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Abstract. Traditionally, most consumers of electricity pay for their con-
sumptions according to a fixed rate. With the advancement of Smart
Grid technologies, large-scale implementation of variable-rate metering
becomes more practical. As a result, consumers will be able to control
their electricity consumption in an automated fashion, where one pos-
sible scheme is to have each individual maximize its own utility as a
noncooperative game. In this paper, noncooperative games are formu-
lated among the electricity consumers in Smart Grid with two real-time
pricing schemes, where the Nash equilibrium operation points are investi-
gated for their uniqueness and load balancing properties. The first pricing
scheme charges a price according to the average cost of electricity borne
by the retailer and the second one charges according to a time-variant
increasing-block price, where for each scheme, a zero-revenue model and
a constant-rate revenue model are considered. The Nash equilibrium is
shown to exist for four different combined cases corresponding to the two
pricing schemes and the two revenue models, and is unique for three of
the cases under certain conditions. It is further shown that both pric-
ing schemes lead to similar electricity loading patterns when consumers
are only interested in minimizing the electricity costs without any other
profit considerations. Finally, the conditions under which the increasing-
block pricing scheme is preferred over the average-cost based pricing
scheme are discussed.

Keywords: Game Theory, Noncooperative Game, Nash Equilibrium,
Smart Grid, Real Time Pricing, Increasing-Block Pricing.

1 Introduction

In the traditional power market, electricity consumers usually pay a fixed retail
price for their electricity usage. This price only changes on a seasonal or yearly
basis. However, it has been long recognized in the economics community that
charging consumers a flat rate for electricity creates allocative inefficiencies, i.e.,
consumers do not pay equilibrium prices according to their consumption levels
[1]. This was shown through an example in [2], which illustrates how flat pricing
causes deadweight loss at off-peak times and excessive demand at the peak times.
The latter may lead to small-scale blackouts in a short run and excessive capacity
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buildup over a long run. As a solution, variable-rate metering that reflects the
real-time cost of power generation can be used to influence consumers to defer
their power consumption away from the peak times. The reduced peak-load can
significantly reduce the need for expensive backup generation during peak times
and excessive generation capacity.

The main technical hurdle in implementing real-time pricing has been the
lack of cost-effective two-way smart metering, which can communicate real-time
prices to consumers and their consumption levels back to the energy provider.
In addition, the claim of social benefits from real-time pricing also assumes that
the consumer demand is elastic and responds to price changes while traditional
consumers do not possess the equipments that enable them to quickly alter their
demands according to the changing power prices. Significant research efforts
on real-time pricing have involved estimating the consumer demand elasticity
and the level of benefits that real time pricing can achieve [1, 3, 4]. Fortunately,
the above requirements on smart metering and consumer adaptability are being
fulfilled [5] as technology advances in cyber-enabled metering, power generation,
power storage, and manufaturing automation, which is driven by the need for a
Smart Grid.

Such real-time pricing dynamics have been studied in the literature mainly
with game theory [6–8]. In particular, the authors in [6] provided a design mech-
anism with revelation principle to determine the optimal amount of incentive
that is needed for the customers to be willing to enter a contract with the utility
and accept power curtailment during peak periods. However, they only consid-
ered a fixed pricing scheme. In [7], the authors studied games among consumers
under a certain class of demand profiles at a price that is a function of day long
aggregate cost of global electricity load of all consumers. However, the case with
real-time prices was not investigated in [7]. In [8], a noncooperative game was
studied to tackle the real-time pricing problem, where the solution was obtained
by exploring the relationship with the congestion games and potential games.
However, the pricing schemes that we study are not amenable to transformations
described in [8].

In this paper we formulate noncooperative games [9,10] among the consumers
with two real-time pricing schemes under more general load profiles and revenue
models. The first pricing scheme charges a price according to the instantaneous
average cost of electricity production and the second one charges according to
a time-varying version of increasing-block price [11]. We investigate consumer
demands at the Nash equilibrium operation points for their uniqueness and load
balancing properties. Furthermore, two revenue models are considered for each
of the schemes, and we show that both pricing schemes lead to similar electricity
loading patterns when consumers are interested only in the minimization of
electricity costs. Finally we discuss the conditions under which the increasing-
block pricing scheme is preferred over the average-cost based pricing scheme.

The rest of the paper is organized as follows. The system model and for-
mulation of the noncooperative game are presented in Section 2. The game is
analyzed with different real-time pricing schemes under different revenue models
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in Sections 3 and 4, where the Nash equilibrium properties are investigated. We
conclude the paper in Section 5.

2 System Model and Game Formulation

2.1 System Model

We study the transaction of energy between a single electricity retailer and mul-
tiple consumers. In each given time slot, each consumer has a demand for electric
energy (measured in Watt-hour, Wh). The job of the retailer is to satisfy de-
mands from all the consumers. The electricity supply of the retailer is purchased
from a variety of sources over a wholesale electricity market and the retailer
may possess some generation capacity as well. These sources may use different
technologies and fuels to generate electricity, which leads to different marginal
costs of electricity at the retailer, where the marginal cost is the incremental
cost incurred to produce an additional unit of output [12]. Mathematically, the
marginal cost function is expressed as the first derivative of the total cost func-
tion. Examples of the marginal cost function and the corresponding total cost
are presented in Fig. 1(a) and Fig. 1(b), respectively, which are based on real
world data from the wholesale electricity market [3]. Naturally, the retailer at-
tempts to satisfy demands by procuring the cheapest source first. This results
in a non-decreasing marginal cost of the supply curve, as illustrated through
the example in Fig. 1(a). The retailer charges each consumer a certain price for
its consumption in order to cover the cost, where the sum payments by all the
consumers should be enough to cover the total cost and certain profit margin
set by the retailer or regulatory body. In our model we assume that all these are
incorporated within the marginal cost of electricity.

While the retailer aims to procure sufficient supply to meet the sum demand of
its consumers in each time slot, in reality, the supply is limited by the generation
capacity available in the wholesale electricity market. Thus, the maximum sum
load that the retailer can service bears an upper limit and we model this capacity
limit by setting the marginal cost of electricity to infinity when the sum load
exceeds a predetermined threshold. Each consumer has an energy demand in
each time slot and it pays the retailer at a price that is set by the retailer such
that, in each time slot, the sum of payments made by all consumers meets the
total cost in that slot. As such, a particular consumer’s share of this bill depends
on the retailer’s pricing scheme, which is a function of the demands from all
the consumers. Accordingly, as the total load varies over time, each consumer
operates over a time-variant price with time-slotted granularity. We assume that
each consumer has a total demand for electricity over each day1, which can be
distributed throughout the day in a time-slotted manner, to maximize certain
utility function. Next, we model such individual load balancing behaviors as a
noncooperative game.

1 Here we adopt one day as an operation period that contains a certain number of
time slots. Obviously, such a choice has no impact on the analytical results in this
paper.
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Fig. 1. A hypothetical marginal cost of supply and the corresponding total cost curve
as seen by the retailer in the wholesale market within a single time slot. Supply is from
five different sources: hydroelectric, nuclear, coal, natural gas, and oil. Two different
generators may use different technologies for power generation thus incurring different
marginal costs with the same fuel (e.g., the two different cost levels for oil in Fig. 1(a)).

2.2 Noncooperative Load Balancing Game

The noncooperative game between these consumers is formulated as follows.
Consider a group ofN consumers, who submit their daily demands to a retailer in
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a time-slotted pattern at the beginning of the day (which contains T time slots).
These consumers are selfish and aim to maximize their individual utility/payoff
functions; hence they do not cooperate with each other to manage their demands.
Each consumer i has a minimum total daily requirement of energy, βi ≥ 0, which
is split over the T time slots. Let xi

t denote the ith consumer’s demand in the tth
time slot. A consumer can demand any value xi

t ≥ 0 (negativity constraint) with∑
t x

i
t ≥ βi (demand constraint). Let xi = {xi

1, x
i
2, . . . , x

i
t, . . . , x

i
T }, represent the

ith consumer’s demand vector, which is called the strategy for the ith consumer.
Let xt = {x1

t , . . . , x
N
t }, represent the demand vector from all consumers in time

slot t with xt =
∑

i x
i
t. Let x represent the set {x1, . . . ,xN}.

The payoff or utility for consumer i is denoted by πi which is the difference
between the total revenue it generates from the purchased electricity and its
cost. In particular, let Ei

t , a function of xi
t, represent the revenue generated by

the ith consumer in the tth time slot and M i
t , a function of xt, represent its

payment to the retailer for purchasing xi
t. Then the payoff πi, to be maximized

by consumer i, is given by

πi =
∑

t∈{1,...,T}

(
Ei

t −M i
t

)
.

Since M i
t is a function of xt, we see that the consumer payoff is influenced by

its load balancing strategy and those of other consumers.
We consider the problem of maximizing the payoff at each consumer by de-

signing the distributed load balancing strategy xi’s, under two real-time pricing
schemes set by the retailer. The first one is the average-cost based pricing scheme
and the second one is the increasing-block pricing scheme. Specifically, for the
first scheme the retailer charges the consumers the average cost of electricity
procurement that is only dependent on the sum demands, xt, from all the con-
sumers. For the second scheme, the retailer charges according to a marginal cost
function that depends on the vector of demands from all consumers, xt.

Let C(x) represent the cost of x units of electricity, to the retailer, from the
wholesale market (an example function is plotted in Fig. 1(b)). Then under the
average-cost based pricing, the price per unit charged to the consumers is given
by

A(xt) = C(xt)/xt, (1)

and at time t consumer i pays

M i
t = xi

tA(xt) (2)

for consuming xi
t units of electricity. It is easy to see that

∑
iM

i
t = C(xt), i.e.,

with average-cost based pricing the total payment made by the consumers covers
the total cost to the retailer. Note that C′(xt) gives the marginal cost function
in the wholesale market, henceforth denoted by C(xt) = C′(xt) in the context of
increasing-block pricing (an example marginal cost curve is plotted in Fig. 1(a)).
For reasons we discussed earlier, in the context of electricity market, the marginal
cost C(xt) is always non-negative and non-decreasing such that C(xt) is always
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positive, non-decreasing, and convex. Briefly, we note that as the retailer capacity
is constrained by a predetermined upper limit U , we model this constraint as
C(xt) = ∞, ∀xt > U ; obviously xi

t ≤ U is an implicit constraint on the demand
xi
t for any rational consumer.
The second scheme is a time-variant version of the increasing-block pric-

ing scheme [11]. With a typical increasing-block pricing scheme, consumer i
is charged a certain rate b1 for its first z1 units consumed, then charged rate
b2 (> b1) for additional z2 units, and charged rate b3 (> b2) for additional z3
units, and so on. The b’s and z’s describe the marginal cost price for the com-
modity. In our scheme we design a marginal cost function, which retains the
increasing nature of increasing-block pricing, such that it depends on xt and the
function C(·). Consumer i pays an amount determined by the marginal cost func-
tion M(x,xt), applicable to all consumers at time slot t. In particular consumer
i pays

M i
t =

∫ xi
t

0

M(x,xt)dx (3)

for consuming xi
t units of electricity where M(·) is chosen as

M(x,xt) = C
⎛

⎝
∑

j

min (x, xj
t )

⎞

⎠ ,

such that
∑

iM
i
t = C(xt) is satisfied. An intuition behind this pricing scheme

is to penalize consumers with relatively larger demands. Note that in this case,
xi
t ≤ U is implicitly assumed by letting C(·) = ∞ ∀xi

t > U and hence M i
t =

∞ ∀xi
t > U .

For each of the two pricing schemes, we study two different revenue models.
For the first one we set Ei

t as zero for all consumers over all time slots, which
leads to payoff maximization being the same as cost minimization from the point
of view of the consumers. For the second one we assign consumer i a constant
revenue rate φi

t at each time slot t, which gives Ei
t = φi

tx
i
t and leads to payoff

maximization being the same as profit maximization.

3 Nash Equilibrium with Average-Cost Pricing

For the average-cost pricing, the payment to the retailer in slot t by consumer i
is given by (2).

3.1 Zero-Revenue Model

In this case the revenue is set to zero as Ei
t = 0, which results in payoff maxi-

mization being the same as cost minimization for each consumer. Specifically, the
payoff for consumer i is given by πi = −∑

t M
i
t . The consumer load balancing
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problem for consumer i, for i = 1, . . . , N , is given by the following optimization
problem:

maximize πi(xi) = −
∑

t

M i
t

subject to M i
t = xi

tA(xt), ∀t,
∑

t

xi
t ≥ βi,

xt =
∑

j

xj
t , ∀t,

0 ≤ xi
t, ∀t.

As cost to the retailer becomes infinity whenever the total demand goes beyond
the capacity threshold for the wholesale market, i.e., when C(xt) = ∞ ∀xt > U ,
the price to consumers will become infinite and their payoff will go to negative
infinity. Thus any consumer facing an infinite cost at a particular time slot
can manipulate the demand vector such that the cost becomes finite, which is
always feasible under the assumption that sum load demand over all times slots
is less than sum supply availability. This implies that, at Nash equilibrium, sum
demand xt will be less than the capacity threshold U, ∀t, which allows for a
redundant constraint xi

t ≤ U, ∀i, t, as xi
t ≤

∑
i x

i
t = xt ≤ U . Such a redundant

but explicit constraint in turn makes the feasible region for x, denoted by X ,
finite and hence compact. The compactness property is utilized to prove the
Kakutani’s theorem [13] which in turn is required to show the existence of NEP
solution.

By the results in [14] we can show that there exists an NEP strategy for all
agents with the cost function used here and the NEP solution exists for the
proposed noncooperative consumer load balancing game.

On the other hand, the cost function M i
t does not satisfy the conditions for

being a type-A function, defined in [14]. Therefore, the corresponding uniqueness
result in [14] cannot be extended to our formulation. In [15] we show that our
problem is equivalent to an atomic flow game [16] with splittable flows and
different player types (i.e., each player controls a different amount of total flow)
over a generalized nearly-parallel graph, which has strictly semi-convex, non-
negative, and non-decreasing functions for cost per unit flow. By the results
of [16], we can prove that the NEP solution for the load balancing game is
unique [15].

In the following, we discuss the properties for the unique NEP solution for
the proposed load balancing game.

Lemma 1. With the average-cost based pricing and zero revenue, at the Nash
equilibrium the price of electricity faced by all consumers is the same over all
time slots.

The proof is provided in [15].
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Lemma 2. If C(·) is strictly convex, at the Nash equilibrium, the sum of de-
mands on the system, xt, keeps the same across different time slots.

The proof is provided in [15].

Lemma 3. If C(·) is strictly convex, at Nash equilibrium, each consumer will
distribute its demands equally over the T time slots.

The proof is provided in [15].

Remark: Under the average-cost based pricing scheme with zero revenue, if
one particular consumer increases its total demand of electricity, the price A(·)
increases, which in turn increases the payments for all other consumers as well.
Theoretically one consumer may cause indefinite increases in the payments of
all others; and in this sense this scheme does not protect the group from reckless
action of some consumer(s). This issue will be addressed by our second pricing
scheme as we will show in Section 4.

3.2 Constant-Rate Revenue Model

In this case, the rate of revenue generation for each consumer at each time slot
is taken as a non-negative constant φi

t. Thus, E
i
t = φi

t × xi
t. The consumer load

balancing problem for each consumer i is given by the following optimization
problem:

maximize πi(xi) =
∑

t

(
Ei

t −M i
t

)

subject to Ei
t = φi

tx
i
t, ∀t,

M i
t = xi

tA(xt), ∀t,
∑

t

xi
t ≥ βi,

xt =
∑

j

xj
t , ∀t,

0 ≤ xi
t, ∀t.

We assume that βi = 0, ∀i, and the rate of revenue is larger than the price of
electricity such that we do not end up with any negative payoff or the trivial
solution xi

t = 0, ∀i, t.
Here again, if the sum demand in a given time slot t exceeds the retailer’s

capacity threshold U , the consumers will face an infinite price for their con-
sumption. This implies that, at Nash equilibrium the sum demand xt will never
exceed the capacity threshold U , as we assume that sum load demand over all
time slots is greater that sum load available. This again allows for the redun-
dant constraint xi

t ≤ U, ∀i, t, as xi
t ≤

∑
i x

i
t = xt ≤ U , which in turn makes the

feasible region for x, X , finite and hence compact.
The proof for the existence of NEP for this game under the given assumptions

is provided in [15].
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Lemma 4. At the Nash equilibrium, the consumer(s) with the highest revenue
rate (φi

t) within the time slot, may be the only one(s) buying the power in that
time slot.

The proof is provided in [15]. Thus if consumer i has the maximum rate of
revenue, either it is the only consumer buying non-zero power xi

t such that
φi
t = A(xi

t) or φi
t < C′(0) and hence xi

t = 0 in that time slot, which leads to
a unique Nash equilibrium for the sub-game. If in a given time slot multiple
consumers experience the same maximum rate of revenue, the sub-game will
turn into a Nash Demand Game [17] between the set of consumers given by
{argmaxk φ

k
t }, which is well known to admit multiple Nash equilibriums. Thus

the overall noncooperative game has a unique Nash equilibrium if and only if, in
each time slot, at most one consumer experiences the maximum rate of revenue.

4 Nash Equilibrium with Increasing-Block Pricing

In this section we study the load balancing game with the time-variant increasing-
block pricing scheme. Under this scheme consumer i pays M i

t for xi
t units of

electricity, which is given by (3) with M(x,xt) the marginal cost function posed
to the consumer. Thus, as defined before, we have

M(x,xt) = C
⎛

⎝
∑

j

min (x, xj
t )

⎞

⎠ .

As an example, if the demands from different consumers at time slot t are iden-
tical, i.e., if xi

t = xj
t , ∀i, j, we have,

M(x,xt) = C(Nx).

4.1 Zero-Revenue Model

In this case the payment by consumer i is given by (3)

M i
t =

∫ xi
t

0

M(x,xt)dx.

The consumer load balancing problem for each consumer i is given by the fol-
lowing optimization problem:

maximize πi(xi) = −
∑

t

M i
t

subject to M i
t =

∫ xi
t

0

M(x,xt)dx, ∀t,
∑

t

xi
t ≥ βi,

0 ≤ xi
t, ∀t.
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If the sum demand xt in a time slot t exceeds U , the price of electricity for the
consumer with the highest demand (indexed by ĵ) becomes infinite. As we retain
the assumption that sum load demand over all time slots is greater that sum
load available, consumer ĵ can rearrange its demand vector such that either the
sum demand becomes within the capacity threshold or consumer ĵ is no longer
the highest demand consumer (then the new customer with the highest demand
performs the same routine until the sum demand is under the threshold). This
implies that, at the Nash equilibrium point we have xt ≤ U . Similarly, we now
have the redundant constraint xi

t ≤ U, ∀ i, t, which in turn makes the feasible
region X finite and hence compact.

The proof for the existence of NEP for this game under the given assumptions
is provided in [15]. When each consumer tries to minimize its total cost while
satisfying its minimum daily energy requirement βi, we have the following result.

Lemma 5. If C(·) is strictly convex, the Nash equilibrium is unique and each
consumer distributes its demand uniformly over all time slots.

The proof is provided in [15].

Remark: Notice that under the zero-revenue model, the NEP point is the same
with both increasing-block pricing and average-cost based pricing. For both the
cases, at NEP, we have xi

t = βi/T, ∀i, t. However, even though the loading pat-
tern is similar, the payments M i

t made by the consumers will differ and, with
increasing-block pricing, will likely be lesser for consumers with relatively lower
consumption. In addition, with increasing-block pricing, the maximum payment
M i

t made by the ith consumer given xi
t demand will be C(Nxi

t)/N , irrespective
of what other consumers demand and consume. Thus this addresses the issue
faced under the average-cost based pricing and zero-revenue model, in which one
consumer can increase their demand indefinitely and cause indefinite increase in
the payments of all other consumers.

4.2 Constant-Rate Revenue Model

The consumer load balancing problem for consumer i is given by the following
optimization problem:

maximize πi(xi) =
∑

t

(
Ei

t −M i
t

)

subject to Ei
t = φi

tx
i
t, ∀t,

M i
t =

∫ xi
t

0

M(x,xt)dx, ∀t,
∑

t

xi
t ≥ βi,

0 ≤ xi
t, ∀t.
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Here again, we assume βi = 0, ∀i, to avoid any negative payoffs and we could
agree for the redundant constraint xi

t ≤ U, ∀ i, t, which in turn makes the
feasible region for X finite and hence compact.

The proof for the existence of NEP for this game under the given assump-
tions is provided in [15]. With the average-cost based pricing scheme under the
constant-rate revenue model, we see that in a given time slot, if a single con-
sumer enjoys the maximum rate of revenue, it will be the only consumer who
is able to purchase power. We show here that with the increasing-block pricing
scheme under constant-rate revenue model, the result is different.

For a given time slot t, consumer i has an incentive to increase their demand
xi
t as long as the payoff increases, i.e., ∂πi/∂xi

t > 0. Therefore at the equilibrium
the following holds for all consumers:

∂πi

∂xi
t

≤ 0

⇒ φi
t ≤

∂M i
t

∂xi
t

= M(xi
t,xt).

(4)

Additionally, if φi
t < M(xi

t,xt), J
i
t can be reduced by reducing xi

t. This implies
that if xi

t > 0, at the equilibrium we have

φi
t ≥ M(xi

t,xt). (5)

Rate of Revenue φi
t ($/MWh)
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Fig. 2. Demand xi
t versus the rate of revenue (φi

t) at equilibrium. Each dot represents
a particular consumer i = {1, . . . , 100}.
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Thus (4) and (5) together imply that, if xi
t > 0, we have φi

t = M(xi
t,xt). Together

we can write the following set of necessary conditions for equilibrium,

φi
t = M(xi

t,xt) if φ
i
t ≥ M(0,xt),

xi
t = 0 if φi

t < M(0,xt).
(6)

For illustration, we simulate a scenario consisting of 100 consumers, who have
their rate of revenue φi

t generated from a uniform distribution ranging over
$0−$100/MWh, where the marginal cost to the retailer C(·) is given by Fig. 1(a).
In Fig. 2 we plot the demand xi

t versus the rate of revenue (φi
t) at a given time

slot t, where xi
t is evaluated over i = {1, . . . , 100}. The equilibrium is obtained

by iterative updates of M(·) and xt until convergence within an error tolerance
as in (6).

Thus, unlike with the average-cost pricing, where only the consumer with
the maximum rate of revenue could purchase electricity at the equilibrium, any
consumer may procure a non-zero amount of energy as long as its own rate of
revenue is larger than M(0,xt).

5 Conclusion

In this paper we formulated noncooperative games among the consumers of
Smart Grid with two real-time pricing schemes to derive autonomous load bal-
ancing solutions. The first pricing scheme charges consumers a price that is equal
to the average cost of electricity borne by the retailer and the second scheme
charges consumers an amount that is dependent on the incremental marginal
cost which is shown to protect consumers from irrational behaviors. Two revenue
models were considered for each of the pricing schemes, for which we investigated
the Nash equilibrium operation points for their uniqueness and load balancing
properties. For the zero-revenue model, we showed that when consumers are in-
terested only in the minimization of electricity costs, the Nash equilibrium point
is unique with both the pricing schemes and leads to similar electricity loading
patterns in both cases. For the constant-rate revenue model, we showed the ex-
istence of Nash equilibrium with both the pricing schemes and the uniqueness
results with the average-cost based pricing scheme.

References

1. Allcott, H.: Rethinking real time electricity pricing. CEEPR Working Paper 2009-
015, MIT Center for Energy and Environmental Policy Research (October 2009),
http://web.mit.edu/ceepr/www/publications/workingpapers/2009-015.pdf

2. Borenstein, S.: Time-varying retail electricity prices: Theory and practice. In: Grif-
fin, J., Puller, S. (eds.) Electricity Deregulation: Choices and Challenges, pp. 317–
357. University of Chicago Press, Chicago (2005)

3. Holland, S., Mansur, E.: The short-run effects of time-varying prices in competitive
electricity markets. The Energy Journal 27(4), 127–155 (2006)

http://web.mit.edu/ceepr/www/publications/workingpapers/2009-015.pdf


Noncooperative Games for Autonomous Consumer Load Balancing 175

4. Borenstein, S.: The long-run effects of real-time electricity pricing. CSEM Working
Paper 133, University of California Energy Institute, Berkeley (June 2004),
http://www.ucei.berkeley.edu/PDF/csemwp133.pdf

5. Faruqui, A., Hledik, R., Sergici, S.: Rethinking prices. Public Utilities Fort-
nightly 148(1), 30–39 (2010)

6. Fahrioglu, M., Alvarado, F.: Designing cost effective demand management con-
tracts using game theory. In: IEEE Power Engineering Society 1999 Winter Meet-
ing, vol. 1, pp. 427–432. IEEE (1999)

7. Caron, S., Kesidis, G.: Incentive-based energy consumption scheduling algorithms
for the smart grid. In: 2010 First IEEE International Conference on Smart Grid
Communications (SmartGridComm), pp. 391–396 (October 2010)

8. Ibars, C., Navarro, M., Giupponi, L.: Distributed demand management in smart
grid with a congestion game. In: 2010 First IEEE International Conference on
Smart Grid Communications (SmartGridComm), pp. 495–500 (October 2010)

9. Tirole, J.: The Theory of Industrial Organization. The MIT Press, Cambridge
(1988)
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