
FPGA-Based Wireless Link Emulator

for Wireless Sensor Network

Wei Liu1, Luc Bienstman2, Bart Jooris1, Opher Yaron1, and Ingrid Moerman1

1 Ghent University - IBBT, Gaston Crommenlaan 8 Bus 201, B-9050 Gent, Belgium
wei.liu@intec.ugent.be, luc.bienstman@groept.be

2 GroepT University College Leuven, Vesaliusstraat 13, B-3000 Leuven

Abstract. Wireless sensor testbeds lack the flexibility for topology con-
trol and the accuracy for interference generation. Once the testbed is
set up, the topology becomes fixed. Due to the nature of the wireless
environment, experimenters often suffer from unpredictable background
interference, while at the same time, find it hard to get accurate and
repeatable interference sources.

The wireless link emulator addresses these issues by replacing the un-
controllable wireless link by a well-controlled and programmable hard-
wired medium. A radio interface is then made to behave according to the
link configuration, thus offering flexibility for both topology and inter-
ference control. This paper describes the implementation of the wireless
link emulator based on a number of low-cost Xilinx FPGAs. The system
is verified experimentally and compared to existing emulation systems.

Keywords: Topology control, interference control, FPGA, wireless link
emulation.

1 Introduction

Over the years, more and more researchers have realized that simulation results
alone are not sufficient to guarantee the proper function of wireless network
applications in a real-life environment. Hence many universities and research
groups have setup their own testbeds [1] [2]. Such a testbed often consists of
a large number of actual sensor nodes which can be programmed remotely. It
is a common practice to install the sensor nodes at fixed locations. Therefore
once the testbed is setup, the topology of the network is fixed. In addition, many
testbeds are deployed within the office environment, the experiments often suffer
from unpredictable interference, such as WIFI, Bluetooth or even microwave
oven.

Network simulators are generally flexible and predictable, however, they ig-
nore many aspects of the real hardware platforms. A testbed offers real hardware
behavior but lacks flexibility and controllability. Is there a way to combine the
advantages of both systems? The answer is yes: use emulation instead of simu-
lation and at the lower level, emulate only the wireless ether behavior, not the
sensor node itself. This is the solution integrated into WiLab — the wireless
sensor network testbed of Gent University [4].

T. Korakis, M. Zink, and M. Ott (Eds.): TridentCom 2012, LNICST 44, pp. 48–63, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

FPGA-Based Wireless Link Emulator for Wireless Sensor Network 49

Fig. 1. The original TelosB node Fig. 2. The modified TelosB node

The WiLab testbed is deployed in an office building of 12x80m and is spread
out of three floors. It consists of more than 200 sensor nodes. The sensor node
is based upon the TelosB mote [3] (Fig 1). The TelosB mote is an ultra low
power wireless module for use in sensor networks. It mainly consists of integrated
sensors, a microcontroller and a radio module (Fig 2). The radio module is based
on the Chipcon CC2420 radiochip [5]. The CC2420 is a true single-chip 2.4
Ghz IEEE802.15.4 compliant RF transceiver designed for low-power and low-
voltage wireless applications. On the TelosB mote, the CC2420 is controlled by
TI MSP430 microcontroller.

We extend the WiLab testbed with a group of special nodes. These nodes are
also TelosB compatible, however, they communicate via an emulated network
instead of the wireless ether (Fig 3, Fig 4). In another word, we introduce a group
of nodes with their “private ether” into the testbed. An interface is offered to
control the “private ether”. For the experimenters of the testbed, those special
nodes can be programmed in an identical way as the original nodes.

Fig. 3. The wireless network Fig. 4. The emulated wireless network

To implement the wireless link emulator three steps are needed : first, sep-
arate the radio from the rest of the hardware on the sensor node. Second, a
radio interface is made to maintain the radio functionality. Finally, a hardwire
programmable link to other nodes is implemented to replace the ether. In reality
this is realized by replacing the radio and its antenna with an interface that
connects the MSP430 processor to this private ether. All the ether behavior is
emulated with low cost FPGA .

The remaining part of the paper is organized as follows: Part 2 discusses
the system implementation in detail. Part 3 describes the principles of physical

50 W. Liu et al.

layer emulation. Part 4 presents the experimental validation of our system. Part
5 compares our emulator with other emulation systems and Part 6 concludes
this paper.

2 System Implementation

2.1 Requirements for a Wireless Network Emulator

The emulator of WiLab takes a different approach compared to most existing
emulation systems. The idea is to remove the wireless ether completely, and
replace it by a well-controlled programmable medium. The requirements for
such an emulator are :

– The software running on the modified sensor node should behave exactly the
same as if it was executed on the original TelosB mote.

– The electrical characteristics of the radio (CC2420) should be maintained,
including the SPI commnication to the local processor and the interface
signals (CCA, SFD, FIFO,FIFOP, Vref, RST).

– The transmitting and receiving functionality of the radio should be main-
tained.

– Similar latency as the radio physical layer is mandatory for the emulator.
– Programmable topology.
– Programmable interference.

Among all the requirements, the latency is the most challenging. Electromagnetic
waves travel at the speed of light in the air. By nature, the wireless environment
is a broadcast medium with extremely low latency. According to the data sheet
of CC2420 [5], there is approximately 2 us latency between the transmitter and
the receiver due to the bandwidth limitations on both sides. The emulator only
needs to behave as well as the radio, hence the actual latency requirement is 2
us. The detailed calculation related to latency is written in Part 2.5.

2.2 A New Proposal: The Wired Emulator to Test a Wireless
Network

In order to achieve reliable low level interconnection, wires are used as the phys-
ical medium for the emulator. The “private ether” is now a wired network in
which all nodes are connected together by wires. The question is, what is the
most suitable physical topology for the emulator to meet all the requirements?
One option is to use a full meshed topology, where every node can communicate
to every other node, Figure 5 . A Master node is required to control the commu-
nication parameters of the mesh while the effective data is directly transmitted
between the slaves. The definition of the Master node (to manage the ring) and
the Slave node (the real transceiver) is used all over in this paper.

It is obvious that such a topology offers the largest bandwidth, but at the same
time it also has the largest amount of connections. For a network of N nodes,

FPGA-Based Wireless Link Emulator for Wireless Sensor Network 51

Fig. 5. Full mesh topology Fig. 6. Bus topology

a total N × (N − 1)/2 connections are required. This could be a considerable
number for a complex emulator.

Another option is to connect all the nodes in a common bus topology (Figure
6). All nodes can still communicate to each other, but a complex arbitrator on
the bus is required. This could be a serious limitation to the system bandwidth.
From a electrical point of view, the more nodes present on the bus, the higher
the parasitic capacitance (every node adds some capacitance), and accordingly
the lower the switching speed of the bus will be.

The star topology (Figure 7) is a point-to-point network that does not suffer
from the accumulation of parasitic capacitance. However, the master node needs
to have enough processing power to handle all the incoming and outgoing data
to meet the low latency requirement.

Fig. 7. Star topology Fig. 8. Ring topology

The ring topology of Figure 8 has some appealing features. It is a point-to-
point network, so every link can run at high speed. Although it does not offer
direct link between every single node (Slave), the available high speed and an
appropriate protocol can compensate for it. The ring topology has an inherent
pipelined behavior, which further increases the total network bandwidth. The
pipelined architecture allows for simultaneous data transfer between every two
neighboring nodes. For example, at the same time instant, while Slave 2 is com-
municating with Slave 3, Slave 3 can also communicate with Slave 4. This offers
a huge advantage over the bus topology. Therefore, we decide to take the ring
topology as the physical topology of the emulator.

52 W. Liu et al.

2.3 The Low Level Protocol

A flow of packets are circulating unidirectionally through the ring. At any mo-
ment every single node is receiving a frame from its left neighbor and at the same
time is transmitting a frame to its right neighbor. The packet flow is formed by
frames (Figure 9). Each frame is allocated to one node (Master, Slave). A node
is only allowed to write data into its own frame. When receiving a frame from
another node, the content of the frame is retransmitted; when receiving a frame
from the node itself, either new data or a dummy empty frame is transmitted.
Hence a given frame can circulate only once on the ring. Thanks to the frame
structure and inherent pipelining, the ring effectively behaves as multi-access
medium without collision, which is exactly what we wanted for the physical
connection on the emulator.

Fig. 9. Frame sequence

A frame is a 32 bit value and can have several formats. Figure 10 shows the
normal data frame. A normal data frame is used to transfer data from one slave
to the other slaves. The bit D0=1 indicates the normal data frame. The bits D1-
D7 contain the source address, which serves as the identifier of the frame on the
ring. The D8-D15 bits contain the parameter Channel ID, indicating at which
“frequency” the node is transmitting, compatible to the Zigbee channel index.
The bits D16-D23 are the transmit power (TX Power) in dBm unit. And the
Lower 4 bits of D24-D31 contains the 4-bit actual data, comparable to the 4-bit
symbol formed on the real radio, the extra 4 bits are reserved for future extension.
The parameters Channel ID and Tx Power cover all the physical property of a
symbol. According to the 802.15.4 standard, a symbol stays on the ether for 16

FPGA-Based Wireless Link Emulator for Wireless Sensor Network 53

Fig. 10. Normal data frame Fig. 11. Configuration or status frame

us. To emulate the symbol period, the data frame is only transmitted via the
ring every 16 us, however, the actual duration for a frame to circle around the
ring is much shorter. This is covered in Part 2.5.

Besides connections to the ring, the Master node also has connections to a
Web Server and a LAN connection to the Wilab Database. Via the Web Server
the user can configure the “virtual ether”. Parameters for a specific node, such
as the noise floor, or path loss, can be programmed via the Master. This is
realized by generating a master configuration frame on the ring (Fig 11). This
frame circulates through the ring and the addressed slave will copy the data
internally. Broadcasting configuration, i.e. addressing several slave nodes with
one frame, is possible. Besides configuration, if requested, a slave node can send
status reports to the Master. The Master fetches the report and writes it into
the WiLab database. The status reports usually contain information related to
GPIO activities on the radio interface, or commands received from the local
processor. Therefore it is a powerful tool for monitoring the radio activity and
software debugging.

Broadcasting is straightforward. A transmitting node will write its frame with
a given Channel ID on the ring. Any other node with the same channel ID should
read out this frame.

2.4 The Physical Implementation

A connection between two nodes is made by a standard UTP cable (4 twisted
pairs) Fig 12. Low voltage differential signaling (LVDS) is the IO standard on
the ring. This ensures good signal integrity at high transmission speed. Among
the 4 twisted pairs, one pair is used as clock signal, two pairs are used for data,
the last pair is used for synchronization. The Sync signal travels along with the
Master frame. It can be considered as the Master frame flag. This Sync signal
is essential for the synchronization of the whole ring structure. A node that is
receiving a frame while the sync is active is for sure receiving the Master frame.

The two data lines allow to double the transmit speed. Hence to transmit 32
data bits only 16 clock pulses are needed. Three extra clock pulses are needed
for internal processing. This results in a total of 19 clock pulses to transmit a 32
bit frame. The timing diagram of the ring is shown in Figure 13. Every frame
on the ring corresponds to a time slot of 19 clock pulses.

As mentioned earlier, all the logic needed to implement the ring structure
and to emulate the radio module is implemented on the FPGA. Every node
(master, slave) has one FPGA board. More specifically, the slave node is built

54 W. Liu et al.

Fig. 12. The 4 pair UTP cable connection between nodes

Fig. 13. Detailed timing diagram of the data on the ring

on the Xilinx Spartan-3A-400 FPGA [7], while the master is built on the Xilinx
Spartan3E-500 FPGA [6]. The FPGA chip has a large amount of logic gates
available to build all types of dedicated logic, on top of that a powerful 32 bit
“soft” microprocessor (microBlaze [15]) is also available as an IP core(intellectual
property). To implement the low level ring protocol, a dedicated ring transmitter
is built with VHDL(hardware description language).

The radio interface is a combination of software and customized hardware
on the FPGA, with the software part running on the “soft” processor — mi-
croBlaze, mainly responsible for connecting the ring transceiver and the radio
interface. In addition, the software also performs processing needed for physical
layer emulation, to be explained in Part 3. The core of the hardware part of
the radio interface is a dedicated finite state machine, which takes care of the
SPI communication towards the MSP processor, generating necessary interrupt
towards software and partially controls the GPIO signals on the radio interface.
The block diagram of a slave is shown in Figure 14.

Special care is taken to maintain the quality of the clock signal. The Xilinx
Spartan-3A FPGA has on-board high-speed LVDS transceivers to drive the ring.
The clock recovery is executed by the PLL inside the FPGA. The Master node
is generating the clock while each slave node is reconstructing the clock on its
output with minimal phase delay with respect to the input. This recovered clock
is used in the ring transceiver logic. Thanks to this structure, the clock quality
is maintained through the entire ring. This enables the ring clock to run at very
high speed.

FPGA-Based Wireless Link Emulator for Wireless Sensor Network 55

Fig. 14. Block diagram of the slave node

2.5 Timing Considerations

The clock speed of the ring is 100 MHz. A complete 32-bit frame requires 19
clock pulses. We currently only implement a ring with 6 slave nodes and one
master. When a frame passes a node, it is first received completely and then
transmitted. Hence the duration for a frame to reach all the other nodes on the
ring equals:

T1 = 6× 19× 10nSec = 1.14us (1)

The duration for one frame to completely circulate through the ring is :

T2 = (6 + 1)× 19× 10nSec = 1.33us (2)

Be aware that not one but seven frames do travel around the ring during the
1.33 uSec. Hence a node can get access to the ring every 1.33 us.

The latency on the ring is defined as the time between transmitting a frame
by a given node and receiving that frame by another node. The best case is
when a node is transmitting to its left neighbor, the worst case is when a node
is transmitting to its right neighbor. The equation (1) shows that our worst case
latency is 1.14 us, smaller than the 2 us latency of CC2420 chip. Hence this
design meets the initial requirement.

3 Physical Layer Emulation

In wireless systems, bit errors occur during the decoding of received symbols.
When the received signal is much stronger than the local noise floor, the received
symbol is almost always correctly decoded, hence hardly any bit error can appear.
On the other hand, if the received signal is not strong enough to decode, frequent
bit errors will appear. In between the two extremes, there is a “gray zone”

56 W. Liu et al.

where the bit error rate varies . We now focus on this zone. It is known that for
each modulation technique, there is a given relationship between the bit error
rate(BER) and the signal to noise ratio(SNR). The 802.15.4 standard features
the OQPSK and DSSS modulation. The theoretical BER curve for 802.15.4 is
shown in Figure 15, [13]. Once the SNR is known, we can generate the bit error
accordingly.

To enable the calculation of SNR, several parameters need to be considered:

– The transmit power
– The path loss between transmitter and receiver
– The local noise floor and interference level at the receiver

The transmit power accompanies with each symbol as explained in Part 2.4.
Each slave has a path-loss table which contains the path loss to all the other
nodes. The local noise floor is also a parameter configured by the Master. All
the parameters are stored in dB scale. For each incoming symbol, the SNR can
be calculated as

SNR = TxPower − PathLoss−NoiseF loor (3)

If there are multiple senders active at the same time on the same channel, re-
ceivers can only recognize the symbol from one sender, the symbols of the other
senders are treated as interference. To emulate the interference from other nodes,
the strongest interference is used instead of the noise floor in the calculation of
SNR. In this case the SNR is actually the same as SINR (signal to interference
and noise ratio), for simplicity, we use the term SNR throughout this paper.

3.1 Quantized SNR and Its Link to Bit Error Rate

Once the SNR value is obtained, theoretically we could calculate the correspond-
ing BER, however, practically this would give too much processing load on the
embedded FPGA system. Hence we quantize the BER vs SNR curve and store
the most interesting part into a local look-up table. As explained above, the
“gray zone” of SNR is closely related to the bit error. So the first step is to
quantize this “gray zone”. This is illustrated in Figure 15. The SNR value can
be expressed by the formula below:

SNR = SNRoffset + SNRstep × n (4)

SNRoffset andSNRstep are two important parameters.SNRoffset represents the
lowest SNR value at which data can still be received, albeit with errors. Below this
value packets are completely corrupted. SNRstep is the quantization step. Thus
SNR becomes a function of n. The maximum value of n represents a threshold set
by the user. When the SNR value is above the selected threshold, the data is pro-
cessed without introducing bit error. The value n is also used as the index to look
for the proper BER in the look-up table. In the remainder of the paper, the value
n is referred as SNRindex.

FPGA-Based Wireless Link Emulator for Wireless Sensor Network 57

3.2 Bit Error Generation

The bit error is generated in software. BER value by nature is a fraction number,
however, calculation based on floating point and fraction number is slow and
expensive. Therefore we express BER as 1/X , theX is the nearest integer of the
BER value’s reciprocal. Only X is stored in the look up table. For instance, when
BER is 0.1%, the value 1000 will be stored in the look-up table. The software
counts the total number of received bits, and will toggle one bit every X bits.
The toggle location is generated randomly. When X bits are received, the bit
count is cleared to zero, and a new cycle starts with a new random toggle location
generated. Such a cycle is called a bit-error cycle.

This solution is simple to implement, but has one major drawback, when
transmitting a fixed number of packets with a fixed packet size, the packet error
rate(PER) becomes a constant. To avoid this situation, another parameter is
introduced — run-length of the bit error. This parameter defines the maximum
number of bit errors that can appear in a roll. Thus in the beginning of one
bit-error cycle, the random toggle location and the run-length of bit error are
generated. When the bit count reaches the toggle location, it will continue to
toggle the received bits until the number of toggled bits reaches the run-length.
When more than one bits are toggled in a bit-error cycle, there will be none
toggled in the following cycles. Hence eventually bit error rate stays the same.
The run length parameter effectively characterizes the burst behavior of the bit
error.

The random generator used here is based on a 32-bit hardware CRC shift
register. So it is actually a pseudo random generator. We admit this can cause
certain level of distortion. However, during experiments (see Part 4), we are able
to obtain emulation results that are compatible with real measurements, the
distortion introduced here is considered to be insignificant.

3.3 Topology Control and Interference Generation

Until now the link between bit error rate and SNR is established. In summary,
the topology control is directly achieved by specifying path loss between each
node. The path loss will affect several parameters, namely, RSSI and SNR, and
eventually affect the bit error rate of the received packet. By configuring the
path-loss table in each node inside the “virtual ether”, an arbitrary logical topol-
ogy can be formed, with no impact from the physical ring topology. When the
path-loss table is configured in real time, the logical topology becomes dynamic.
This allows us to emulate a network with mobile nodes.

As for interference generation, there are two options. One option is to directly
generate interference configuration from the Master. This is realized by configur-
ing the local noise floor parameter in all the Slave nodes. The noise configuration
can be based on a simple pattern, as illustrated by experiment in Part 4.2. An-
other possibility is to record the interference in a certain environment and replay
it by the Master afterwards. The quality of this approach depends on the time
resolution of the recorded interference.

58 W. Liu et al.

−10 −5 0 5 10
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

B
E

R

Grey Area

SNR step

SNR offset

Fig. 15. Quantized BER curve

−10 0 10 20 30 40
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

SNR (dB)

B
E
R

Indoor Approximation

Indoor Measurement

Outdoor Approximation

Outdoor Measurement

Fig. 16. Approximated BER curve

The second option is done by estimating the BER curve. Sometimes interfer-
ence does not have a simple pattern. Recording interference with high resolution
consumes a large amount of memory. Hence direct interference generation is not
always a good option. If we can obtain the BER vs SNR curve under a certain
environment, an appropriate amount of bit errors can be generated. The amount
of generated bit errors should be equivalent to what is caused by the interfer-
ence in the given environment. Therefore the desired amount of interference is
obtained.

The measurement of BER is usually not that straightforward. It can be done
in many ways. Here for simplicity, we assume every bit inside a packet is indepen-
dent, for a packet of N bits, the BER and PER have the following relationship:

1− PER = (1− BER)N (5)

Therefore BER can be derived from PER when the packet size is known. The
measurement of PER is usually simple. When combine the PER measurement
with a simple energy recording, the BER vs SNR curve can be derived. This is
further explained with experiment, Part 4.1.

4 Experiments

4.1 Emulation of Indoor and Outdoor Environment by BER
Estimation

In this experiment we aim to emulate different environments by the proper esti-
mation of BER curve. We used the experiment result in [13] as input, where a set
of packet error rate(PER) measurements are performed in function of the dis-
tance between the transmitter and the receiver. The measurement is performed

FPGA-Based Wireless Link Emulator for Wireless Sensor Network 59

both indoor and outdoor. In addition to PER, RSSI (received signal strength
indicator) is also recorded. The indoor experiment is performed multiple times.
Each time a different packet size is used. We only selected the measurement
with packet size of 127 bytes for the indoor emulation. The PER in the outdoor
environment is measured only with a packet size of 20 bytes. For details of the
experiment, readers are referred to [13]. We derived the path loss from the mea-
sured RSSI, the result is shown in Figure 17. These derived path loss is used as
the direct input for the link configuration.

2 5 8 101214 20 25 3032 40 50 60 70
50

55

60

65

70

75

80

85

90

95

distance[m]

P
at

hl
os

s
[d

B
m

]

Indoor Pathloss
Outdoor Pathloss

Fig. 17. Path loss vs distance

The next step is to estimate the BER curve. We first calculate the measured
BER based on the PER measurement (Fig 18, Fig 19) and Equation (5). We
measured the indoor noise floor in our office with Airmagnet [9], which is around
-88 dBm. For the outdoor environment, -100 dBm is the selected average noise
level based on calculations [17]. Given the transmit power (0 dBm), path loss,
and local noise floor, SNR can be calculated according to Equation (3). These
lead us to the measured BER curve, shown in Figure 16. Based on the theoretical
relationship of SNR and BER, the approximation of measured BER curves are
derived (Figure 16). These estimated BER curves are stored in the look-up table
for our emulation. The results of the emulated PER for both indoor and outdoor
environments are plotted in Figure 18 and Figure 19 respectively.

In general, the emulated PER approaches the measured PER very well for
both indoor and outdoor scenarios. There are some deviations at certain loca-
tions, these are most likely caused by inaccurate RSSI or simply fluctuations of
measurements.

Hence, we prove that by estimating the BER curve properly, we are able to
emulate different environments. The PER increase with the distance, which also
prove that our methodology for topology control works as expected.

4.2 Emulation of Microwave Oven Interference by Direct
Configuration

In this experiment, we generate the interference configuration directly from the
Master. We aim to compare our emulation result with JamLab [12]. JamLab

60 W. Liu et al.

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

distance[m]

P
E

R

Measured PER
Emulated PER

Fig. 18. PER indoor

10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

distance[m]

P
E

R

Measured PER
Emulated PER

Fig. 19. PER outdoor

focuses on interference emulation based on existing testbed facilities, such as
TelosB nodes. According to [12], the interference of microwave oven has a simple
on-off pattern with 20 ms period time and 50 % duty cycle. We decide to use this
simple pattern to emulate the interference of microwave oven. The experiment
scenario is identical as in JamLab. One node sends 400 packets to another node
at 1 pkt/sec. The transmitter and receiver are placed about 3 meters apart with
no obstacles in between. According to the widely-used path loss model[16], path
loss at distance d from the transmitter equals:

PL(d) = PL(d0) + 10λ log
d

d0
(6)

The path loss at 2 meter is known to be 46 dB [12]. The path loss coefficient
λ for indoor environment is typically 2.5. When substitute these values into
equation (6), we get 50 dBm as the path loss at 3 meter. Thus the topology can
be configured.

The only difference between our emulator and JamLab is how the interference
is generated. JamLab used another TelosB node to generate the interference. In
our system, Master transmits a configuration frame every 10 ms via the broadcast
configuration channel, thus the interference is turned “on” or “off” every 10 ms.

We only emulated for NULL MAC with packet size of 100 bytes. The emu-
lated packet receiving rate (PRR) from our emulator is 44.1%, from JamLab is
43.6%. We can see, that both emulation results are compatible to each other.
However, in JamLab, the location of the interferer has to be carefully chosen,
the transmit power also needs to be adjusted in order to obtain the right level
of interference. If interference is required in a large area, the coverage becomes
an issue. When multiple interference sources are present, JamLab needs a care-
ful planning to avoid cross talk between different interference areas. Compared
to JamLab, we only need to configure the Master. Every node gets the ex-
act amount of interference as configured, which is much more accurate and
flexible.

FPGA-Based Wireless Link Emulator for Wireless Sensor Network 61

4.3 Testing at MAC Layer

There is always a concern that the physical topology of the ring will influence
the network behavior on the higher level. In this experiment we further prove
the reliability of the emulator by performing a throughput test at MAC layer.

1 2 3 4 5
10

20

30

40

100

number of senders

T
h

ro
u

g
h

p
u

t
(k

b
it

/s
ec

o
n

d
)

Measured throughput
Emulated throughput

Fig. 20. Throughput vs Senders

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Number of nodes in between sender and receiver
T

h
ro

u
g

h
p

u
t

d
ev

ia
ti

o
n

 (
%

)

Fig. 21. Deviation vs physical topology

We emulate the throughput experiment presented in [10]. The original experi-
ment is performed on a set of TelosB motes. The receiver is situated in the center
while a set of 1 to 10 senders are placed 1 meter away from the receiver. To em-
ulate the same topology, we configured the receiver to have identical path loss
to all the senders. The path loss value is calculated based on Equation (6). The
senders sent packets to the receiver as fast as permitted by the MAC layer. The
receiver counted the number of packets received successfully over the duration of
60 seconds. We only performed the test for XMAC[14] with 1 to 5 senders. The
software is downloaded from [11], identical as used in [10]. The result is shown
in Figure 20. In general, the throughput increases with the number of senders.
The emulated throughput curve fits well with the measurements.

We also take an extra step to exclude the influence of the physical topology.
In case of only one sender and one receiver, we change the sender and receiver’s
physical location, from being neighbors on the ring till 5 hops apart. The devia-
tion of the throughput in percentage is plotted in Figure 21. The deviations do
not show a trend related to the physical topology, and the value itself is also very
small, less than 1% of the total throughput. Hence we conclude the impact of the
physical ring topology on the performance of higher level protocol is neglectable.

5 Related Work

Many efforts have been made to overcome the limitations associated with wire-
less testbeds. For example, the solution presented in [12]. This solution focuses
on generating interference with existing off-the-shelf hardware in a testbed. The
transmit power and the location of the interferer have to be carefully set up in
order to obtain desired interference coverage and low cross-talk between inter-
ference sources. Our solution, on the other hand, does not require such kind of

62 W. Liu et al.

physical deployment. Both topology and interference are controlled by software
parameters, and can be realized in real-time.

The work presented in [18] is comparable to our work in the sense that they
also use FPGA to replace the wireless media. However, there are three major
differences: first at hardware level, they actually intercept the analog RF signal
at the antenna port, while in our system, the data is never modulated into
RF signal; secondly, in their work the FPGA is used to perform digital signal
processing(DSP) based on a certain channel model, while in our system it is
used to implement the radio interface and ring transceiver; Finally in essence,
our system relies on the relationship between SNR and BER to achieve topology
and interference control, while they rely on the physical layer channel model and
DSP. From a user perspective, the topology and interference control is realized by
tuning DSP parameters of the selected channel model, eg large-scale attenuation
or fine grain fading. While for our system it is achieved by specifying parameters
such as pathloss and noise level directly. The work presented in [18] is more
suitable to emulate certain physical layer phenomena, while our system focuses
more on general network performance. Also we believe our system is more user-
friendly for researchers without DSP and physical layer background.

6 Conclusion and Future Work

We implemented a wireless link emulator based on low-cost Xilinx FPGA. This
emulator differs from previous work by its unique hardware aspects, including
the customized radio interface and the ring transceiver. The high speed hardware
design is the key enabler for the concept of physical layer emulation.

We introduced the methodology used by our system to emulate various en-
vironments, and demonstrated experimental results that are compatible with
real-life measurements.

Nevertheless, many interesting directions remain for further research. For ex-
ample, the real-time topology control can be used to emulate a network with
mobile nodes, and the real-time interference control creates the possibility to
replay interference from recordings.

Our solution is a low cost yet very powerful and flexible test facility, that
can be extended to other radio chips and wireless technologies. The scale of the
emulated network can be further increased by using the newest FPGA family
(Spartan6) yielding higher speeds clock on the ring. In the future, we aim to
enhance the ring clock speed by a factor of eight, resulting in 48 nodes in the
emulated network.

Acknowledgment. The research leading to these results has received funding
from the European Union’s Seventh Framework Programme FP7 under grant
agreements number 258301 (CREW project) and number 287581 (OpenLab
project).

The authors would also like to thank Piet Cordmans, Yang Yang, Stefan
Schipper, Libo Li and Peter Ruckebusch for their contribution to this work.

FPGA-Based Wireless Link Emulator for Wireless Sensor Network 63

References

1. Werner-Allen, G., Swieskowski, P., Welsh, M.: Motelab: A wireless sensor network
testbed. In: 4th Annual Conference on Information Processing in Sensor Networks,
IPSN (2005)

2. Handziski, V., et al.: TWIST: a scalable and reconfigurable testbed for wireless
indoor experiments with sensor networks. In: Proceedings of the 2nd International
Workshop on Multi- Hop Ad Hoc Networks: From theory to Reality (REALMAN
2006), Florence, Italy, May 26, pp. 63–70 (2006)

3. Tmote sky: ultra low power IEEE 802.15.4 compliant wireless sensor module (2006)
4. Tytgat, L., Jooris, B.: WiLab: a real-life Wireless Sensor Testbed with Environment

Emulation (2009)
5. Chipcon. CC2420 datasheet (March 2007), http://focus.ti.com/lit/ds/

symlink/cc2420.pdf

6. Xilinx, UG331 Spartan-3 Generation FPGA User Guide, www.xilinx.com
7. Avnet, Spartan-3A Evaluation Kit, User Guide, www.avnet.com
8. Digilent, Spartan-3E Starter Kit, www.digilent.com
9. Fluck Corporation AnalyzerAir User Manual. Rev. 2 (2006)

10. Kevin, K., et al.: A Component-Based Architecture for Power-Efficient Media Ac-
cess Control in Wireless Sensor Networks. In: SenSys (2007)

11. http://tinyos.cvs.sourceforge.net/tinyos/tinyos-2.x-contrib/

wustl/upma/

12. Carlo Alberto, B., et al.: JamLab: Augmenting Sensornet Testbeds with Realistic
and Controlled Interference Generation. In: IPSN 2011, Chicago, Illinois, April
12-14 (2011)

13. Petrova, M., Riihijarvi, J., Mahonen, P., Labella, S.: Performance study of IEEE
802.15.4 using measurements and simulations. In: Wireless Communications and
Networking Conference, WCNC 2006. IEEE (2006)

14. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble MAC
protocol for duty-cycled wireless sensor networks. In: SenSys (2006)

15. MicroBlaze Processor Reference Guide: Embedded Development Kit EDK 10.1i,
http://www.xilinx.com

16. Zuniga, M., Krishnamachari, B.: Analyzing the Transitional Region in Low-Power
Wireless Links. In: SECON 2004 (2004)

17. Haykin, S.: Communication Systems, 4th edn., p. 61. Wiley, New York (2001)
18. Borries, K., Wang, X., Judd, G., Anderson, E., Steenkiste, P.: Experience with

a Wireless Network Testbed based on Signal Propagation Emulation. In: IEEE
European Wireless 2010 Lucca, Italy, April 12-15 (2010)

http://focus.ti.com/lit/ds/symlink/cc2420.pdf
http://focus.ti.com/lit/ds/symlink/cc2420.pdf
www.xilinx.com
www.avnet.com
www.digilent.com
http://tinyos.cvs.sourceforge.net/tinyos/tinyos-2.x-contrib/wustl/upma/
http://tinyos.cvs.sourceforge.net/tinyos/tinyos-2.x-contrib/wustl/upma/
http://www.xilinx.com

	FPGA-Based Wireless Link Emulator for Wireless Sensor Network
	Introduction
	System Implementation
	Requirements for a Wireless Network Emulator
	A New Proposal: The Wired Emulator to Test a Wireless Network
	The Low Level Protocol
	The Physical Implementation
	Timing Considerations

	Physical Layer Emulation
	Quantized SNR and Its Link to Bit Error Rate
	Bit Error Generation
	Topology Control and Interference Generation

	Experiments
	Emulation of Indoor and Outdoor Environment by BER Estimation
	Emulation of Microwave Oven Interference by Direct Configuration
	Testing at MAC Layer

	Related Work
	Conclusion and Future Work
	References

