by using guaran-
teed service as a reference.

2.1 The Contract Setup

The contract is setup to be distributed from the seller to the buyer in this model.
The seller, who is also referred to as the owner or the primary license holder,
uses the spectrum to provide business and service to its primary users, and carry
primary traffic. The seller is willing to sell whatever underutilized bandwidth it
has as long as it generates positive profit and does not impact negatively its
primary business. It knows that the bandwidth it is selling is stochastic and
cannot provide hard guarantees. We will assume that the seller pre-designs up
to M contracts and announce them to a potential buyer. If the buyer accepts
one of the contracts, they come to an agreement and they have to follow the
contract up to a predetermined period of time. It is up to the seller to design
the contracts, but up to the buyer to decide whether or not to accept it.

Each contract is in the form of a pair of real numbers (x, p), where x ∈ R+

and p ∈ R+:

– x is the amount of bandwidth they agree to trade on (given from the seller
to buyer).

– p is the price per unit of x (total of xp paid to the seller).

When a contract (x, p) is signed, the seller’s profit or utility is defined by

U(x, p) = x(p− c),

where c(> 0) is a predetermined constant cost which takes into account the
operating cost of the seller. If none of the contract is accepted by the buyer, the
reserved utility of the owner is defined by U(0, 0) = 0.

2.2 A Reference Market of Fixed/Deterministic Service or
Exclusive Use

We next consider what a contract specified by the pair (x, p) means to a potential
buyer. To see this, we will assume that there exists a traditional (as opposed to
this emerging, secondary) market from where the buyer can purchase services
with fixed or deterministic guarantees. What this means is that the buyer can
purchase exclusive use of certain amount of bandwidth, which does not have to
be shared with other (primary) users. This serves as an alternative to the buyer,
and will be used in our model as a point of reference. We will leave it unspecified
how the price of exclusive use is set, and will thus normalize it to be unit price
per unit of bandwidth (or per unit of transmission rate). The idea is that given
this alternative, the owner cannot arbitrarily set its price because the buyer can
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always walk away and purchase from this traditional market. This traditional
market will also be referred to as the reference market, and the service it sells
as the fixed or deterministic service/channel. Our model does allow a buyer to
purchase from both markets should there be a benefit.

2.3 The Buyer’s Consideration

When the set of M contracts are presented to a buyer, its choices are (1) to
choose one of the contracts and abide by its terms, (2) to reject all contracts and
go to the traditional market, and (3) to purchase a certain combination from
both market. The buyer’s goal is to minimize its purchasing cost as long as a
certain quality constraint is satisfied. The framework presented here applies to
any meaningful quality constraint; to make our discussion concrete, below we
will focus on a loss constraint for concreteness.

Suppose the buyer chooses to purchase y unit of fixed service from the ref-
erence market together with a contract (x, p). Then its constraint on expected
loss of transmission can be expressed as:

E[(q − y − xB)+] ≤ ε ,

where

– q: the amount of data/traffic the buyer wishes to transmit.
– B ∈ {0, 1}: a binary random variable denoting the quality of the channel for

this buyer. We will denote b := P (B = 1).
– ε: a threshold on expected loss that’s acceptable to the buyer.

Here we have adopted a simplifying assumption that the purchased channel (in
the amount of x) is either available in the full amount or completely unavailable.
More sophisticated models can be adopted here, by replacing xB with another
random variable X(x) denoting the random amount of data transmission the
buyer can actually realize. This will not affect the framework presented here,
but will alter the technical details that follow.

With this purchase (y, (x, p)), the buyer’s cost is given by y+ xp. The cost of
the contract (x, p) to this buyer is given by the value of the following minimiza-
tion problem:

C(x, p) = minimize
y

y + px (1)

subject to E[(q − y − xB)+] ≤ ε (2)

That is, to assess how much this contract actually costs him, the buyer has to
consider how much additional fixed service he needs to purchase to fulfill his
needs.

The buyer can always choose to not enter into any of the presented contracts
and only purchase from the traditional market. In this case, its cost is given by
the value of the following minimization problem:

C(0, 0) = minimize
y

y

subject to E[(q − y)+] ≤ ε
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Since every term is deterministic, we immediately conclude that C(0, 0) = q −
ε, which will be referred to as the reserve price of the buyer. Obviously if a
contract’s cost is higher than this price then there is no incentive for the buyer
to enter into that contract.

2.4 Informational Constraints

We investigate the following two possible scenarios.

1. Information is symmetric:
Under this assumption, the seller knows exactly the values q, b, ε of the buyer.
The seller can thus extract all of the buyer’s surplus (over the reserve price),
resulting in C(x, p) = C(0, 0) at the optimal contract point.

2. Information is asymmetric:
Under this assumption, the seller can no longer exploit all of the buyer’s
surplus, resulting in a more complicated contract design process. We assume
there are possibly K types of buyers, each having a different triple (q, b, ε).
We further assume that the seller has a prior belief of the distribution of
the buyer types; a buyer is of type i with probability ri and has the triple
(qi, bi, εi) as its private information. We will also assume that at most M
different contracts are announced to the buyer.

3 Optimal Contract under Symmetric Information

In the symmetric information case, the seller can custom-design a contract for
the buyer, subject to the constraint that it offers an incentive for the buyer to
accept, referred to as the individual rationality (IR) constraint. In other words,
the buyer (by accepting the contract) has to be able to achieve a cost no higher
than the reserve price: C(x, p) ≤ C(0, 0) = q − ε. Knowing this, the seller can
exactly determined the region where the buyer would accept a contract (x, p)
since it knows the values q, ε, b.

Theorem 1. When q(1 − b) ≤ ε, the buyer accepts the contract (x, p) if and
only if

p ≤
{

b if x ≤ q−ε
b

q−ε
x if x > q−ε

b

(3)

When q(1− b) > ε, the buyer accepts the contract if and only if

p ≤
{

b if x ≤ ε
1−b

bε
x(1−b) if x > ε

1−b

(4)

The above result is illustrated in Fig. 1. The meaning of the two different types
of regions are as follows. (i) When q(1 − b) ≤ ε, or b ≥ q−ε

q , the quality of the
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Fig. 1. Examples of q(1− b) ≤ ε (left) and q(1− b) > ε (right)

stochastic channel is sufficiently good such that, when x is large enough, the
constraint Eqn. (2) can be achieved without any purchase of the deterministic
channel (fixed service y). Thus, the buyer is willing to spend up to C(0, 0) = q−ε.
(ii) When q(1 − b) > ε, or b < q−ε

q , the quality of the stochastic channel is not

so good that no matter how much is purchased, some deterministic channel (y)
has to be purchased to satisfy the loss constraint. Thus, the buyer is not willing
to spend all of q − ε on the contract. Below we prove the sufficient condition of
the acceptable region when q(1 − b) ≤ ε; other parts of the above theorem can
be done using similar arguments.

1. The buyer accepts the contract (x, p) if x ≤ q−ε
b and p ≤ b.

Proof. We start by letting y = q− ε− xp and show that the IR constraint is
satisfied:

y + xp = q − ε− xp+ xp = q − ε ≤ U(0, 0) .

The loss constraint is satisfied because,

E[(q − y − xB)+] = (q − y − x)+b+ (q − y)+(1− b)

= (ε + xp− x)+b+ (ε + xp)(1 − b)

=

{
(ε + xp)(1− b) ≤ (ε+ b q−ε

b )(1 − b) ≤ ε if ε+ xp− x ≤ 0
ε+ x(p− b) ≤ ε if ε+ xp− x > 0

��
2. The buyer is willing to accept the contract (x, p) if x ≥ q−ε

b and xp ≤
U(0, 0) = q − ε.

Proof. The IR constraint is satisfied when the buyer does not purchase any
y. We next examine whether the quality constraint is satisfied with y = 0.

E[(q − x)+] = (q − x)+b+ q(1− b) ≤ (q − q − ε

b
)+b+ q(1− b)

= (qb− (q − ε))+ + q(1− b) = (ε− q(1 − b))+ + q(1− b)

= (ε− q(1 − b)) + q(1 − b)) = ε ,

where the second to last equality follows from the fact that q(1− b) ≤ ε. ��
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After determining the feasible region of contracts for a given type (q, ε, b), the
seller can choose any point in this region to maximize its utility. We next show
that the optimal contract for the seller is determined by the intersection of the
two boundary lines derived above, which we will denote as (x∗, p∗) throughout
the rest of the paper. Here we assume that there exists a contract with p > c
such that the buyer will accept, for otherwise the seller has no incentive to sell
the stochastic channel.

Theorem 2. The optimal contract is the intersection point of the two lines:

p∗ = b (5)

x∗p∗ =

{
q − ε if q(1− b) ≤ ε

bε
1−b if q(1− b) > ε

(6)

Proof. From the form of the seller’s utility (U(x, p) = x(p− c)), it can be easily
verified that the profit is increasing in p. Using this property and the fact that
we already determined the feasible contracts in Theorem 1, we can show that
the contract pair (x, p) that generates the highest profit for the seller is the
intersection point (x∗, p∗) (as illustrated in Figure 1). ��

Once the seller determines the optimal contract and presents it to the buyer,
the buyer chooses to accept because it satisfies the loss constraint and the IR
constraint. It can be shown that the buyer’s utility is exactly C(0, 0), as we
expected.

The optimal contract for buyer of type (q, ε, b) defined in Theorem 2 can be
written in a compact form in the following theorem.

Theorem 3. The optimal contract (x∗, p∗) of a buyer type (q, ε, b) is given by
(x∗, p∗) = (min( ε

1−b ,
q−ε
b ), b).

Proof. By Theorem 2, when q(1− b) ≤ ε,

q − ε

b
≤

ε
1−b − ε

b
=

ε

1− b

⇒ x∗ =
q − ε

b
= min(

ε

1− b
,
q − ε

b
)

Similarly, when q(1− b) > ε,

q − ε

b
>

ε
1−b − ε

b
=

ε

1− b

⇒ x∗ =
ε

1− b
= min(

ε

1− b
,
q − ε

b
)

��
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We now introduce the concept of an equal-cost line of a buyer, this concept will
be used to find the optimal contract when there are more than one possible type
of buyer. Consider a contract (x′, p′). Denote by P (x′, p′, x) a price such that the
contract (x, P (x′, p′ , x)) has the same cost as contract (x′, p′) to a buyer. This
will be referred to as an equivalent price. Obviously P (x′, p′, x) is a function of
x, x′, and p′.

Definition 1. The equal-cost line E of a buyer of type (q, ε, b) is the set of
contracts within the buyer’s acceptance region T that are of equal cost to the
buyer. Thus (x, p) ∈ E if and only if p = P (x′, p′, x) for some other (x′, p′) ∈ E.
The cost of this line is given by C(x′, p′), ∀(x′, p′) ∈ E.

It should be clear that there are many equal-cost lines, each with a different
cost. Figure 2 shows an example of a set of equal-cost lines. We will therefore
also write an equal-cost line as Ex′,p′ for some (x′, p′) on the line to distinguish
it from other equal-cost lines. The next theorem gives a precise expression for
the equivalent price that characterizes an equal-cost line.
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Fig. 2. Example of equal cost lines

Theorem 4. For a buyer of type (q, ε, b) with an intersection point (x∗, p∗) on
its acceptance region boundary, and given a contract (x′, p′), an equal-cost line
Ex′,p′ consists of all contracts (x, P (x′, p′, x)) such that

P (x′, p′, x) =

⎧⎪⎪⎨
⎪⎪⎩

b− x′
x (b − p′) if x, x′ ≤ x∗

x′p′/x if x, x′ ≥ x∗

(b(x∗ − x′) + x′p′)/x if x′ < x∗ < x
b− (x∗b− x′p′)/x if x < x∗ < x′

Proof. We will prove this for the case q(1− b) ≤ ε; the other case can be shown
with similar arguments and is thus omitted for brevity. In this case x∗ = q−ε

b .
When x, x′ ≤ x∗, without buying deterministic service the loss is given by

E[(q − xB)+] = (q − x)+b+ q(1− b)

= (q − x)b + q(1− b) = q − xb ≥ ε,
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where the second equality is due to the fact that q(1− b) ≤ ε ⇒ q−ε
b ≤ q ⇒ x ≤

q−ε
b ≤ q. The incentive for the buyer is to purchase y such that the loss is just

equal to ε.

E[(q − y − xB)+] = (q − y − x)b + (q − y)(1− b)

= q − y − xb = ε .

The first equality follows from the fact that q(1 − b) ≤ ε, which implies both
(q − y − x) ≥ 0 and (q − y) ≥ 0. This is true for both (x, p) and (x′, p′). Since
(x, p) is on the equal cost line Ex′,p′ , we know that C(x, p) = C(x′, p′). We also
know that C(x, p) = y + xp and C(x′, p′) = y′ + x′p′,

C(x, p) = q − ε− xb+ xp = q − ε− x′b+ x′p′ = C(x′, p′) .

Rearranging the second equality such that p is a function of x, x′, p′ immediately
gives the result. When x, x′ > x∗, x (x′) alone is sufficient to achieve the loss
constraint. For C(x, p) = C(x′, p′) we must have x′p′ = xp, resulting in the
second branch. The third and fourth branch can be directly derived from the
first two branches. When x > x∗ > x′ (x′ > x∗ < x), we first find the equivalent
price at x∗ by the first branch (second branch), and then use the second branch
(first branch) to find P (x′, p′, x). This gives the third branch (fourth branch) ��

Note that every contract below an equal-cost line is strictly preferable to a
contract on the line for the buyer.

4 Contract under Asymmetric Information

We now turn to the case where parameters (q, b, ε) are private information of
the buyer. The seller no longer knows the exact type of the buyer but only
what types are out there and their distribution; consequently it has to guess the
buyer’s type and design the contract in a way that maximizes its expected payoff.
In order to do so, the seller can design a specific contract for each type so that
the buyers will reveal their true types. Specifically, when the buyer distributes a
set of contracts C = {(x1, p1), (x2, p2)......(xK , pK)} specially designed for each
of the K types, a buyer of type i will select (xi, pi) only if the following set of
equations is satisfied:

Ci(xi, pi) ≤ Ci(xj , pj) ∀j 	= i ,

where Ci denotes the cost of a type i buyer. In other words, the contract designed
for one specific type of buyer, must be as good as any other contract from the
buyer’s point of view. Let Ri(C) denote the contract that a type i buyer will
select given a set of contract C. Then,

Ri(C) = argmin
(x,p)∈C

Ci(x, p) .
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Given a set of contracts C, we can now express the seller’s expected utility as

E[U(C)] :=
∑
i

U(Ri(C))ri

where ri is the a priori probability that the buyer is of type i. We further denote
the set Ti = {(x, p) : Ci(x, p) ≤ Ci(0, 0)} as the set of all feasible contracts for
type i buyer (feasible region in Theorem 1). The optimal contract (Theorem 2)
designed for the type-i buyer, will also be called maxi:

maxi := (x∗
i , p

∗
i )

:= argmax
(x,p)∈Ti

U(x, p)

4.1 Two Types of Buyer, K=2

We first consider the case when there are only two possible types of buyer
(qi, εi, bi), i ∈ {1, 2}, with probability ri, r1 + r2 = 1.
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M = 1. We first consider the case when the seller hands out only one contract.

Theorem 5. The optimal contract is as follows,

– if max1 /∈ T2 and max2 /∈ T1,

optimal =

⎧⎨
⎩

max1 if r1U(max1) ≥ r2U(max2) and r1U(max1) ≥ U(G)
max2 if r2U(max2) ≥ r1U(max1) and r2U(max2) ≥ U(G)
G if U(G) ≥ r2U(max2) and U(G) ≥ r1U(max1)

– if max1 ∈ T2.

optimal =

{
max1 if U(max1) ≥ r2U(max2)
max2 if r2U(max2) ≥ U(max1)
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– if max2 ∈ T1.

optimal =

{
max2 if U(max2) ≥ r1U(max1)
max1 if r1U(max1) ≥ U(max2)

When max1 /∈ T2 and max2 /∈ T1, we denote the intersecting point of the two
boundaries (of the accepting region of the two types) as G (see Figure 3 (left)).
Theorem 5 can be proved by showing that the payoffs of contracts in a particular
region are no greater than special points such as G. For example, in the case of
max1 /∈ T2 and max2 /∈ T1 any point in I3 is suboptimal to point G because
they are both acceptable by both types of buyers and G has a strictly higher
profit than any other point in I3.

M = 2, max1 /∈ T2 and max2 /∈ T1. The seller can hand out at most
two contracts for the buyer to choose from. We will see that providing multiple
contracts can help the seller obtain higher profits.

Theorem 6. The set {max1,max2} is the optimal set of contracts.

Proof. The set C = {max1,max2} gives an expected payoff of

E[U(C)] = r1U(R1(C)) + r2U(R2(C))) = r1U(R1(max1)) + r2U(R2(max2))

The last equality holds because max1 /∈ T2 and max2 /∈ T1 and both types
choose the maxi intended for them. If C is not the optimal set, then there must
exist some contract set C′ = {(x1, p1), (x2, p2)} such that

E[U((C′))] = r1U(R1(x1, p1)) + r2U(R2(x2, p2))

> E[U(C)] = r1U(R1(max1)) + r2U(R2(max2))

This has to mean either U(R1(x1, p1)) > U(R1(max1)), or U(R2(x2, p2)) >
U(R2(max2)), or both, all of which contradict the definition of maxi. Thus,
{max1,max2} is the optimal contract set. ��

M = 2, max1 ∈ T2 or max2 ∈ T1. The seller can hand out at most two
contracts.

Obviously, the seller cannot hand out the same contract C = {max1,max2}
as in the previous section and claim that it is optimal. Without loss of genrality,
we will assume that the type-1 buyer has a smaller b1 (b1 ≤ b2), thus, we are
considering the max1 ∈ T2 case. We will first determine the optimal contract
when x∗

1 ≤ x∗
2, the optimal contract when x∗

1 > x∗
2 can be determined based

on the results of the first case. To find the optimal contract set, we consider
only the contract pairs {(x1, p1), (x2, p2)} where each type-i buyer pick (xi, pi)
instead of the other one. It is quite simple to show that we do not lose optimality
by restricting to this type of contract sets.

To find the optimal contract, we will 1) first show that for each (x1, p1) we
can express the optimal (x2, p2) in terms of x1 and p1; 2) then we will show that
(x1, p1) must be on the boundary of T1 with x1 ≤ x∗

1; 3) using 1) and 2) we can
calculate the expected profit by a simpler optimization problem.
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Lemma 1. In the K = 2 case, if max1 ∈ T2 and x∗
1 ≤ x∗

2. Given a contract for
type-1 (x1, p1), the optimal contract for type-2 must be (x∗

2, P2(x1, p1, x
∗
2)).

Proof. Given a contract (x1, p1), the feasible region for the contract of type-2
buyer is the area below P2(x1, p1, x) as defined in Theorem 4 (see Figure 4).
By noticing that the form of the seller’s profit is increasing in both p and x
(U(x, p) = x(p− c)), the contract that generates the highest profit will be such
that x2 = x∗

2 and p2 =, P2(x1, p1, x
∗
2). ��

Lemma 2. In the K = 2 case, if max1 ∈ T2 and x∗
1 ≤ x∗

2. An optimal contract
for type-1 must be p1 = b1 and x1 ≤ x∗

1.

Proof. Lemma 2 can be proved in two steps. First we assume the optimal con-
tract has (x1, p1) ∈ T1, where we can increase p1 by some positive δ > 0 but
still have (x1, p1 + δ) ∈ T1. By noticing that both U(x, p) and P (x, p, x′) are
increasing in p. We know that both U(x1, p1 + δ) and U(x∗

2, P2(x1, p1 + δ, x∗
2)))

are strictly larger than U(x1, p1) and U(x∗
2, P2(x1, p1, x

∗
2))). This contradicts the

assumption that it was optimal before, thus, we know that the optimal contract
for (x1, p1) must be on the two lines (the upper boundary of T1) defined in The-
orem 2. Then we can exclude the possibility of having (x1, p1) on the boundary
of T1 with x1 > x∗

1 by comparing the contract (x∗
1, b1) with such a contract. ��
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Fig. 4. The regions to distinguish type-2 given (x1, p1)

By putting the constraints from Lemmas 1, 2 and using Theorem 4, the expected
profit can be expressed as follows.

E[U(C)] = r1U(x1, p1) + r2U(x2, p2)

= r1U(x1, p1) + r2U(x2, P2(x1, p1, x
∗
2))

= r1U(x1, b1) + r2U(x∗
2, b2 −

x1

x∗
2

(b2 − b1))

= r1x1(b1 − c) + r2x
∗
2(b2 −

x1

x∗
2

(b2 − b1)− c)

∂E[U(C)]

∂x1
= r1(b1 − c)− r2(b2 − b1)
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The x1 acheiving the optimal contract C is given by,

x1 =

{
0 if r1(b1 − c)− r2(b2 − b1) < 0
x∗
1 if r1(b1 − c)− r2(b2 − b1) > 0

C =

{
max2 if r1(b1 − c)− r2(b2 − b1) < 0

max1, (x
∗
2, b2 − x∗

1

x∗
2
(b2 − b1)) if r1(b1 − c)− r2(b2 − b1) > 0

This result shows two different conditions: 1) When r1
r2

< b2−b1
b1−c , type-2 is more

profitable and the seller will distribute max2. If the seller chooses to distribute
max2, there is no way to distribute another contract for type-1 without affecting
the behavior of type-2. Consequently, the seller only distributes one contract. 2)
When r1

r2
> b2−b1

b1−c , type-1 is more profitable and the seller will distribute max1.

After choosing max1, the seller can also choose (x∗
2, b2 − x∗

1

x∗
2
(b2 − b1)) for the

type-2 buyer without affecting the type-1 buyer’s choice. As a result, the seller
distributes a pair of contracts to get the most profit.

With a very similar argument, the optimal contract for x∗
1 > x∗

2 can be
determined. Again, we can prove that the optimal contract must have p1 =
b1 and x1 ≤ x∗

1. The difference is that when x∗
1 > x∗

2, the expression for
(x∗

2, P2(x1, p1, x
∗
2)) has two cases depending on whether x1 > x∗

2 or x1 ≤ x∗
2.

E[U(C)] =

{
r1U(x1, b1) + r2U(x∗

2, b2 − x1

x∗
2
(b2 − b1)) if x1 ≤ x∗

2

r1U(x1, b1) + r2U(x∗
2,

x1b1
x∗
2
) if x1 > x∗

2

∂E[U(C)]

∂x1
=

{
r1(b1 − c)− r2(b2 − b1) if x1 ≤ x∗

2

r1(b1 − c) + r2b1 if x1 > x∗
2

To summarize, when r1(b1−c)−r2(b2−b1) > 0, E[R(C)] is strictly increasing in
x1 and we know that x1 = x∗

1 maximizes the expected profit. When r1(b1 − c)−
r2(b2 − b1) < 0, E[R(C)] is decreasing in x1 if x1 ∈ [0, x∗

2] and increasing in x1

if x1 ∈ [x∗
2, x

∗
1]. We can only conclude that either x1 = 0 or x1 = x∗

1 maximizes
the expected profit.

x1 =

{
0 or x∗

1 if r1(b1 − c)− r2(b2 − b1) < 0
x∗
1 if r1(b1 − c)− r2(b2 − b1) > 0

C =

{
max2 or {max1, (x

∗
2,

x∗
1b1
x∗
2
)} if r1(b1 − c)− r2(b2 − b1) < 0

{max1, (x
∗
2,

x∗
1b1
x∗
2
)} if r1(b1 − c)− r2(b2 − b1) > 0

In the first condition, we can calculate the expected profit of the two contract
sets and pick the one with the higher profit.

4.2 K Types of Buyer, K ≥ 2, Common bi

In this section we consider the case when different types share the same channel
condition bi = b, ∀i = 1, · · · ,K, which is also known to the seller. This models
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the case where the condition is largely determined by the seller’s primary user
traffic. An example of the acceptance regions of three buyer types are shown
in Figure 5. We will assume that the indexing of the buyer is in the increasing
order of x∗

i ; this can always be done by relabeling the buyer indices. There are
two possible cases: (1) the seller can announce as many contracts as it likes,
i.e., M = K (note that there is no point in designing more contracts than there
are types); (2) the seller is limited to at most M < K contracts. In the results
presented below we fully characterize the optimal contract set in both cases.
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Theorem 7. When M = K and ∀bi = b, the contract set that maximizes the
seller’s profit is (max1,max2, ...,maxK).

This result holds for the following reason. As shown in Figure 5, with a constant
b, the intersection points (maxi) of all acceptance regions are on the same line
p = b. For a buyer of type i, all points to the left ofmaxi on this line cost the same
as maxi, and all points to its right are outside the buyer’s acceptance region.
Therefore the type-i buyer will select the contract maxi given this contract set.
Since this is the best the seller can do with a type-i buyer (see Theorem 4) this
set is optimal for the seller. (see proof of Theorem 6)

Lemma 3. When M < K and ∀bi = b, the optimal contract set is a subset of
(max1, ...,maxK).

Proof. Assume the optimal contract C is not a subset of (max1, ...,maxK). Then
it must consists of some contract points from at least one of the Ii regions as
demonstrated in Figure 5. Let these contracts be Ai ⊂ Ii and

⋃
i Ai = C. For

each non-empty Ai, we replace it by the contractmaxi and call this new contract
set C′. The proof is to show that this contract set generates profit at least as large
as the original one. For each type-i buyer that picked some contract (x, p) ∈ Aj

from the optimal contract C, it must had a type greater than or equal to j
otherwise (x, p) is not in its acceptance region. In the contract set C′, type-i will
now pick maxj or maxl with l > j. The choice of each possible type of buyer
picks from C′ is at least as profitable as the one they picked from C. Thus, the
expected profit of C′ is at least as good as C. ��
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The above lemma suggests the following iterative way of finding the optimal
contract set.

Definition 2. Define function g(m, i) as the the maximum expected profit for
the seller by picking contract maxi and selecting optimally m− 1 contracts from
the set (maxi+1, ...,maxK).

Note that if we include maxi and maxj (i < j) in the contract set but nothing
else in between i and j, then a buyer of type l (i ≤ l < j) will pick contractmaxi.

These types contribute to an expected profit of x∗
i (b − c)

∑j−1
l=i rl. At the same

time, no types below i will select maxi (as it is outside their acceptance regions),
and no types at or above j will select maxi (as for them maxj is preferable).

Thus the function g(m, i) can be recursively obtained as follows:

g(m, i) = max
j:i<j≤K−m+2

g(m− 1, j) + x∗
i (b − c)

j−1∑
l=i

rl,

with the boundary condition g(1, i) = x∗
i (b− c)

∑K
l=i rl.

Finally, it should be clear that the maximum expected profit for the seller
is given by max1≤i≤K g(M, i), and the optimal contract set can be determined
by going backwards: first determine i∗M = argmax1≤i≤K g(M, i), then i∗M−1 =
argmax1≤i≤K−1 g(M − 1, i), and so on.

Theorem 8. The set of contracts {maxi∗1 ,maxi∗2 , · · · ,maxi∗M } obtained using
the above procedure is optimal and its expected profit is given by g(M, i∗M ).

5 Conclusion

In this paper we considered a contract design problem where a primary license
holder wishes to profit from its excess spectrum capacity by selling it to potential
secondary users/buyers via designing a set of profitable contracts. We considered
two cases. Under symmetric information, we found the optimal contract that
achieves maximum profit for the primary user. Under asymmetric information,
we found the optimal contract if the buyer belongs to one of two types. When
there are more than two types we restricted our attention to the case where the
channel condition is common to all types, and presented an optimal procedure
to design the contracts.
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