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Abstract. In this paper, a behavioral rule that allows radio devices to
achieve an efficient satisfaction equilibrium (ESE) in fully decentralized
self-configuring networks (DSCNs) is presented. The relevance of ESE in
the context of DSCNs is that at such state, radio devices adopt a trans-
mission/receive configuration such that they are able to simultaneously
satisfy their individual quality-of-service (QoS) constraints. An ESE is
also an efficient network configuration, i.e., individual QoS satisfaction
is achieved by investing the lowest possible effort. Here, the notion of
effort refers to a preference each radio device independently establishes
among its own set of actions. In particular, the proposed behavioral rule
requires less information than existing rules, as in the case of the clas-
sical best response dynamics and its variants. Sufficient conditions for
convergence are presented in a general framework. Numerical results are
provided in the context of a particular uplink power control scenario, and
convergence from any initial action profile to an ESE is formally proved
in this scenario. This property ensures the proposed rule to be robust to
the dynamic arrival or departure of radio devices in the network.

Keywords: Supermodular games, Power control, Efficient Satisfaction
Equilibrium, Games in Satisfaction Form.

1 Introduction

A decentralized self-configuring network (DSCN) is basically an infrastructure-
less communication system in which radio devices autonomously choose their
own transmit/receive configuration in order to guarantee reliable communica-
tion. In particular, a transmit/receive configuration can be described in terms of
power allocation polices, coding-modulation schemes, scheduling policies, decod-
ing order, etc. Typical examples of DSCNs are wireless sensor networks, short
range networks in the ISM bands (e.g., Wi-Fi, Bluetooth, ZigBee, etc,), femto-cell
networks (e.g., femto cells in LTE-A) and adhoc networks in general. The under-
lying feature of DSCNs is that transmitters directly communicate with their re-
spective receivers without the intervention of a central controller. Thus, the main
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limitation of these networks to actually provide QoS is the mutual interference
arising from the uncoordinated interaction of radio devices subject to mutual
interference. Within this context, the notion of QoS provisioning translates into
the need for designing behavioral rules such that radio devices autonomously
adapt their transmission configurations in order to meet the minimum require-
ments for their communications to take place satisfactorily. In particular, similar
reconfigurable capabilities have been already mentioned in [6] in the context of
cognitive radios.

In general, the decentralized nature of the QoS provisioning task in DSCN has
fostered the use of tools from game theory (GT) [7,5], strategic learning theory
[9], distributed optimization and variational inequality theory [11] to the analysis
of QoS provisioning in this scenario. In this paper, we focus on a particular
formulation of the QoS provisioning problem, namely games in satisfaction form
[8]. More specifically, we provide behavioral rules that allow radio devices to
achieve an efficient satisfaction equilibrium (ESE) in DSCNs. The notion of ESE,
as introduced in [8], refers to a network state in which all the network devices are
able to satisfy their individual QoS constraints by investing the minimum effort.
Often, we associate the notion of high effort with transmit/receive configurations
that might represent an additional waste of energy to satisfy the individual QoS
constraints. In this context, one of the main contributions of this paper is the
introduction of a behavioral rule that allows the network to achieve an ESE
using only local information. Another important contribution is a set of sufficient
conditions to observe the convergence to an ESE of the proposed rule.

In order to show the potential of our contributions in the context of DSCNs,
we consider a particular scenario of power control in the uplink of a single-cell
system in which devices must guarantee a minimum signal to interference plus
noise ratio (SINR). Interestingly, we highlight that in this particular scenario, the
proposed behavioral rule converges to an ESE independently of the initial state
of the network. This result contrasts with the existing literature. For instance,
in [1], Altman et al. studied the problem in the general framework of compact
sublattices as action sets. Therein, under the assumption that a solution to the
problem exists, they established that a simple behavioral rule known in game
theory as the best response dynamics (BRD) [4] only converge to the solution
from particular starting points. When the transmit power sets are continuous,
Yates et al. proved that the BRD converge from any initial point in [14]. In
the case of discrete actions sets, an algorithm close to the BRD is proposed
in [12]. However, there are still conditions on the starting point to ensure the
convergence of the algorithm.

The remainder of this paper unfolds as follows. In Sec. 2, we revisit the notion
of satisfaction equilibrium (SE) and ESE and we formulate the QoS provisioning
problem in the most general terms. In Sec. 3, we describe our main contribu-
tion: a behavioral rule that allows DSCNs to converge to an ESE, when action
sets correspond to compact sublattices. In Sec. 4, we present numerical results
in a particular scenario as described above in order to verify our theoretical
contributions. Finally, we conclude our work in Sec. 5.
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2 QoS Provisioning and Games in Satisfaction Form

2.1 QoS Problem Formulation

Consider a DSCN comprising a set K = {1, . . . ,K} of K transmitter/receiver
pairs to which we refer as links. Each radio device autonomously chooses its opti-
mal transmit/receive configuration in order to satisfy its own QoS requirements.
Here, we denote by k ∈ K the k-th link, independently of whether it is the trans-
mitter or the receiver that is the device performing the self-adaptation of the
link configuration. We denote by ak the transmit/receive configuration adopted
by the link k, and we denote by Ak the set of all its possible choices. For all
k ∈ K, Ak is assumed to be a compact sublattice, as in [1,13]. A = A1× . . .×AK

represents the set of all configuration profiles. This structure has the advantage
of comprising both compact continuous sets and discrete sets1. We denote by
a−k = (a1, . . . , ak−1, ak+1, . . . , aK) the vector obtained by dropping the k-th
component of the vector a. We denote the space in which the vector a−k exists
by A−k. With a slight abuse of notation, we write the vector a as (ak,a−k), in
order to emphasize its k-th component. A transmit/receive configuration can be
described by parameters such as the power allocation policy, modulation scheme,
constellation size, decoding order, scheduling policy, etc. The instantaneous per-
formance of radio device k is determined by a set of Qk functions���

��
u
(1)
k : A → R,

...

u
(Qk)
k : A → R.

(1)

Typical performance metrics are transmission rate, transmission delay, bit error
rate, energy efficiency, or any combination of those. We denote the minimum

and maximum acceptable values of the performance metric u
(qk)
k by Γ

(qk,min)
k

and Γ
(qk,max)
k , respectively. Thus, we say that the configuration profile a ∈ A

satisfies the QoS constrains of the DSCN if for all link k the following set of
inequalities are satisfied :���

��
Γ

(1,min)
k < u

(1)
k (ak,a−k) < Γ

(1,max)
k ,

...

Γ
(Qk,min)
k < u

(Qk)
k (ak,a−k) < Γ

(Qk,max)
k .

(2)

Note that the performance metrics of link k depend not only on its own con-
figuration ak but also on the configurations a−k adopted by all the other links.
Thus, in order to ease our notation, we define the correspondence fk: A−k → 2Ak

that determines all the possible configurations of player k that satisfies its QoS
constraints. That is ∀ak ∈ Ak

ak ∈ fk(a−k) ⇔
∀q ∈ {1, . . . , Qk}, Γ (q,min)

k < u
(q)
k (ak,a−k) < Γ

(q,max)
k .

(3)

1 The results of Sec. 3.2 and Sec. 3.4 apply to the general framework of compact
sublattices whereas the results of Sec. 3.5 apply only to discrete configuration sets.
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The problem of all the links wanting to satisfy their QoS constraints at the same
time can naturally be described as a game.

2.2 Game Formulation

As defined in [8], a game in satisfaction form is fully described by the following
triplet �G =

�
K, {Ak}k∈K , {fk}k∈K

�
. (4)

In this triplet, K represents the set of players, Ak is the strategy set of player
k ∈ K, and the correspondence fk determines the set of actions of player k
that allows its satisfaction given the actions played by all the other players.
A strategy profile is denoted by vector a = (a1, . . . , aK) ∈ A. In general, an
important outcome of a game in satisfaction form is the one where all players
are satisfied, that is, an SE. The notion of SE was formulated as a fixed point
in [8] as follows:

Definition 1 (Satisfaction Equilibrium). An action profile a+ is an equi-

librium for the game �G =
�
K, {Ak}k∈K , {fk}k∈K

�
if

∀k ∈ K, a+k ∈ fk
�
a+
−k

�
. (5)

As we shall see, the SE is often not unique and thus, there might exist some SEs
that are of particular interest. In the following, we introduce the notion of an
efficient SE (ESE). For this intent, we consider a cost function for each player
of the game, in order to model the notion of effort or cost associated with a
given action choice. For all k ∈ K, the cost function ck: Ak → [0, 1] satisfies the
following condition : ∀(ak, a′k) ∈ A2

k, it holds that

ck (ak) < ck (a
′
k) , (6)

if and only if, ak requires a lower effort than action a′k when it is played by
player k. Under the notion of effort, the set of SEs that are of particular interest
are those that require the lowest individual efforts. We formalize this notion of
equilibrium using the following definition.

Definition 2 (Efficient Satisfaction Equilibrium). An action profile a∗ is

an ESE for the game �G =
�
K, {Ak}k∈K , {fk}k∈K

�
, with cost functions {ck}k∈K,

if
∀k ∈ K, a∗k ∈ fk

�
a∗
−k

	
(7)

and
∀k ∈ K, ∀ak ∈ fk(a

∗
−k), ck(ak) ≥ ck(a

∗
k). (8)

Note that the effort associated by each player with each of its actions does not
depend on the choice of effort made by other players. Here, we have left players
to individually choose their cost functions, which adds another degree of freedom
to the modeling of the QoS problem in DSCNs.
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Note also that a game in satisfaction form is not a game with a constrained
set of actions, as is the case in the formulation presented in [3]. Here, a player
can use any of its actions independently of all the other players. The dependency
on the other players’ actions enters through whether the player under study is
satisfied or not.

2.3 Power Control Game

In the rest of this paper, we use the context of uplink power control in a single-
cell as a case study. Although most of our results apply in a general context,
we concentrate in the uplink power control problem as presented in [12,14], to
illustrate our results.

Consider K transmitter/receiver pairs denoted by index k ∈ K. For all k ∈ K,
transmitter k uses power level pk ∈ Ak, with Ak generally defined as a compact
sublattice For each player k ∈ K, we denote pmin

k and pmax
k the minimum and

the maximum power levels in Ak, respectively. For every couple (i, j) ∈ K2, we
denote by gij the channel gain coefficient between transmitter i and receiver j.
The considered metric for each pair k is the Shannon rate given by

uk(pk,p−k) = log2



1 +

pkgkk
σ2
k +

�
j �=k pjgjk

�
[bps/Hz], (9)

where σ2
k is the noise variance at receiver k.

The QoS requirement for each pair k is to have a channel capacity uk(pk,p−k)
higher than a given threshold Γk bps/Hz. The satisfaction correspondence of link
k is then

fk(p−k) = {pk ∈ Ak | uk(pk,p−k) ≥ Γk}

=


pk ∈ Ak | pk ≥ (2Γk − 1)

σ2
k +

�
j �=k pjgjk

gkk

�
.

(10)

3 Convergence to an Efficient Satisfaction Equilibrium

In this section, we provide sufficient conditions for convergence of the BRD
and the robust blind response dynamics (RBRD) to an ESE of the game �G =�
K, {Ak}k∈K , {fk}k∈K

�
, with cost functions {ck}k∈K.

3.1 Best Response Dynamics

In the context of a game in satisfaction form �G =
�
K, {Ak}k∈K , {fk}k∈K

�
, with

cost functions {ck}k∈K, we define the best response (BR) correspondence of
player k, given that the other players adopt the reduced action profile a−k, as
follows:

BRk(a−k) = arg min
ak∈fk(a−k)

ck(ak). (11)
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We consider a BRD defined as the behavioral rule in which players sequentially
update their action following the Gauss-Seidel method [2]. At step n+ 1 of the
algorithm, all the players sequentially update their actions with the following
rule:

a
(n+1)
k = BRk(a

(n+1)
1 , . . . , a

(n+1)
k−1 , a

(n)
k+1, . . . , a

(n)
K ). (12)

For a discrete set of actions, the BRD can be compared to the asynchronous
version of the Minimum Feasible Value Assignment (MFVA) algorithm presented
in [12]. The difference is that in [12], players only move to their optimal satisfying
action if they are not satisfied with actions played at the previous step. In the
BRD, players move to their optimal satisfying action independently of their
satisfaction at the previous step.

3.2 Convergence of the BRD

To study the convergence of the BRD, we first define some notation of interest.
Let a = (a1, . . . , aN ) and b = (b1, . . . , bN ) be two action profiles and let c =
a ∨ b denote the maximum of (a, b) component wise, i.e., c = (c1, . . . , cN) with
cn = max(an, bn) ∀n ∈ {1, . . . , N}. In a similar way, a ∧ b denotes min(a, b)
component wise.

Definition 3 (S-modularity). The function g: A → R is said to be supermod-
ular if for any a, b ∈ A

g(a ∧ b) + g(a ∨ b) ≥ g(a) + g(b), (13)

and said to be submodular if

g(a ∧ b) + g(a ∨ b) ≤ g(a) + g(b). (14)

In the case of the cost function defined in (6), ck depends only on the actions
of player k. Hence, ck is both supermodular and submodular. As a result, (13)
and (14) are equalities.

Definition 4 (Ascending and descending properties). The correspondence
fk is said to possess the ascending property (respectively the descending property)
if for any two elements a−k and a′

−k of the set A−k, with a−k = a−k ∧ a′
−k

implies that ∀ak ∈ fk(a−k) and ∀a′k ∈ fk(a
′
−k),�

min(ak, a
′
k) ∈ fk(a−k),

max(ak, a
′
k) ∈ fk(a

′
−k),

(15)

or for the descending property�
max(ak, a

′
k) ∈ fk(a−k),

min(ak, a
′
k) ∈ fk(a

′
−k).

(16)
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An important consequence of the ascending (or descending) property is that

∀a−k ∈ A−k, fk(a−k) 
= ∅. (17)

The definition of an ascending set can easily be understood in the context of
distributed power control. In such a context, the ascending property means that
if all the other players increase their powers, player k also has to increase its own
power if it wants to remain satisfied. Also note that if the ascending property
is ensured, then there is always at least one satisfying power level for player k,
whatever the other players are playing. In particular, when all the players are
at maximum power levels, there exists a satisfying power for player k, which is
a strong assumption.

Proposition 1. Assume that for all k ∈ K, fk(·) is nonempty and compact for
all the values of their arguments, fk(·) has either the ascending or the descending
property and fk(·) is continuous. Then the following holds:

– (i) An ESE exists.
– (ii) If the dynamics start with the action profile associated with the highest

or lowest effort in ck(·), for all k ∈ K, the BRD converge monotonically to
an ESE.

– (iii) If the dynamics start from an SE, the trajectory of the best response
converges to an ESE. It monotonically evolves in all components.

– (iv) In a two-player game, the BRD converge to an ESE from any starting
point.

The proof of Prop. 1 comes from Th. 1 in [1] and Th. 2.3 in [13]. We simply
have to verify that the right assumptions hold for the ascending case and the
descending case:

– Let fk(·) be ascending for all k ∈ K. ck is a cost function player k wants
to minimize, in particular ck is a submodular function, and thus −ck is a
supermodular function player k wants to maximize and Th. 1 from [1] holds,
i.e., (i, ii, iii) in Prop. 1 are ensured when the sets are ascending.

– Let fk(·) be descending for all k ∈ K. A similar reasoning can be made: ck is a
submodular function player k wants to minimize and the same theorem holds
as well, i.e., (i, ii, iii) in Prop. 1 are ensured when the sets are descending.

In both ascending and descending cases, (iv) in Prop. 1 is obtained from Th. 2.3
in [13].

3.3 BRD in the Uplink Power Control Game

In the general framework of compact sublattices as strategy sets (including con-
tinuous and discrete action sets), the BRD converge only from given starting
points (see [1,13]). However, in the uplink power control problem, it has been
shown in [10,14] that when strategy sets are continuous, the BRD converge from
any initial point. When strategy sets are discrete, the convergence of the BRD
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from any initial point to an equilibrium is not guaranteed. In [12], it is shown
that the MFVA converges only when all the transmitters start at their lowest
power levels. In the following, we consider a 3-player uplink power control game
to illustrate the non-convergence of the BRD from a particular initial action
profile.

Example 1. In this example, we refer to the notation introduced in Sec. 2.3. Let
us consider K = 3 pairs of transmitters/receivers. For all k ∈ K, transmitter
k uses power level ak ∈ {pmin, pmax}. Given the constraints from Sec. 2.3, let
consider channel gains such that

f1(p
min, pmin) = f3(p

min, pmin) = {pmin, pmax},
f1(p

min, pmax) = f3(p
min, pmax) = {pmin, pmax},

f1(p
max, pmin) = f3(p

max, pmin) = {pmax},
f1(p

max, pmax) = f3(p
max, pmax) = {pmax},

(18)

and
f2(p

min, pmin) = {pmin, pmax},
f2(p

min, pmax) = {pmax},
f2(p

max, pmin) = {pmin, pmax},
f2(p

max, pmax) = {pmax}.
(19)

We can check that fk has the ascending property for all k ∈ K. For each pair
k, the cost of the power level is given by the identity cost function ck(ak) = ak.
This game has two ESEs:

– (pmin, pmin, pmin) where all the players transmit at their lowest power level.
No player has interest in deviating from its action since any other action has
a higher cost (even though the player would remain satisfied).

– (pmax, pmax, pmax) where all the players have to transmit at maximum power
to be satisfied. If one deviates from its action, it will not be satisfied anymore.

But depending on the initial action profile of the BRD, the BRD may not
converge to an ESE. For instance, assume that the BRD start at p(0) =
(pmax, pmin, pmax). At step 1, player 1 chooses the action that minimizes c1(·)
given the previous actions of the other players p

(0)
−1 = (pmin, pmax), i.e.,

p
(1)
1 = BR1(p

min, pmax) = pmin. (20)

Player 2 chooses the action that minimizes c2(·) given the most recent actions

of the other players (p
(1)
1 ,p

(0)
−(1,2)) = (pmin, pmax), i.e.,

p
(1)
2 = BR2(p

min, pmax) = pmax. (21)

Player 3 chooses the action that minimizes c3(·) given (p
(1)
1 , p

(1)
2 ) = (pmin, pmax),

i.e.,

p
(1)
3 = BR3(p

min, pmax) = pmin. (22)
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At step 2, player 1 chooses the action that minimizes c1(·) given the previous

actions of the other players p
(1)
−1 = (pmax, pmin), i.e.,

p
(2)
1 = BR1(p

max, pmin) = pmax. (23)

Player 2 chooses the action that minimizes c2(·) given the most recent actions

of the other players (p
(2)
1 ,p

(1)
−(1,2)) = (pmax, pmin), i.e.,

p
(2)
2 = BR2(p

max, pmin) = pmin. (24)

Player 3 chooses the action that minimizes c3(·) given (p
(2)
1 , p

(2)
2 ) = (pmax, pmin),

i.e.,

p
(2)
3 = BR3(p

max, pmin) = pmax. (25)

The algorithm is back at the starting point, and it is clear that it will continue
in this infinite loop.

3.4 Robust Blind Response Dynamics

The BRD have significant drawbacks. First, it was just shown that in a K-player
game with K > 2, the dynamics may not converge to an ESE depending on the
initial action profile. Second, to determine the BR, each player has to know
the set fk(a−k) ∀a−k ∈ A−k. To overcome these drawbacks, we propose a new
algorithm that requires less information about the game for each player and can
still be proven to converge to an ESE. Let us start by defining the robust blind
response (RBR) by RBRk: A → Ak, such that :

(ak,a−k) →
��
�

a′k, if a′k ∈ fk(a−k), ak ∈ fk(a−k) and ck(a
′
k) ≤ ck(ak),

a′k, if a′k ∈ fk(a−k) and ak /∈ fk(a−k),
ak, otherwise,

(26)

with action a′k being randomly chosen in Ak, such that ∀ak ∈ Ak, Pr (a
′
k = ak) >

0. Each time the RBR is used, a player k ∈ K randomly chooses an action in
its strategy set Ak without taking into account the constraints of other players.
Player k only has to know if the new action and the previous one allow the
satisfaction of its individual constrains and to compare their respective costs. If
both actions allow the satisfaction of the constraints, it chooses the one with the
lowest cost. If the new action allows the satisfaction of the individual constraints
whereas the previous one does not, it moves to the new action. Otherwise, it
keeps the same action. When all the players sequentially use the RBR such that
∀k ∈ K

a
(n+1)
k = RBRk(a

(n+1)
1 , . . . , a

(n+1)
k−1 , a

(n)
k+1, . . . , a

(n)
K ), (27)

we refer to these dynamics as the RBR dynamics (RBRD). Our main result in
this section is stated in the following theorem.
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Theorem 1. Assume that for all k ∈ K, fk(·) is nonempty and compact for
all the values of their arguments, fk(·) has the ascending property and it is
continuous, and ck(·) is strictly increasing. Then, the following holds:

– (i) If the dynamics start from an SE, the sequence of RBRs converges to an
ESE. It monotonically decreases in all components.

– (ii) If the dynamics start with the actions associated with the highest effort
in ck(·), ∀k ∈ K, the sequence of RBRs converges monotonically to an ESE.

– (iii) In a two-player game, the sequence of RBRs converge to an ESE from
any starting point.

Proof. Applying Prop. 1, we know that there exists an ESE for the game �G =�
K, {Ak}k∈K , {fk}k∈K

�
. The convergence of the RBRD to an ESE is proven in

two steps. First, we show for (i, ii, ii) that the RBRD converge to a fixed point.
Second, we explain why this fixed point has to be an ESE.

– (i) Assume that the dynamics start from an SE: aSE and this SE is not an
ESE (otherwise, the convergence is trivial). Let player k ∈ K be the first

player to actually change its action at step n to a
(n)
k ; necessarily this action

has a lower cost than aSE
k because a satisfied player can only move to another

satisfying action with a lower cost. Let the next player to move be denoted by

j. From its point of view (a
(n)
k ,aSE

−{k,j}) = (a
(n)
k ,aSE

−{k,j}) ∧ aSE
−j . Hence, due

to the ascending property of fj and the strict monotony of cj , necessarily its

new action a
(n′)
j ≤ aSE

j , and so forth. For each k ∈ K the sequence {a(n)k }n∈N

is decreasing in a compact set. Thus, the algorithm converges to a limit.
– (ii) Assume that the dynamics start from action profile amax =

(amax
1 , . . . , amax

K ) and this point is not an SE (otherwise refer to (i)). Let
player k update its action first, at step n. Necessarily, its updated action

a
(n)
k is lower than amax

k . Then ∀j 
= k, j ∈ K

(amax
{−j,k}, a

(n)
k ) = (amax

{−j,k}, a
(n)
k ) ∧ amax

−j . (28)

Due to the ascending property of fj and the strict monotony of cj , the update
of player j is hence lower than amax

j , and so forth. Again, for each player

k ∈ K, the sequence of action {a(n)k }n∈N is decreasing in a compact set and
the algorithm converges to a limit.

– (iii) In a two-player game, assume the dynamics start from a random action

profile (a
(0)
1 , a

(0)
2 ). Assume player 1 is the first player that updates its action

to get satisfied, at step n. The action profile is then (a
(n)
1 , a

(0)
2 ). In the next

move, either the same player 1 decreases its action, remaining satisfied, or
player 2 moves to an action that satisfies it, leading to an action profile

(a
(n)
1 , a

(n′)
2 ). If this profile is an SE, the dynamics converge according to (i).

Otherwise player 1 is no longer satisfied and has to update its action. If

a
(n′)
2 < a

(0)
2 , then due to the ascending property and the strict monotonicity

of c1, player 1 will only move to a lower action than a
(n)
1 . Then player 2 will
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also have to move to a lower action than a
(n′)
2 for analogous reasons, and

so forth. The sequences {a(n)1 }n∈N and {a(n)2 }n∈N are hence decreasing in a

compact set, so they converge to a limit. If a
(n′)
2 > a

(0)
2 , the sequences are

increasing in a compact set and converge as well.

We now have to prove that a fixed point is an ESE. Consider that a∗ is a fixed
point for RBRk, ∀k ∈ K. By the definition of RBRk this means that there exists
no ak ∈ Ak such that ak ∈ fk(a

∗
−k) and ck(ak) ≤ ck(a

∗
k), which is exactly the

definition of the ESE. This completes the proof. �

The main advantage of these dynamics over BRD in a general framework is
that the former require only local information and the knowledge of an explicit
expression for fk is no longer relevant. Only the knowledge of whether the cor-
responding player is satisfied or not is sufficient to implement the RBR.

3.5 RBRD in the Uplink Power Control Game

A very interesting property occurs for the RBR in the uplink power control game
with discrete action sets.

Theorem 2. In the power allocation game defined above in Sec. 2.3, with dis-

crete action sets, i.e., ∀k ∈ K, Ak = {p(1)k , . . . , pNk

k } with Nk the number of
power levels in action set Ak, the RBRD converge to an ESE from any starting
point.

Proof. We show in this proof that from any starting point of the dynamics, there
is a non-null probability that the dynamics move to a particular SE with a given
way. Note that the particular sequence of events we describe here is not always
the way the dynamics run. It is simply a sequence that can occur with a non-null
probability, but there are many other possible sequences that lead to an SE.

Assume p(0) = (p
(0)
1 , . . . , p

(0)
k ) is the starting power profile of the dynamics.

Consider all the unsatisfied players at this point and assume that they all move
to their maximum possible power levels (this may happen with a non-null prob-
ability). These levels satisfy them since the ascending property gives us

∀k ∈ K, ∀p−k ∈ A−k, p
max
k ∈ fk(p−k). (29)

This increase of power levels may cause some of the satisfied players at the
starting point not to be satisfied anymore. We also assume that these players
move to their maximum power levels. And the same is done until no unsatisfied
player remains. So we get a power profile made of the highest power levels for
some of the players and the initial power levels for the others, and every player
is satisfied at this point: it is an SE.

Finally, from (i) of Th. 1, the dynamics converge to an ESE, which completes
the proof. �

Th. 2 highlights a very interesting property of the RBRD when players enter or
quit the game (or when the channel coefficients vary). Indeed, if K transmitters
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are in any given ESE p∗ and a new transmitter enters the game, a new game
starts with K + 1 players. Thus, from Th. 2, it can be stated that convergence
to a new ESE, if it exists, is ensured from the new starting point (p∗, pk+1).

4 Numerical Results

In this section, we provide numerical results for the uplink power control game
with discrete action sets as defined in Sec. 2.3.

In Fig. 1, we show the sequences of actions converging to an ESE for the
RBRD in a 2-player power control game. The colored region is the satisfaction
region, i.e., the region allowing both players to be satisfied. The coloring of this
region follows the sum of the costs for each player. The RBR first converges to the
satisfaction region, then converges to an ESE while remaining in the satisfaction
region.
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Fig. 1. Sequence of power indices for the RBRD in the uplink 2-player power control
game. The colored region is the satisfaction region, i.e., the region where the two players
mutually satisfy their constraints.

The scenario we consider in Fig. 2 and Fig. 3 highlights the advantages of
RBRD over the BRD in a 3-player game: during the first 200 steps, only trans-
mitters 1 and 3 are in the game, then transmitter 2 joins them for the 200
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next steps, and finally transmitter 3 leaves for the last 200 steps. On each of
the two figures, we show the sequence of power indices for the three players,
knowing that each action set is made of Nk = 32 possible power levels from
10−6W to 10−2W. We also show the satisfaction states of the three players: for
each step of the dynamics, if all the player are satisfied, the satisfaction state
is 1, otherwise it is 0. Fig. 2 and Fig. 3 correspond to the behavior of the BRD
and the RBRD, respectively. The channel parameters and the starting points
of the two simulations are exactly the same. Channel gains are g22 = 10−5,
g11 = g33 = g13 = g21 = g32 = 10−6, g12 = g23 = g31 = 10−7, and transmitters
1, 2, and 3 start at power levels 10−3W, 10−5/2W, and 10−9/4W, respectively.
The utility constraints Γ1, Γ2, and Γ3 are taken as 1.2 bps/Hz, 1.5 bps/Hz, and
1.2 bps/Hz, respectively. The variance of the noise is fixed at 10−10 W for all the
transmitters. It is interesting to notice that the BRD converge to ESE during
the first and third phase but when transmitter 2 enters the game in the second
phase, the BRD do not converge to an ESE. Instead, they enter a loop and we
can see that the transmitters are not satisfied. Concerning the RBRD, although
their convergence time is longer, they converge in the three phases and another
interesting fact is that transmitters are satisfied during a longer amount of time
compared to the BRD.
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Fig. 2. Sequences of power indices and satisfaction states for the BRD in the 3-player
uplink power control game
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Fig. 3. Sequences of power indices and satisfaction states for the RBRD in the 3-player
uplink power control game

5 Conclusion and Future Work

In this work, we have proposed a behavior rule that converges to an ESE in
the general framework of compact sublattices as actions sets. Compared to the
BRD, the proposed rule requires far less information although its convergence
time is longer. Applying this rule to the uplink power control game with discrete
actions sets has been shown to be of great interest since the dynamics are proven
to converge to an ESE from any starting action profile. This particular feature
allows the proposed rule to be robust to the entrance or the exit of players in
the power control game.

However, a strong assumption of this work is to assume that for every player,
for any action profile of the other players, there exists an action satisfying the
considered player. In the power control game, it would be more relevant to take
into account scenarios in which the power levels of the other players are too high
and a given player cannot be satisfied for any action it can play. Hence, a natural
perspective of this work is to relax this assumption and study the convergence
of the dynamics in this context.
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