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Abstract. We consider mean field Markov decision processes with a
major player and a large number of minor players which have their indi-
vidual objectives. The players have decoupled state transition laws and
are coupled by the costs via the state distribution of the minor players.
We introduce a stochastic difference equation to model the update of
the limiting state distribution process and solve limiting Markov decision
problems for the major player and minor players using local information.
Under a solvability assumption of the consistent mean field approxima-
tion, the obtained decentralized strategies are stationary and have an
ε-Nash equilibrium property.
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1 Introduction

Large population stochastic dynamic games with mean field cou-
pling have attracted substantial interest in the recent years; see, e.g.,
[1,4,11,16,12,13,18,19,22,23,24,26,27]. To obtain low complexity strategies,
consistent mean field approximations provide a powerful approach, and in the
resulting solution, each agent only needs to know its own state information
and the aggregate effect of the overall population which may be pre-computed
off-line. One may further establish an ε-Nash equilibrium property for the set
of control strategies [12]. The technique of consistent mean field approximations
is also applicable to optimization with a social objective [5,14,23]. The survey
[3] on differential games presents a timely report of recent progress in mean
field game theory. This general methodology has applications in diverse areas
[4,20,27]. The mean field approach has also appeared in anonymous sequential
games [17] with a continuum of players individually optimally responding to
the mean field. However, the modeling of a continuum of independent processes
leads to measurability difficulties and the empirical frequency of the realizations
of the continuum-indexed individual states cannot be meaningfully defined [2].

A recent generalization of the mean field game modeling has been introduced
in [10] where a major player and a large number of minor players coexist pursuing
their individual interests. Such interaction models are often seen in economic or
engineering settings, simple examples being a few large corporations and many
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much smaller competitors, a network service provider and a large number of
small users with their respective objectives. An extension of the modeling in [10]
to dynamic games with Markovian switches in the dynamics is presented in [25].
The random switches model the abrupt changes of the decision environment.
Traditionally, game models differentiating vastly different strengths of players
have been well studied in cooperative game theory, and static models are usually
considered [6,8,9]. Such players with very different strengths are called mixed
players.

The linear-quadratic-Gaussian (LQG) model in [10] shows that the presence
of the major player causes an interesting phenomenon called the lack of sufficient
statistics. More specifically, in order to obtain asymptotic equilibrium strategies,
the major player cannot simply use a strategy as a function of its current state
and time; for a minor player, it cannot simply use the current states of the major
player and itself. To overcome this lack of sufficient statistics for decision, the
system dynamics are augmented by adding a new state, which approximates
the mean field and is driven by the major player’s state. This additional state
enters the obtained decentralized strategy of each player and it captures the past
influence of the major player. The recent work [21] considered minor players
parametrized by a continuum which causes high complexity to the state space
augmentation approach, and a backward stochastic differential equation based
approach (see, e.g., [28]) was used to deal with the random mean field process.
The resulting decentralized strategies are not Markovian.

In this paper, we consider the interaction modeling of a major player and a
large number of minor players in the setting of discrete time Markov decision
processes (MDPs). Although the major player modeling is conceptually very
similar to [10] which considers an LQG game model, the lack of linearity in
the MDP context will give rise to many challenges in analysis. Additionally,
an important motivation to use the MDP framework is that our method may
potentially be applicable to many practical problems. In relation to mean field
games with discrete state and action spaces, related work can also be found in
[15,23,7,17]; they all consider a population of comparably small decision makers
which may be called peers.

A key step in our decentralized control design is to describe the evolution of
the mean field, as the distribution of the minor players’ states, by a stochastic
difference equation driven by the major player’s state. Given the above repre-
sentation of the limiting mean field, we may approximate the original problems
of the major player and a typical minor player by limiting MDPs with hybrid
state spaces where the player in question has a finite state space and the mean
field process is a continuum evolving on a simplex.

The organization of the paper is as follows. Section 2 formulates the mean
field Markov decision game with a major player. Section 3 proposes a stochastic
representation of the update of the mean field and analyzes two auxiliary MDPs
in the mean field limit. The consistency condition for mean field approximations
is introduced in Section 4, and Section 5 shows an asymptotic Nash equilibrium
property. Section 6 presents concluding remarks of the paper.
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2 The Mean Field Game Model

We adopt the framework of Markov decision processes to formulate the mean field
game which involves a major player A0 and a large population of minor players
{Ai, 1 ≤ i ≤ N}. The state and action spaces of all players are finite, and denoted
by S0 = {1, . . . ,K0} and A0 = {1, . . . , L0}, respectively, for the major player.
For simplicity, we consider uniform minor players which share common state and
action spaces denoted by S = {1, . . . ,K} and A = {1, . . . , L}, respectively. At
time t ∈ Z+ = {0, 1, 2, . . .}, the state and action of Aj are, respectively, denoted
by xj(t), uj(t), 0 ≤ j ≤ N . To model the mean field interaction of the players,
we denote the random measure process as follows

I(N)(t) = (I
(N)
1 (t), . . . , I

(N)
K (t)), t ≥ 0,

where I
(N)
k (t) = (1/N)

∑N
i=1 1(xi(t)=k). The process I(N)(t) describes the fre-

quency of occurrence of the states in S at time t.
For the major player, the state transition law is determined by the stochastic

kernel

Q0(z|y, a0) = P (x0(t+ 1) = z|x0(t) = y, u0(t) = a0), (1)

where y, z ∈ S0 and a0 ∈ A0. Following the usual convention in Markov decision
processes, the transition probability of the process x0 from t to t + 1 is solely
determined by x0(t) = y and u0(t) = a0 observed at t even if additional state
and action information before t is known.

The one-stage cost of the decision problem of the major player is given by
c0(x0, θ, a0), where θ is the state distribution of the minor players. The infinite
horizon discounted cost is

J0 = E

∞∑

t=0

ρtc0(x0(t), I
(N)(t), u0(t)),

where ρ ∈ (0, 1) is the discount factor.
The state transition of minor player Ai is specified by

Q(z|y, a) = P (xi(t+ 1) = z|xi(t) = y, ui(t) = a), (2)

where y, z ∈ S and a ∈ A. The one-stage cost is c(x, x0, θ, a) and the infinite
horizon discounted cost is

Ji = E

∞∑

t=0

ρtc(xi(t), x0(t), I
(N)(t), ui(t)).

Due to the structure of the costs J0 and Ji, the major player has a significant
impact on each minor player. By contrast, each minor player has a negligible
impact on another minor player or the major player. Also, from the point of
view of the major player or a fixed minor player, it does not distinguish other
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specific individual minor players. Instead, only the aggregate state information
I(N)(t) matters at each step, which is an important feature of mean field decision
problems.

For the N + 1 decision processes, we specify the joint distribution as follows.
Given the states and actions of all players at time t, the transition probability
to a value of (x0(t+ 1), x1(t+ 1), . . . , xN (t+ 1)) is simply given by the product
of the individual transition probabilities under their respective actions.

For integer k ≥ 2, denote the simplex

Dk =

⎧
⎨

⎩
(λ1, . . . , λk) ∈ R

k
+

∣
∣
∣

k∑

j=1

λj = 1

⎫
⎬

⎭
.

To ensure that the individual costs are finite, we introduce the assumption.
(A1) The one-stage costs c0 and c are functions on S0 × DK × A0 and S ×

S0 ×DK ×A, respectively, and they are both continuous in θ. ♦

Remark 1. By the continuity condition in (A1), there exists a fixed constant C
such that |c0|+ |c| ≤ C for all x0 ∈ S0, x ∈ S, a0 ∈ A0, a ∈ A and θ ∈ DK .

We further assume the following condition on the initial state distribution of
the minor players.

(A2) The initial states x1(0), . . . , xN (0) are independent and there exists a
deterministic θ0 ∈ DK such that

lim
N→∞

I(N)(0) = θ0

with probability one. ♦

2.1 The Traditional Approach and Complexity

Denote the so-called t-history

ht = (xj(s), uj(s− 1), s ≤ t, j = 0, . . . , N), t ≥ 1, (3)

and h0 = (x0). We may further specify mixed strategies (or policies; we shall use
the two names strategy and policy interchangeably), as a probability measure on
the action space, of each player depending on ht, and use the method of dynamic
programming to identify Nash strategies for the mean field game. However, for a
large population of minor players, this traditional approach is impractical. First,
each player must use centralized information which causes high complexity in
implementation; second, numerically solving the dynamic programming equation
is a prohibitive or even impossible task when the number of minor players exceeds
a few dozen.
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3 The Mean Field Approximation

To overcome the fundamental complexity difficulty, we use the mean field ap-
proximation approach. The basic idea is to introduce a limiting process to ap-
proximate the random measure process I(N)(t) and solve localized optimization
problems for both the major player and a representative minor player.

Regarding the informational requirement in our decentralized strategy design,
we assume (i) the limiting distribution θ0 and the state x0(t) of the major player
are known to all players, (ii) each minor player knows its own state but not the
state of any other particular minor player.

We use a process θ(t) with state space DK to approximate I(N)(t) when
N → ∞. Before specifying the rule governing the evolution of θ(t), we give some
intuitive explanation. Due to the presence of the major player, the action of
each minor player should be affected by x0(t) and its own state xi(t), and this
causes the correlation of the individual state processes {xi(t), 1 ≤ i ≤ N} in the
closed-loop system. The resulting process θ(t) should be a random process. We
propose the updating rule

θ(t+ 1) = ψ(x0(t), θ(t)), (4)

where θ(0) = θ0. The specific form of ψ will be determined by a procedure of
consistent mean field approximations. We consider ψ from the following function
class

Ψ = {φ(i, θ) = (φ1, . . . , φK)|φk ≥ 0,
∑
k∈S φk = 1},

where φ(i, ·) is continuous on DK for all i ∈ S0. The structure of (4) is analogous
to the stochastic ordinary differential equation (ODE) modeling of the random
mean field in the mean field LQG game model in [10], where the the evolution
of the ODE is driving by the state of the major player.

It is possible to consider a function of the form ψ(t, x0, θ), which is more
general than in (4). For computational efficiency, we will not seek this generality.
And on the other hand, the consideration of a time-invariant function will be
sufficient for developing our mean field approximation scheme. More specifically,
by introducing (4), we may develop stationary feedback strategies for all the
players, and furthermore, the mean field limit of the closed-loop will regenerate a
stationary transition law of θ(t) which is in agreement with the initial assumption
of time-invariant dynamics.

3.1 The Limiting Problem of the Major Player

Suppose the function ψ in (4) has been given. The original problem of the major
player is now approximated by a new Markov decision process. We will often use
x0, xi, θ to denote a value of the corresponding processes.

Problem (P0): Minimize

J̄0 = E

∞∑

t=0

ρtc0(x0(t), θ(t), u0(t)),
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where x0(t) has the transition law (1) and θ(t) satisfies (4).
Problem (P0) gives a standard Markov decision process. To solve this problem,

we use the dynamic programming approach by considering a family of optimiza-
tion problems associated with different initial conditions. Given the initial state
(x0, θ) ∈ S0 ×DK at t = 0, define the cost function

J̄0(x0, θ, u(·)) = E

[ ∞∑

t=0

ρtc0(x0(t), θ(t), u0(t))|x0, θ
]

.

Denote the value function v(x0, θ) = inf J̄0(x0, θ, u(·)), where the infimum is
with respect to all mixed policies/strategies of the form π = (π(0), π(1), . . . , )
such that each π(s) is a probability measure on A0, indicating the probability
to take a particular action, and depends on all past history (. . . , x0(s− 1), θ(s−
1), u0(s − 1), x0(s), θ(s)). By taking two different initial conditions (x0, θ) and
(x0, θ

′) and comparing the associated optimal costs, we may easily obtain the
following continuity property.

Proposition 1. For each x0, the value function v(x0, ·) is continuous on DK . �

We write the dynamic programming equation

v(x0, θ)

= min
a0∈A0

{c0(x0, θ, a0) + ρEv(x0(t+ 1), θ(t+ 1))}

= min
a0∈A0

{

c0(x0, θ, a0) + ρ
∑

k∈S0

Q0(k|x0, a0)v(k, ψ(x0, θ))
}

.

Since the action space is finite, an optimal policy π̂0 solving the dynamic pro-
gramming equation exists and is determined as a stationary Markov policy of
the form π̂0(x0, θ), i.e., π̂0 is a function of the current state. Let the set of opti-
mal policies be denoted by Π0. It is possible that Π0 consists of more than one
element.

3.2 The Limiting Problem of the Minor Player

Suppose a particular optimal strategy π̂0 ∈ Π0 has been fixed for the major
player. The resulting state process is x0(t). The decision problem of the minor
player is approximated by the following limiting problem.

Problem (P1): Minimize

J̄i = E

∞∑

t=0

ρtc(xi(t), x0(t), θ(t), ui(t)),
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where xi(t) has the state transition law (2); θ(t) satisfies (4); and x0(t) is subject
to the control policy π̂0 ∈ Π0. This leads to a Markov decision problem with the
state (xi(t), x0(t), θ(t)) and control action ui(t). Following the steps in Section
3.1, we define the value function w(xi, x0, θ).

Before analyzing the value function w, we specify the state transition law of
the major player under any mixed strategy π0. Suppose

π0 = (α1, . . . , αL0), (5)

which is a probability vector. By the standard convention in Markov decision
processes, the strategy π0 selects action k with probability αk. We further define

Q0(z|y, π0) =
∑

l∈A0

αlQ0(z|y, l),

where π0 is given by (5).
The dynamic programming equation is now given by

w(xi, x0, θ)

=min
a∈A

{c(xi, x0, θ, a) + ρEw(xi(t+ 1), x0(t+ 1), θ(t+ 1))}

=min
a∈A

{
c(xi, x0, θ, a0) + ρ

∑

j∈S,k∈S0

Q(j|xi, a)Q0(k|x0, π̂0)w(j, k, ψ(x0, θ))
}
.

The following continuity property parallels Proposition 1.

Proposition 2. For each pair (xi, x0), the value function w(xi, x0, ·) is contin-
uous on DK . �
Again, since the action space in Problem (P1) is finite, the value function is
attained by at least one optimal strategy. Let the optimal strategy set be denoted
by Π . Note that Π is determined after π̂0 is selected first.

Let π be a mixed strategy of the minor player and represented in the form

π = (β1, . . . , βL).

We determine the state transition law of the minor player as follows

Q(z|y, π) =
∑

l∈A
βlQ(z|y, l). (6)

We have the following theorem on the closed-loop system.

Theorem 1. Suppose π̂0 ∈ Π0 and π̂ ∈ Π is determined after π̂0. Under the
policy pair (π̂0, π̂), (xi(t), x0(t), θ(t)) is a Markov chain with stationary transition
probabilities.

Proof. It is clear that π̂0 and π̂ are stationary feedback policies as a function of
the current state of the corresponding system. They may be represented as two
probability vectors

π̂0 = (π̂1
0(x0, θ), . . . , π̂

L0
0 (x0, θ)),

π̂ = (π̂1(xi, x0, θ), . . . , π̂
L(xi, x0, θ)).
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The process (xi(t), x0(t), θ(t)) is a Markov chain since the transition probability
from time t to t + 1 depends only on the value of (xi(t), x0(t), θ(t)) and not on
the past history. Suppose at time t, (xi(t), x0(t), θ(t)) = (j, k, θ). Then at t+ 1,
we have the transition probability

P
(
xi(t+ 1) = j′, x0(t+ 1) = k′, θ(t+ 1) = θ′

∣
∣
∣xi(t), x0(t), θ(t)) = (j, k, θ)

)

= Q(j′|j, π̂(j, k, θ))Q0(k
′|k, π̂0(k, θ))δψ(k,θ)(θ′).

We use δa(x)to denote the dirac function, i.e., δa(x) = 1 if x = a, and δa(x) = 0
elsewhere. It is seen that the transition probability is determined by (j, k, θ) and
does not depend on time. �

3.3 Discussions on Mixed Strategies

If Problems (P0) and (P1) are considered alone, one may always select an optimal
policy which is a pure policy, i.e., given the current state, the action can be
selected in a deterministic manner. However, in the mean field game setting we
need to eventually determine the function ψ by a fixed point argument. For this
reason, it is generally necessary to consider the optimal policies from the larger
class of mixed policies. The restriction to deterministic policies may potentially
lead to a nonexistence situation when the consistency requirement is imposed
later on the mean field approximation.

4 Replication of the Frequency Process

This section develops the procedure to replicate the dynamics of θ(t) from the
closed-loop system when the minor players apply the control strategies obtained
from the limiting Markov decision problems.

We start with a system of N minor players. Suppose the major player has
selected its optimal policy π̂0(x0, θ) from Π0. Note that for the general case
of Problem (P1), there may be more than one optimal policy. We make the
convention that the same optimal policy π̂(xi, x0, θ) is used by all the minor
players while each minor player substitutes its own state into the feedback policy
π̂. It is necessary to make this convention since otherwise the mean field limit
cannot be properly defined if there are multiple optimal policies and if each
minor player can take an arbitrary one.

We have the following key theorem on the asymptotic property of the update
of I(N)(t) when N → ∞. Note that the range of I(N)(t) is a discrete set. For
any θ ∈ DK , we take an approximation procedure. We suppose the vector θ has
been used by the minor players (of the finite population) at time t in solving
their limiting control problems and used in their optimal policy.

Theorem 2. Fix any θ = (θ1, . . . , θK) ∈ DK . Suppose the major player applies
π̂0 and the N minor players apply π̂, and at time t the state of the major player
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is x0 and I(N)(t) = (s1, . . . , sK), where (s1, . . . , sK) → θ as N → ∞. Then given
(x0, I

(N)(t), π̂), as N → ∞,

I(N)(t+ 1) →
( K∑

l=1

θlQ(1|l, π̂(l, x0, θ)), . . . ,
K∑

l=1

θlQ(K|l, π̂(l, x0, θ))
)

(7)

with probability one.

Proof. By the assumption on I(N)(t), there are skN minor players in state k ∈ S
at time t. In determining the distribution of I(N)(t + 1), by symmetry of the
minor players, we may assume without loss of generality that at time t minor
players A1, . . . ,As1N are in state 1, As1N+1, . . . ,A(s1+s2)N are in state 2, etc.
We check the contribution of A1 alone in generating different states in S. Due
to the transition of A1, state k ∈ S will appear with probability

Q(k|1, π̂(1, x0, θ)).
We further obtain a probability vector Q1 := (Q(k|1, π̂(1, x0, θ)))Kk=1 with its
entries assigned on the set S indicating the probability that each state appears
resulting from the transition of A1.

An important fact is that in the closed-loop system with x0(t) = x0, condi-
tional independence holds for the transition from xi(t) to xi(t + 1) for the N
processes.

Thus, the distribution of NI(N)(t + 1) given (x0, I
(N)(t), π̂) is obtained as

the convolution of N independent distributions corresponding to all N minor
players. And Q1 is one of these N distributions. We have

Ex0,I(N)(t),π̂I
(N)(t+ 1) =

( K∑

l=1

slQ(1|l, π̂(l, x0, θ)), . . . ,
K∑

l=1

slQ(K|l, π̂(l, x0, θ))
)
,

(8)

where Ex0,I(N)(t),π̂ denotes the conditional mean given (x0, I
(N)(t), π̂).

So by the law of large numbers I(N)(t+1)−Ex0,I(N)(t),π̂I
(N)(t+1) converges

to zero with probability one, as N → ∞. We obtain (7). �

Based on the right hand side of (7), we introduce the N ×N matrix

Q∗(x0, θ) =

⎡

⎢
⎢
⎢
⎣

Q(1|1, π̂(1, x0, θ)) . . . Q(N |1, π̂(1, x0, θ))
Q(1|2, π̂(2, x0, θ)) . . . Q(N |2, π̂(2, x0, θ))

...
. . .

...
Q(1|N, π̂(N, x0, θ)) . . . Q(N |N, π̂(N, x0, θ))

⎤

⎥
⎥
⎥
⎦
. (9)

Theorem 2 implies that within the infinite population limit if the random mea-
sure of the states of the minor players is θ(t) at time t, then θ(t + 1) should be
generated as

θ(t+ 1) = θ(t)Q∗(x0(t), θ(t)). (10)
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4.1 The Consistent Condition

The fundamental requirement of consistent mean field approximations is that
the mean field initially assumed should be the same as what is replicated by
the closed-loop system when the number of minor players tends to infinity. By
comparing (4) with (10), this consistency requirement reduces to the following
condition

ψ(x0, θ) = θQ∗(x0, θ), (11)

where Q∗ is given by (9). Recall that when we introduce the class Ψ for ψ,
we have a continuity requirement. By imposing (11), we implicitly require a
continuity property of Q∗ with respect to the variable θ.

Combining the solutions to Problems (P0) and (P1) and the consistent re-
quirement, we write the so-called mean field equation system

θ(t+ 1) = ψ(x0(t), θ(t)), (12)

v(x0, θ) = min
a0∈A0

{
c0(x0, θ, a0) + ρ

∑

k∈S0

Q0(k|x0, a0)v(k, ψ(x0, θ))
}
, (13)

w(xi, x0, θ) = min
a∈A

{
c(xi, x0, θ, a0)+

ρ
∑

j∈S,k∈S0

Q(j|xi, a)Q0(k|x0, π̂0)w(j, k, ψ(x0, θ))
}
, (14)

ψ(x0, θ) = θQ∗(x0, θ). (15)

In the above, we use xi to denote the state of the generic minor player. Note that
only a single generic minor player appears in this mean field equation system.

Definition 1. We call (π̂0, π̂, ψ(x0, θ)) a consistent solution to the mean field
equation system (12)-(15) if π̂0 solves (13) and π̂ solves (14) and if the constraint
(15) is satisfied. ♦

5 Decentralized Strategies and Performance

We consider a system of N + 1 players. We specify randomized strategies with
centralized information and decentralized information, respectively.

Centralized Information. Define the t-history ht by (3). For any j = 0, ..., N ,
the admissible control set Uj of player Aj consists of control (uj(0), uj(1), . . .),
where each uj(t) is a mixed strategy as a mapping from ht to DL0 if j = 0, and
to DL if 1 ≤ j ≤ N .

Decentralized Information. For the major player, denote

h0,dect =
(
x0(0), θ(0), u0(0), . . . , x0(t− 1), θ(t− 1), u0(t− 1), x0(t), θ(t)

)
.
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A decentralized strategy at time t is such that u0(t) is a randomized strategy

depending on h0,dect . For minor player Ai, denote

hi,dect =
(
xi(0), x0(0), θ(0), ui(0), . . . ,

xi(t− 1), x0(t− 1), θ(t− 1), u0(t− 1), xi(t), x0(t), θ(t)
)
.

A decentralized strategy at time t is such that ui(t) depends on h
i,dec
t .

For the mean field equation system, if a solution triple (π̂0, π̂, ψ) exists, we will
obtain π̂0 and π̂ as decentralized Markov strategies as a function of the current
state (x0(t), θ(t)) and (xi(t), x0(t), θ(t)), respectively.

Suppose all the players use their decentralized strategies π̂0(x0, θ), π̂(xi, x0, θ),
1 ≤ i ≤ N , respectively. In the setup of mean field decision problems, a central
issue is to examine the performance change for playerAj if it unilaterally changes
to a policy in Uj by utilizing extra information.

For examining the performance, we have the following error estimate on the
mean field approximation.

Theorem 3. Suppose (i) θ(t) is generated by (4), where θ0 is given by (A2);
(ii) (π̂0, π̂, ψ(x0, θ)) is a consistent solution to the mean field equation system
(12)-(15). Then we have

lim
N→∞

E|I(N)(t)− θ(t)| = 0

for each given t.

Proof. We use the technique introduced in the proof of Theorem 2. Fix any
ε > 0. We have

P (|I(N)(0)− θ0| ≥ ε) ≤ E|I(N)(0)− θ(0)|/ε.
We take a sufficiently large N0 such that for all N ≥ N0, we have

P (|I(N)(0)− θ0| < ε) > 1− ε. (16)

Then following the method for (8), we may estimate I(N)(1). By the consistency
condition (11), we further obtain

lim
N→∞

E|I(N)(1)− θ(1)| = 0.

Carrying out the estimates recursively, we obtain the desired result for each
fixed t. �

For j = 0, ..., N , denote u−j = (u0, u1, ..., uj−1, uj+1, ..., uN).

Definition 2. A set of strategies uj ∈ Uj, 0 ≤ j ≤ N , for the N + 1 players
is called an ε-Nash equilibrium with respect to the costs Jj, 0 ≤ j ≤ N , where
ε ≥ 0, if for any j, 0 ≤ j ≤ N , we have Ji(uj, u−j) ≤ Jj(u

′
j, u−j) + ε, when any

alternative u′j is applied by player Aj . ♦
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Theorem 4. Assume the conditions in Theorem 3 hold. Then the set of strate-
gies ûj, 0 ≤ j ≤ N , for the N + 1 players is an εN -Nash equilibrium, i.e., for
0 ≤ j ≤ N,

Jj(ûj , û−j)− εN ≤ inf
uj

Jj(uj , û−j) ≤ Jj(ûj , û−j),

where 0 ≤ εN → 0 as N → ∞ and uj is a centralized information based strategy.

Proof. The theorem may be proven by following the usual argument in our pre-
vious work [12,10]. First, by using Theorem 3, we may approximate I(N)(t) in
the original game by θ(t). Then the optimization problems of the major player
and any minor player are approximated by Problems (P0) and (P1), respec-
tively. Finally, it is seen that each player can gain little if it deviates from the
decentralized strategy determined from the mean field equation system. �

6 Conclusion Remarks and Future Work

This paper considers a class of Markov decision processes involving a major
player and a large population of minor players. The players have independent
dynamics for fixed actions and have mean field coupling in their costs according
to the state distribution process of the minor players. We introduce a stochastic
difference equation depending on the state of the major player to characterize
the evolution of the minor players’ state distribution process in the infinite pop-
ulation limit and solve local Markov decision problems. This approach provides
decentralized stationary strategies and offers a low complexity solution.

This paper presents the main conceptual framework for decentralized decision
making in the setting of Markov decision processes. The existence analysis and
the associated computation of a solution to the mean field equation system is
more challenging than in linear models. It is of interest to develop fixed point
analysis to study the existence of solutions. Also, the development of iterative
computation procedures for solutions is of practical interest.
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