
LTE Emulation over Wired Ethernet

Roman Chertov, Joseph Kim, and Jiayu Chen

The Aerospace Corporation
2310 E. El Segundo Blvd

El Segundo CA 90245, USA
{Roman.O.Chertov,Joseph.Y.Kim,Jiayu.Chen}@aero.org

Abstract. Long-Term Evolution (LTE) standard merges an all IP voice
and data communications with dynamic spectrum resource scheduling.
The resource scheduler must balance the QoS requirements, traffic de-
mands, and physical channel conditions to create desirable wireless end-
user performance. The purpose of our research and the focus of this paper
is a development of a unified testbed platform based on Emulab that can
be used to examine the key aspects of an LTE system in realtime, in-
cluding real time uplink and downlink scheduling, QoS parameters, and
Android end-user applications. Our validation studies demonstrate that
the testbed is capable of achieving delay, loss, and jitter that can be as-
sociated with an LTE communication system, and can be easily used to
study a variety of LTE scheduling algorithms.

1 Introduction

Over the past several years, mobile carriers began the transition towards the
3rd Generation Partnership Project (3GPP) Long-Term Evolution (LTE) stan-
dard. The LTE standard relies on Orthogonal Frequency-Division Multiple Ac-
cess (OFDMA) for the downlink radio access. The uplink in LTE utilizes the
Single-Carrier FDMA (SC-FDMA) radio access scheme. Both the uplink and
the downlink can support multiple users concurrently by allowing the users to
be partitioned in time and frequency. A centralized resource scheduler is required
to create the time and frequency mappings for the users and the base station for
the uplink and the downlink. LTE differs from the previous 3GPP standards as
all of the communications are Internet Protocol (IP)-based, including the regu-
lar phone calls. The all-IP based nature of the communications requires Quality
of Service (QoS) to ensure that realtime traffic such as voice gets priority over
non-realtime traffic such as HyperText Transfer Protocol (HTTP). This feature
of LTE means that the scheduler must be cross-layer-aware and must consider
physical channel conditions as well as the Layer 3 QoS requirements.

A great breadth of research has been conducted regarding LTE up and down-
link scheduling. However, the majority of works rely either on pure simula-
tion [1,2] or on specialized hardware emulators [3]. The problem with simulation
approaches is that the simulation does not allow the complete high-fidelity sim-
ulation of a real-world LTE system (end users, services, base station, etc.) as

T. Korakis, M. Zink, and M. Ott (Eds.): TridentCom 2012, LNICST 44, pp. 18–32, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



LTE Emulation over Wired Ethernet 19

the complexity severely impacts validation and simulation times. In addition, a
simulation approach requires rewriting the handset and server applications for
the simulation environment. Naturally, this approach requires extensive valida-
tion to ensure that the rewritten applications follow the same behavior as their
real-world counter parts. The hardware-based emulation solutions can emulate
the entire system, but the hardware settings might be closed to the experi-
menter because of the proprietary nature of the hardware emulator. Hardware
emulation systems typically suffer from scalability problems as they are primar-
ily designed for testing and troubleshooting. Finally, the emulation hardware
can be prohibitively expensive to some experimenters. In order to address these
two limitations, we sought to create an LTE emulation system that incorpo-
rates (1) end-user handset IP stacks and applications, (2) QoS management, (3)
real-world services, and (4) up/downlink LTE scheduling. Finally, the emulation
system must allow for repeatable and reproducible experiments, use commodity
hardware, and scale to several hundred or more users.

An LTE network is a system of systems, where the individual systems can
have a direct impact on other systems. Hence, we were interested in creating
a complete LTE emulator that could support the following types of scenarios:
“How would an Android application, or the cloud service X react to the QoS or
scheduler changes on the up/down LTE link?” “What is an impact of application
Y in a heavily congested cell?” “What are the measurable impacts of multicast
video distribution in an LTE network?” “What is an optimal QoS and pricing
strategy for a carrier for a given network and end-user applications?”

As the foundation for the emulator, we have chosen to use the Emulab
(http://www.emulab.net) [4] testbed platform from University of Utah. The
testbed is composed of several hundred commodity PCs with multiple network
cards and Cisco 6000 series enterprise switches. The high degree of connectiv-
ity between the commodity PCs coupled with custom switch Virtual Local Area
Network (VLAN) management software allows experimenters to create arbitrary
networks. Because of this capability, the Emulab testbed is well known in the
networking community for its flexibility in creating arbitrary network topologies
and its ability to conduct repeatable and reproducible experiments. Another no-
table feature of Emulab is that the testbed management source code is freely
available for download, meaning that anybody can create an Emulab instance
given sufficient hardware.

The other components of our LTE emulator were built around the Click Mod-
ular Router [5] (referred as Click from now on), Android Software Development
Kit (SDK), and the Linux operating system. All of the chosen components are
open source, thus allowing us to perform any necessary modifications. The result-
ing LTE emulation system is capable of running Android-based “soft” handsets,
using highly configurable QoS settings, utilizing any Linux-based service (httpd,
Session Initiation Protocol (SIP) proxy, etc.), and performing realtime uplink and
downlink LTE scheduling duties. The majority of this paper focuses on the em-
ulator architecture and the validation of the emulator. However, we did perform

http://www.emulab.net


20 R. Chertov, J. Kim, and J. Chen

several showcase experiments that demonstrate the interaction between the LTE
uplink scheduling, QoS settings, and the end-user application performance.

The remainder of the paper is organized as follows. Section 2 provides an
overview of the related work. Section 3 describes our emulation architecture.
Section 4 tests the fidelity of the emulation. Section 5 presents the results of our
experiments. Finally, Section 6 concludes this paper.

2 Related Work

Several prominent scientific instrumentation companies such as Rohde & Schwarz,
Agilent Technologies, and Nomor Research provide products that can integrate
LTE hardware-based emulators with the user-supplied equipment to test end-
to-end performance in the LTE environment [6,7,8]. The two main drawbacks
of the hardware-based testers are the high price of the devices and the closed
nature of the equipment. From a research standpoint, the proprietary nature
of the LTE testers can possibly prevent experimenters from implementing and
testing their own scheduling algorithms.

The closest works in the literature that is comparable to our LTE emulator
is the Mobility Satellite Emulation Testbed (MSET) developed by Chertov et
al. [10] and the OpenAir LTE emulator [9]. MSET was primarily designed to
emulate single-carrier satellite Time Division Multiple Access (TDMA) links
and did not implement a dynamic scheduling scheme that could operate on 10
ms time boundaries. Additionally, MSET did not provide a highly configurable
QoS management system that is supported by our LTE emulator. The OpenAir
LTE emulator developed by EURECOM is capable of emulating LTE physical
and Media Access Control (MAC) layers over Ethernet, but it is more geared
towards modeling the radio channel, while our system makes more emphasis on
the scheduling aspects of LTE.

3 Architecture

The following section describes the components of the architecture that we have
developed to run a complete emulated LTE network on The Aerospace Corpora-
tion testbed. Our testbed is based on Emulab [4] and utilizes 150 nodes. Emulab
control software allows an experimenter to reserve a number of nodes and create
an arbitrary network via Virtual Local Area Network (VLAN) manipulation on
the experimental switches, which interconnect the testbed nodes. In addition,
each reserved node is solely dedicated to the experiment owner who has root
privileges. On Emulab, Base Stations (BSs) and end-user handsets can be im-
plemented by using testbed nodes connected by a Local Area Network (LAN),
as shown on Figure 1. In addition, all of the nodes utilize a separate 1 Gbps
network interface for control traffic only to ensure that experimental and control
packets do not interfere with each other. The rest of the section described the
individual components that are necessary to turn an Emulab-type testbed into
an LTE emulator.



LTE Emulation over Wired Ethernet 21

Fig. 1. Emulated LTE topology, where the base station and the end-user handset
functions are performed by commodity PCs

3.1 LTE Radio Emulation

Radio emulation is the foremost critical component of our framework. The radio
emulator is what allows the access point or the end-user handsets to control
the bandwidth, jitter, and latency of the LTE network. In Figures 2(a) and 2(b),
the LTE Radio Emulator component is responsible for the LTE radio emulation.
Currently, the radio emulator does not model any physical layer parameters such
as noise, multipath, etc. The primary function of the radio emulator is to ensure
that the right number of bits is sent during an appropriate time slot. However,
the radio emulation element can be easily modified to read from scenario files
that specify Block Error Rate (BLER) for a given time instance in order to
determine if packets need to be corrupted or not. The BLER scenario files can
be derived by running physical layer simulations that take into account fading,
multipath, antenna parameters and interference over a given time period.

Figure 3 shows a sample 10-subframe LTE uplink schedule where the dark
gray blocks denote Transport Block (TB) allocations to a particular user. In an
LTE schedule, if a user is assigned a set of K TBs in a frame, then the sum
of the transmitted bits can be computed by adding up the usable bits for each

(a) Uplink (b) Downlink

Fig. 2. End-user handset and base station emulation



22 R. Chertov, J. Kim, and J. Chen

TB in the set K. Lets assume that each assigned TB uses the 16 Quadrature
Amplitude Modulation (16QAM) modulation with a code rate of 1

2 . This coding
when using an LTE waveform translates to 336 bits per TB1. This would imply
that the user can transmit 672 bits during subframe 0, 1008 bits during sub-
frame 5, and 1344 during subframe 9. Since a radio emulator permits the user or
the base station to transmit only the assigned number of bits during the allotted
subframes, the bandwidth, jitter, and latency will be affected as a result.

Fig. 3. Sample LTE schedule

We implemented the LTE radio emulation as Click element just like in the
previous work on satellite TDMA emulation [10]. The radio emulation element in
the emulated handset dequeues bits from an upstream queue only if the current
LTE scheduler assigned TB(s) to the current user. The queues in Click are
packet-based, hence we implemented an accounting scheme to keep track of how
many bits of the current packet have been sent. Once all of the TBs assigned
to the current packet have been “sent”, the packet is dequeued from the queue
and sent over the Ethernet. This accounting approach allows a packet to span
several TBs, subframes, or even schedules. Alternatively, a single TB can hold
multiple packets if its usable bit volume is high enough. It is easy to see that
the time it takes to transmit a given packet is entirely dependent on the LTE
scheduler and the allocations it creates for a given user. Therefore, the radio
emulator can influence the network effects such as delay and jitter solely based
on the schedule allocations just like the real-world LTE network. In this version
of the emulator, we did not implement the Hybrid Automatic Repeat Request
(HARQ) retransmission scheme, but we do plan to add it in the future.

The downlink can be emulated using the same radio emulation Click element
such that the base station emulates only the downlink (packets to be transmitted
to the end users). This arrangement allows for a complete LTE emulated network
to run on the testbed.

3.2 QoS Queue Management

Instead of using a simple drop-tail Queue, we opted to develop a highly cus-
tomizable queue management Click element, which is labeled as QoS Queue in

1 7 symbol
subcarrier

× 12 subcarrier
RB

× 4 bits
symbol

∗ 1
2
∗ 2RB

TB
= 336 bits, (each TB is composed of

two Resource Blocks (RB)).



LTE Emulation over Wired Ethernet 23

Figures 2(a) and 2(b). The queue management element was designed to allow
priority queues based on Differentiated Services Code Point (DSCP) values. The
queue management element permits any user-specified mapping of DSCP code
points into N priority queues, where queue zero is the highest priority and queue
N − 1 is the lowest. The queues have an adjustable queue depth. Finally, each
priority queue can be configured to delete packets that have been enqueued for
more than X seconds. This feature can be useful when experimenting with real-
time traffic, where packets that have experienced severe queuing delays might as
well be dropped. Since the end-user handsets send packets to the base station,
the queue management element maintains a set of priority queues only for the
base station, as shown in Figure 2(a). On the base station, however, the queue
management element creates a set of priority queues for each individual end user
as shown in Figure 2(b).

The queue management element is tied to the LTE radio emulator element,
such that the radio element pulls the packets out of the highest priority queue
first, when the user has been allocated LTE resources. Alternatively, the LTE
radio emulator can specify from which queue to dequeue if such information is
provided in the schedule. Finally, the queue manager can provide a variety of
statistics, such as queue depth, bytes seen, bytes dropped, etc., via the Click
read handler.

3.3 Schedule Management

One of the key aspects of an LTE network is the centralized scheduler that
creates up and downlink schedules. The scheduler is responsible for responding
to user demands and assigning non-overlapping frequency and time resources
to the users. In the real-world LTE network, the control channels are used to
convey user channel quality conditions and traffic demands to the scheduler. In
our emulated LTE architecture, we also utilize a control channel in the form
of an Ethernet LAN that is separate from the experimental Ethernet LAN.
Figure 2(a) shows the relationship between the end-user emulated handsets and
the uplink scheduler. The emulated handsets submit the queue statistics to the
uplink scheduler by accessing the Click read handler of the queue management
element. The uplink scheduler aggregates all of the individual queue reports and
submits them to the currently selected uplink scheduling algorithm. The uplink
scheduler considers the aggregated queue statistics, Channel Quality Indication
(CQI) values, scheduler parameters (end-user priorities, traffic type preferences,
etc.) and then creates a global schedule that is transmitted to the emulated end-
user handsets. The emulated end-user handsets in turn install the new schedule
such that the LTE radio emulator can follow the new schedule. The downlink
schedule management functions in exactly the same fashion. Figure 2(b) shows
the relationship between the base station and the downlink scheduler. The CQI
values for uplink and downlink can be derived in the same off-line simulation
fashion as the BLER values used by the radio emulation element.

The schedule management system is created by using a client and server
architecture that relies on Stream Control Transmission Protocol (SCTP) for



24 R. Chertov, J. Kim, and J. Chen

communication. The handset or the base station managers can interact with the
Click elements via the read/write handlers. The scheduler manager’s primary
goal is to aggregate the data from the clients and then submit the data to a
scheduling algorithm. The output of the scheduling algorithm can then be dis-
seminated to the handset or the base station managers. The scheduler manager
architecture allows for the scheduling algorithm to be chosen at startup via a
command line argument. This feature allows the user to rapidly experiment with
a variety of schedulers just by restarting the scheduler manager. We have opted
to use SCTP over Transmission Control Protocol (TCP) to ensure that queue
aggregation, schedule creation, and schedule dissemination cycle can occur in
under 10 ms. Additionally, we disabled the delayed transmissions to force SCTP
to transmit the data immediately. This setting change was necessary to achieve
the aggregation of end-user traffic demands and creation of a new LTE schedule
in the 10 ms time frame.

The schedule management system also has the ability to time-synchronize
the handset managers (not applicable for the downlink as there is only one base
station). The time synchronization uses a technique similar to the Network Time
Protocol (NTP) to measure the offset between the scheduler and the clients [11].
However, the clients do not change their local clocks to match the clock of the
server. The clients adjust the start time of the next schedule based on the offset
between the server by telling the LTE radio emulation element to either increase
or decrease the start time of the next LTE frame. Such an approach can ensure
that the clients synchronize their packet transmissions according to the global
uplink schedule.

3.4 “Soft” Handsets

As one of the primary goals of our emulation effort was to run real-world cell
phone applications, we have installed the Android emulator SDK on our testbed
nodes. The Android emulator runs the actual Android firmware on a Qemu
(http://www.qemu.org) Advanced RISC Machine (ARM) emulator. When run-
ning, the Android soft handset uses Qemu to send packets via the Linux IP stack.
Using Click, we created a fake Ethernet device2 called LTE, which receives all of
the packets from the Linux IP stack destined for the experimental IP subnet. In
turn, the fake Ethernet device injects packets into the kernel-level Click, which
then uses our QoS queue and LTE radio elements to emulate the LTE MAC
layer (see Figures 2(a) and 2(b)).

3.5 Admission Control and Mobility

Admission control can be accomplished by having a scheduler for a given base
station deny a connection attempt by an end user in case there is a resource
shortage. If the experimental scenario specifies that the end user is in reach of

2 FromHost Click Modular Router element.

http://www.qemu.org


LTE Emulation over Wired Ethernet 25

several base stations, then end user can be scripted to try the base stations in
order until a connection can be established.

Our architecture allows for creating experiments where the users can migrate
from one base station to another and the schedulers for the base station can
admit or not admit new users. In our system, base station migration is nothing
more than establishing a connection to a scheduler instance that manages a
particular base station. In addition, the handset emulator needs to start utilizing
an Ethernet MAC that corresponds to a new base station. MAC addressing
ensures that the packets will be delivered only to the newly associated base
station.

4 Emulator Validation

It was important to ensure, prior to conducting the experiments, that the emu-
lation components produced the expected results. This required running a suite
of calibration experiments to ensure that the specified delay, loss, and jitter of
a given LTE network were achieved.

4.1 Experimental Layout

For our validation experiments, we have used the topology shown in Figure 1.
The topology has 40 testbed nodes that run Fedora14 and use the Android
emulator with Android firmware version 2.3.3. Even though the testbed supports
150 nodes, only 40 nodes were available to us as other nodes were down for
maintenance or were used by other experimenters. One node serves as a base
station. All of the nodes use Click Modular Router 2.0 and use our custom
Click elements described in Section 3. For the validation experiments, we have
chosen to concentrate on the uplink as it is more challenging from the emulation
perspective: forty nodes must perform in unison to abide by the global uplink
schedule versus just the base station shaping its own downlink. The schedule
manager was configured to check the timing offsets between the base station
node and the handset nodes every 500 ms and could adjust the frame offset by
as little as 0.01 ms. In addition, an Exponential Moving Average (EMA) was
used to keep track of the time offset between the handset node and the base
station.

4.2 Validation Results

The uplink LTE emulator can be deemed successful if it achieves timing syn-
chronization between the participants and the correct delay and jitter effects are
produced. To test the uplink emulation, we have used a proportional schedule
(equal allocation to each handset), shown in Figure 4. The proportional schedule
evenly divides an LTE 10-ms frame with 6 TB rows among 30 handsets. Each
handset gets two TBs (6030 = 2). The schedule in Figure 4 also shows to which



26 R. Chertov, J. Kim, and J. Chen

Fig. 4. Proportional LTE schedule that assigns two TBs per handset

handset ID the TBs are assigned. For example, handset IDs 12, 13, and 14 can
transmit bits only during the fifth millisecond of the 10-ms frame.

We have used the 16QAM modulation with a code rate of 1
2 (one of the

allowed LTE uplink settings), which equates to 672 bits per handset per frame
(see Section 3.1). With a 672-bit allotment, each handset can transmit an 84-
byte packet every 10 ms. Even though a proportional scheduler is used, every
handset submits its queue statistics to the uplink scheduler, which disseminates
the global schedule. This was done to ensure that all parts of the emulation were
active.

The nodes that emulated the handsets were configured to transmit 84-byte
UDP packets (includes Ethernet/IP/UDP headers) at 200 packets per second
to the base station node for 100 seconds. The packet transmission rate was
intentionally set too high, to determine if the LTE emulation shaping would
take effect. The base station node used Click’s StoreUDPTimeSeqNum element
to embed time stamps into the packets as soon as they arrived and then used
ToDump element to save the captured packets to disk in Packet CAPture (PCAP)
format.

The packet inter-arrival times computed from the base station node’s time
reference point have the following statistics: mean – 10.0 ms, 5th percentile –
9.97 ms, 50th percentile – 9.985 ms, and 95th percentile – 10.036 ms. The inter-
arrival statistics do indeed show that LTE emulation allowed only one packet
per handset every 10 ms.

A much more interesting test is to determine if all the 30 handset nodes were
synchronized on the uplink, and if the packet arrival times coincided with the
global uplink schedule. The packet arrival times of the individual handset nodes
were compared against a static repeating 10 ms schedule shown in Figure 4.
We computed the time delta between the observed packet arrival time and its
logical slot location in the schedule. The time deltas for all 30 handset nodes
have the following statistics: mean – 0.279 ms, 5th percentile – 0.108 ms, 50th
percentile – 0.23 ms, and 95th percentile – 0.623 ms. Visually, the data can be
represented as shown in Figure 5. The numbers and their position represent the
IDs of the handset nodes and the time of the packet arrival from that node, the
solid vertical lines signify start/end of a 10-ms frame, and the dashed vertical
lines signify 1-ms subframes. The data almost exactly matches the schedule
shown in Figure 4 except for the time shift of around 0.23 ms (50th percentile
time delta). Even though there is a small violation in the schedule, the fact



LTE Emulation over Wired Ethernet 27

that 30 handset nodes were able to almost exactly synchronize with the global
schedule shows great promise in the emulator’s capability. In the future, we can
improve the timing by using Precision Time Protocol (PTP) or by coupling
Global Positioning System (GPS) devices to the testbed nodes [10].

7.03 7.032 7.034 7.036 7.038 7.04 7.042 7.044 7.046 7.048 7.05
(0,1)

(2,3)

(4,5)

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27 27

28 28 28

29 29 29

Time (sec)

R
B

 R
ow

 A
ss

ig
nm

en
t LTE 10 ms frame

Fig. 5. Packet arrival times overlaid with an uplink LTE schedule

5 Experiments

In this section, we present several uplink experiments that show the interaction
between scheduling, QoS, and end-user application performance. For the exper-
iments, we used all 40 handset nodes and used the same LTE parameters as in
Section 4, which equates to an uplink capacity of just over 2 Mbps. The primary
goal of the experiments was to show that the interactions can be quite significant
and warrant more detailed future studies.

5.1 HTTP Performance

To study the performance of HTTP from the end user’s perspective, we have
written a simple Android application that can time how long it takes to load a
given webpage. Using this application and the Android Debug Bridge (ADB),
we created a framework where we could instruct a handset to visit a web page,
wait until it loads, and log the result to a log file.

As we were using a closed test environment, we developed a suite of nine
synthetic web pages that included graphics and text. The pages were sized to
mimic the webpage distribution observed by Google crawlers [12]. The base
station node was configured to run an Apache web server and was loaded with the
synthetic web pages. The handset nodes were configured to visit the web pages
at random for 900 seconds, and used an exponential “reading” time with a mean
of 30 seconds before visiting the next web page. The “reading” time distribution
was taken from the IEEE C802.16m-07/074r1 evaluation document [13].

For this test, we have used two LTE uplink schedulers: proportional and on-
demand round robin. Just like in the validation section, the proportional sched-
uler simply allocates � 60

40� TBs per handset and does consider the queue reports.
On the other hand, the on-demand round robin scheduler allocates the resources



28 R. Chertov, J. Kim, and J. Chen

to the handsets only if they report non-zero queues. The allocations are per-
formed in a first fit fashion such that the first subframe must get filled before
the TBs in the next subframe can be allocated. Finally, the handset scanning
order is round robin to ensure fairness.

Figure 6 shows the average, min, and max web page load times when using
only 1 Gbps Ethernet, LTE uplink proportional scheduling, and LTE uplink
round robin on demand scheduling. It is interesting to see that the web page
load times for on-demand LTE scheduling is comparable to the no-emulation
results. Not surprisingly, the proportional scheduling does not perform as well,
primarily because the resources are assigned to the handset nodes even when
no HTTP get requests are issued, thus disallowing active handset nodes to take
advantage of the unused resources.

1 39 81 120 145 177 209 275 378
0

2

4

6

8

10

12

14

Web Page Size (KB)

P
ag

e 
Lo

ad
in

g 
T

im
e 

(s
ec

)

 

 

No emulation
On demand
Proportional

Fig. 6. Web page loading times

5.2 VoIP Performance

As cellular networks are primarily used for voice communications, we have per-
formed several experiments with only VoIP calls. In our experiments, we used
a Constant Bit Rate (CBR) application to generate UDP packets such that the
packet size and the packet rate was representative of the G.711 codec [14]. The
G.711 codec averages around 87 Kbps on Ethernet and the packets cover 20
ms of voice data, which equates to 50, 217-byte (including headers) packets per
second. We chose the G.711 codes as it offers relatively high fidelity and can
occupy a significant part of the uplink bandwidth.

To generate realistic call duration times observed by a single base station,
we used the lognormal distribution with μ = 3.287 and σ = 0.891, as was
observed by F. Barcelo and J. Jordan [15]. We chose the lognormal instead of
the recommended lognormal-3 distribution as we wanted to utilize the readily
available Perl probability packages. For the call arrival times, we have chosen a
Poisson distribution and varied the 1

λ (inter arrival mean) parameter between



LTE Emulation over Wired Ethernet 29

60, 30, and 20 seconds. The expected number of concurrent calls can be derived
from the following equation:

E[C] = N × E[D]

E[D] + 1
λ

where E[D] = eμ+
1
2σ

2

. The 1
λ values of 60, 30, and 20 equate to 16, 22.85, and

26.66 expected concurrent calls, respectively, for our 40-node topology.
Prior to conducting experiments with the LTE uplink emulation, we ran the

voice scenario on the testbed for 10 minutes without any emulation using the
arrival 1

λ = 60 to measure jitter and loss values. As the VoIP protocol is most
sensitive to jitter (inter arrival times) and packet loss ratios, we primarily concen-
trated on these network statistics. The inter arrival times for the VoIP packets
were measured and the following statistics were recorded: mean – 20 ms, 5th
percentile – 19.967 ms, 50th percentile – 20.017 ms, and 95th percentile – 20.018
ms. Just as expected, the inter arrival times were almost exactly 20 ms (50 pps)
and there were no losses.

Next, we enabled LTE uplink emulation with an on-demand round robin
scheduler and configured the queue manager to drop voice packets that sat in
the uplink queue for more than one second. Additionally, the uplink queues were
sized to hold 64 packets as it is a typical size for many network cards. Table 1
shows the obtained inter arrival times for call arrival 1

λ values of 60, 30, and
20. It is interesting to note that some losses occurred and that even though the
mean inter-arrival values are almost 20 ms, the 5th, 50th, and 95th percentile
values indicate increased levels of jitter compared to the pure Ethernet scenario.
Scheduling is one of the primary reasons for jitter, as packets cannot be sent
from a handset node until the scheduler grants the resources, and this can take
10 ms at a minimum. Additionally, even though the average call volume band-
width does not exceed the 2 Mbps up link capacity, there can be instances when
too many calls are in the system, thus leading to queue-based delays and queue
overflows.

5.3 HTTP and VoIP

For the final set of experiments, we have combined HTTP and VoIP traffic. The
handset nodes were configured to browse web pages and make VoIP calls as was
described in the above sections. The HTTP and VoIP calls were allowed to occur
independently of each other to mimic users that can browse and call at the same
time.

As the handset nodes were allowed to browse and call at the same time, we
have conducted two sets of experiments where we have given priority to VoIP over
HTTP and where VoIP and HTTP were treated equally. Just like before, we ran
the experiments for 10 minutes where 40 handset nodes requested webpages and
made phone calls. To ensure a heavily loaded up link, we have used the call arrival
1
λ value of 20 sec. Also, the uplink LTE scheduler was configured to provide on-
demand round robin allocations, and the queue manager was set to time-out



30 R. Chertov, J. Kim, and J. Chen

Table 1. VoIP Inter-Packet Delays (ms)

Call arrival 1
λ

60 sec 30 sec 20 sec

5th 0.998 0.999 0.998

50th 19.968 19.967 19.967

95th 38.968 39.985 40.031

mean 20.344 20.316 20.257

loss ratio 0.015 0.015 0.012

Table 2. VoIP Inter-Packet Delays (ms) in the Presence of HTTP

Priority No Priority

5th 0.997 0.995

50th 17.972 19.02

95th 42.979 41.032

mean 20.257 20.505

loss ratio 0.012 0.021

priority traffic after one second. Both of the priority and best-effort queues were
configured to allow 64 packets before dropping any additional incoming packets.

Table 2 shows the VoIP packet inter arrival times when VoIP was given priority
and when it was treated the same as HTTP. The jitter values for priority and
non priority cases are quite similar. The main difference between priority and
non priority cases was the loss ratios. As expected, the non priority experiment
produced more VoIP packet losses on the uplink. Also, the results in Table 2
are similar to the results in Table 1. The slightly lower 50th percentile values in
Table 2 can be attributed to a somewhat higher volume of random VoIP traffic
during the experimental runs, which led to an increased amount of jitter.

Figure 7 shows the web page loading times when no VoIP is present, VoIP is
given priority, and VoIP has the same priority as HTTP. When VoIP is given
priority, the web page load times are considerably longer compared to when no
VoIP is present. In addition, HTTP page load times experience a large amount of
variance as HTTP get requests can be processed only after all of the VoIP queues
have been drained. The HTTP page load times when VoIP was not given priority
are similar to when no VoIP was used. This is the case because HTTP traffic on
the uplink is primarily composed out of TCP SYN/ACK and HTTP get request
messages. Since the HTTP uplink traffic is light, the VoIP loss ratios and jitter
values are not significantly impacted, as Table 2 demonstrates. Based on this
observation, a cellular provider can choose not to prioritize voice-over HTTP
in order to significantly improve web page loading times while not significantly
affecting VoIP communications.



LTE Emulation over Wired Ethernet 31

1 39 81 120 145 177 209 275 378
0

5

10

15

20

25

30

Web Page Size (KB)

P
ag

e 
Lo

ad
in

g 
T

im
e 

(s
ec

)

 

 

HTTP only
HTTP and priority VoIP
HTTP and VoIP

Fig. 7. Web page loading times in the presence of VoIP

6 Conclusion

In this paper, we have described an Emulab-compatible LTE emulation system
that relies on commodity PCs and wired Ethernet. The emulation system is ca-
pable of emulating the LTE radio, LTE scheduler, QoS management, and the
Android handsets and scales with the number of the available PC nodes. The
all-encompassing aspect of the system permits experimentation with a wide va-
riety of components: (1) end-user handset IP stacks and applications, (2) QoS
management, (3) real-world services, and (4) up/downlink LTE scheduling. Our
validation experiments have shown that the LTE emulation system can accu-
rately produce network-level effects that are expected from an LTE setting in-
cluding data transmissions on 10 ms time boundaries. Finally, our limited set
of experiments has shown that scheduling and QoS settings can have a signifi-
cant impact on end user performance. In our future work, we plan to investigate
scheduling approaches that take into consideration CQI and BLER values, ex-
pected traffic arrival rates, and QoS settings. We plan to extend the emulator to
allow mobility, an HARQ mechanism, and increase the number of possible end
users by four fold via Xen virtualization (http://xen.org). Finally, we plan to
run experiments that utilize several base stations and allow for user mobility
between the stations.

Acknowledgments. This work was supported under The Aerospace Corpora-
tion’s Independent Research and Development Program. In addition, we would
like to thank David Blumenfeld for creating the synthetic web sites used in this
paper.

All trademarks, service marks, and trade names are the property of their
respective owners.

http://xen.org


32 R. Chertov, J. Kim, and J. Chen

References

1. Lee, S., Pefkianakis, I., Meyerson, A., Xu, S., Lu, S.: Proportional fair frequency-
domain packet scheduling for 3GPP LTE uplink. In: Proc. of INFOCOM (2009)

2. Calabrese, F., Rosa, C., Anas, M., Michaelsen, P., Pedersen, K., Mogensen, P.:
Adaptive transmission bandwidth based packet scheduling for LTE uplink. In:
Proc. of Vehicular Technology Conference (VTC) (2008)

3. Tappayuthpijarn, K., Liebl, G., Stockhammer, T., Steinbach, E.: Adaptive video
streaming over a mobile network with TCP-friendly rate control. In: Proc. of
IWCMC (2009)

4. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. In: Proc. of OSDI (2002)

5. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The Click Modular
Router. Transactions on Computer Systems 18(3) (2000)

6. Rohde, Schwarz, R&S CMW500-PT HSPA+ and LTE Protocol Tester (2011),
http://www2.rohde-schwarz.com/product/CMW500-PT.html

7. A. Technologies, E6621A PXT Wireless Communications Test Set (2011),
http://www.home.agilent.com/agilent/product.jspxcc=US&lc=eng&ckey=

1314599&nid=-33762.752176.00&id=14599cmpid=zzfindpxt

8. N. Research, LTE HSPAWiMAX application tester (2011), http://www.nomor.de/
home/solutions-and-products/products/application-tester

9. EURECOM, OpenAir interface (2011), http://www.openairinterface.org
10. Chertov, R., Havey, D., Almeroth, K.: MSET: A mobility satellite emulation

testbed. In: Proc. of INFOCOM (2010)
11. Mills, D.L.: Internet time synchronization: the Network Time Protocol. Transac-

tions on Communications 39 (1991)
12. Google, Web metrics: Size and number of resources (2011),

https://code.google.com/speed/articles/web-metrics.html

13. Novak, R., et al.: Proposed text for evaluation methodology and key criteria for
p802.16m. IEEE C802.16m-07/074r1 (2007)

14. Cisco, Voice over ip - per call bandwidth consumption (2011),
https://www.cisco.com/en/US/tech/tk652/tk698/technologies tech

note09186a0080094ae2.shtml

15. Barcelo, F., Jordan, J.: Channel holding time distribution in cellular telephony.
Proc. of Wireless Communications (1997)

http://www2.rohde-schwarz.com/product/CMW500-PT.html
http://www.home.agilent.com/agilent/product.jspxcc=US&lc=eng&ckey=1314599&nid=-33762.752176.00&id=14599cmpid=zzfindpxt
http://www.home.agilent.com/agilent/product.jspxcc=US&lc=eng&ckey=1314599&nid=-33762.752176.00&id=14599cmpid=zzfindpxt
http://www.nomor.de/home/solutions-and-products/products/application-tester
http://www.nomor.de/home/solutions-and-products/products/application-tester
http://www.openairinterface.org
https://code.google.com/speed/articles/web-metrics.html
https://www.cisco.com/en/US/tech/tk652/tk698/technologies_tech_note09186a0080094ae2.shtml
https://www.cisco.com/en/US/tech/tk652/tk698/technologies_tech_note09186a0080094ae2.shtml

	LTE Emulation over Wired Ethernet
	Introduction
	Related Work
	Architecture
	LTE Radio Emulation
	QoS Queue Management
	Schedule Management
	``Soft'' Handsets
	Admission Control and Mobility

	Emulator Validation
	Experimental Layout
	Validation Results

	Experiments
	HTTP Performance
	VoIP Performance
	HTTP and VoIP

	Conclusion
	References




