
Designing a Federated Testbed as a Distributed System

Robert Ricci1, Jonathon Duerig1, Leigh Stoller1, Gary Wong1,
Srikanth Chikkulapelly1, and Woojin Seok2

1 University of Utah, School of Computing
{ricci,duerig,stoller,gtw,srikanth}@cs.utah.edu

2 Korea Institute of Science and Technology Information
wjseok@kisti.re.kr

Abstract. Traditionally, testbeds for networking and systems research have been
stand-alone facilities: each is owned and operated by a single administrative en-
tity, and is intended to be used independently of other testbeds. However, this
isolated facility model is at odds with researchers’ ever-increasing needs for ex-
periments at larger scale and with a broader diversity of network technologies.
The research community will be much better served by a federated model. In this
model, each federated testbed maintains its own autonomy and unique strengths,
but all federates work together to make their resources available under a common
framework.

Our challenge, then, is to design a federated testbed framework that balances
competing needs: We must establish trust, but at the same time maintain the auton-
omy of each federated facility. While providing a unified interface to a broad set
of resources, we need to expose the diversity that makes them valuable. Finally,
our federation should work smoothly in a coordinated fashion, but avoid central
points of failure and inter-facility dependencies. We argue that treating testbed
design as a federated distributed systems problem is an effective approach to
achieving this balance. The technique is illustrated through the example of Proto-
GENI, a system we have designed, built, and operated according to the federated
model.

1 Introduction

Testbeds for networking and systems research have traditionally been built as stand-
alone facilities where each testbed is operated and managed by a single entity. The
problems of building, running, and improving each individual testbed have received
attention in the literature in preference to issues of coordination, trust, and cooperation
between testbeds [30,18,17,1].

Increasingly, experimenters need to run larger experiments incorporating a broader
diversity of devices and network technologies. It is difficult to satisfy this requirement
with isolated testbeds, since each testbed is limited in size and tends to concentrate on
a particular type of resource. If experimenters were able to treat a collection of testbeds
as a single facility, this would enable them to run larger experiments and take advantage
of diverse resources.

This leads to a federated model, in which individual testbeds work together to provide
their users with a common framework for discovering, reserving, and using resources.

T. Korakis, M. Zink, and M. Ott (Eds.): TridentCom 2012, LNICST 44, pp. 321–337, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

322 R. Ricci et al.

This common framework must meet a number of requirements. It must establish trust
between federates, but allow each member of the federation to retain autonomy; each
federate should have independent local control over usage policies and resource main-
tenance. The federation should support pre-existing testbeds, which are managed using
a variety of software suites, and which were created to manage different kinds of re-
sources. While accommodating this heterogeneity, the federation must present a single
interface and provide the appearance of a single “virtual facility,” giving users access
to a richer set of resources than any one facility can provide by itself. Finally, the fed-
eration must provide coordination among members without sacrificing robustness, as a
complex distributed system introduces many points where failures can occur.

This paper makes three contributions. First, it defines a set of five design principles
that, together, meet the requirements of a federated testbed. Second, it presents a spe-
cific realization of these principles in the ProtoGENI federation. Third, it shares our
experiences building and running this federation, which has been used by more than
three hundred experimenters over the last three years. These include experiences that
have caused us to re-think parts of the federation’s design, an analysis of its robustness
to failures, and an evaluation of the time required to set up experiments.

Our five design principles are:

– Partitioned trust between the federates: Each federate is responsible for its own
resources and users, and only trusts other federates insofar as the peer’s resources
and users are concerned. Each federate retains the right to make local authorization
and policy decisions, and no testbed occupies a privileged position in the federation.

– Distributed knowledge: No single entity has complete knowledge of the system.
This enables local extensions, allowing federates to offer unique resources and to
add new features without being limited by the global framework. It also aids in
removing centralized points of failure and inter-facility dependencies.

– Minimal abstraction: The ProtoGENI framework provides a low-level API for re-
source access, rather than hiding the details of resources behind higher-level ab-
stractions. This gives implementers of user tools the flexibility to define their own
higher-level abstractions, tailoring them to specific user communities or use cases.

– Decentralized architecture: ProtoGENI has only one centralized entity, which is
used for bootstrapping and convenience. Operation can proceed without it in most
cases. There are no global locks in ProtoGENI; instead, we make use of local trans-
actions to coordinate operations that span federates.

– Minimal dependencies: Each ProtoGENI call carries as much context with it as
possible. This minimizes dependencies between services, which do not need to
contact each other on-line for correct operation.

2 Related Work

Emulab [30] provides a diverse set of experimental resources such as wireless nodes,
simulation, and real Internet resources through portals to the PlanetLab [29] and RON
testbeds [1]. This control framework is built around a strong assumption of centralized
management. There are dozens of testbeds around the world built on Emulab, but un-
til we began work on ProtoGENI, each operated in isolation. The federation of these

Designing a Federated Testbed 323

previously divided testbeds is the chief user-visible contribution of ProtoGENI, and has
required significant architectural changes to the underlying software.

PlanetLab is also a large-scale testbed, distributed around the world. All sites run a
common code base, and most maintenance and allocation is done by central entities,
called PlanetLab Central (PLC).There are multiple instances of PLC, including one in
Europe, another in Japan, and VINI [3], which extends PlanetLab’s support for topology
control. PlanetLab introduced the idea of “unbundled management,” separating user
tools from the management of the facility, and we make use of it in ProtoGENI. As
part of the GENI project, this federation is evolving along a similar path to the one we
present in this paper.

ORBIT [17] and StarBed [14] are built around a centralized use, policy, and mainte-
nance model. ORBIT is a Radio Grid Testbed, providing wireless devices to its users.
Due to the restrictions of its physical environment, ORBIT does not “slice” its testbed,
but allocates all nodes in its testbed to one experiment at a time [21]. StarBed is specif-
ically designed for virtualization, enabling users to build experimental topologies up to
thousands of nodes.

The Open Resource Control Architecture (ORCA) is an extensible architecture which
provisions heterogeneous virtual networked systems via secure and distributed manage-
ment over federated substrate sites and domains [16]. ORCA focuses on mechanisms
for providers and consumers (e.g. experimenters) to negotiate access to, configure, and
use testbed resources. ORCA provides diverse environments on a pool of networked
resources such as virtualized clusters, storage, and network elements which are main-
tained independently by each site. While ORCA shares many features with ProtoGENI,
it uses a different set of fundamental design decisions.

Panlab [27,28] is a federated testbed with facilities distributed across Europe. While
the Panlab and ProtoGENI architectures have many analogous elements, the philoso-
phies behind them differ. Panlab’s “Private Virtual Test Labs” (similar to GENI slices)
are typically controlled and used through a centralized manager, called Teagle. In con-
trast, ProtoGENI’s architecture emphasizes distributed systems aspects of testbed fed-
eration, avoiding centralized services almost entirely.

Namgon Kim et al. [10] have published work on connecting the FIRST@PC testbed
with ORCA-BEN. They focus more on the stitching aspects of federation, while we
examine the overall architecture and API.

SensLAB is a large scale wireless sensor network testbed, allowing researchers ac-
cess to hundreds of sensor nodes distributed across multiple sites [24]. The system
presents a single portal, through which users can schedule experiments across all the
available networks. The current SensLAB installations operate highly homogeneous
hardware platforms, but are working toward interoperability with OneLab [2], and we
expect that this integration will result in sophisticated federation management facilities.

WISEBED [4] is another distributed system of interconnected testbeds, in which the
hardware resources are large scale wireless sensor networks. Like GENI, WISEBED
aims to produce a large and well organized structure by combining smaller scale
testbeds; the chief difference is that WISEBED focuses on wireless sensor technology,
while almost all networked GENI resources use wired links (with a minority of facilities
choosing to make wireless resources available for special purposes).

324 R. Ricci et al.

Soner Sevinc [25] has developed an architecture for user authentication and trust in
federations using Shibboleth as an identity provider. Our federation architecture pro-
vides mechanisms for federates to coordinate experimentation, and has been integrated
with Soner Sevinc’s system.

Grid [8] and Tier [13] systems share some goals with federated network testbeds,
in that they are distributed systems able to connect heterogeneous, geographically dis-
tributed resources from multiple administrative domains. Grid systems provide dynamic
allocation and management of resources via common tool kits such as Globus [7]. As
with our system, each domain is responsible for its own maintenance and policy. The
fundamental distinction is that in ProtoGENI, it is the network, rather than computing
resources, that is the primary object of interest. Grid computing hides most resource
heterogeneity and infrastructure behind abstract interfaces, where as we expose them
whenever possible. Cloud computing takes this one step further with virtualization. In
comparison, ProtoGENI provides users with more transparent control over the network
and the ability to take advantage of the diversity of resources for experimentation. Re-
searchers are investigating the integration of Grid and traditional network testbed re-
source management techniques [23]; such a combination is largely orthogonal to the
peer-to-peer federation model we consider. Most grids are organized hierarchically,
while ProtoGENI is decentralized, allowing its principals more autonomy; most clouds
consist of resources owned by a single entity, and are thus not federated.

3 Architecture

The architecture of ProtoGENI builds on the GENI framework. In this section, we will
describe the overall GENI structure before examining how ProtoGENI expands on that
architecture.

3.1 GENI

GENI’s architecture is based on the “Slice-based Federation Architecture” (SFA) [19],
which has been developed by the GENI community. The SFA is so named because
it centers around partitioning the physical facility into “slices,” each of which can be
running a different network architecture or experiment inside. Physical resources, such
as PCs, routers, switches, links, and allocations of wireless spectrum are known as
“components;” when a user allocates resources on a component, the set of resources
they are given comprises a “sliver.” This sliver could be a virtual machine, a VLAN, a
virtual circuit, or even the entire component. Each sliver belongs to exactly one slice: in
essence, a slice is a container for a set of slivers.

There are two main types of principals in GENI:

Aggregate Managers (AMs) are responsible for managing the resources (compo-
nents) on which users will create networks and run experiments. AMs are responsible
for the allocation of their resources, and may make decisions about who is authorized
to use them. An individual AM may manage a collection of components, called an ag-
gregate; in practice, each facility in GENI runs a single AM that manages all of its
resources, and the largest aggregates contain hundreds of nodes and thousands of links.

Designing a Federated Testbed 325

Users access components from the federated testbed to run an experiment or a ser-
vice. A user is free to create slices which span multiple AMs, and each user is authorized
by one of the facilities in the federation.

Principals and many other objects in the system are uniquely named by a Uniform
Resource Name (URN) [15]. The URN scheme that we use [26] is hierarchical—each
authority is given its own namespace, which it can further subdivide if it chooses. To
maintain partitioned trust, each authority is prohibited, through mechanisms described
in [31], from creating URNs outside of its namespace. An example of a GENI URN is:

urn:publicid:IDN+emulab.net+user+jay

Because the URN contains the identity of the authority that issued it (in this example
“emulab.net”), it is possible to tell which authority “owns” the object without resort-
ing to a lookup service; this is in keeping with our decentralized architecture goal.

At a high level, testbeds federate in this framework by forming trust relationships: if
facility A trusts facility B, then A is willing to trust B’s statements about what users it
has, what slices they have created, and what resources B offers. Note that this does not
preclude A from having local allocation policies: just because it recognizes B’s users
does not obligate it to satisfy all requests they might make. Arrangements regarding
“fair sharing,” etc. can be made as part of the federation agreement. Trust relationships
need not be symmetric: A may choose to trust B even if that trust is not reciprocated.

3.2 ProtoGENI Architecture

We build on the basic GENI architecture by adding two new kinds of entities into the
federation, and by providing an expanded API for AMs.

Slice Authorities (SAs) are responsible for creating slice names and granting users
the necessary credentials to manipulate these slices. By issuing a name for a slice, the
SA agrees to be responsible for the actions taken within the slice. An SA may be an
institution, a research group, a governmental agency, or other organization.

A user has an account with an SA, called the “home” SA; this SA vouches for the
identity of the user, and in most cases, is willing to create slices for the user. The user is,
however, free to create slices using any SA that, according to its own policies, is willing
to be responsible for that user’s actions.

Of course, establishing trust in this pairwise fashion does not scale well to large
federations. ProtoGENI’s sole centralized service, the Clearinghouse (CH), is used to
make this process more convenient: it allows federates to publish the certificates that are
used to establish trust, and to discover the certificates of other federates. It is important
to note that this does not mandate specific trust relationships: as described in [31], a
federate may choose not to trust some certificates stored at the clearinghouse, or may
choose to trust additional certificates that are not registered there.

The clearinghouse also serves a second purpose: it acts as a registry where various
objects can be looked up. Notably, users can ask the clearinghouse for a list of all reg-
istered federates to bootstrap the process of resource discovery, as described in the next
section. In both of these roles, the information provided by the clearinghouse changes
infrequently, and can be safely cached for long periods of time (days or weeks).

326 R. Ricci et al.

 SA SA
Create
slice

Register
user

1 2 3

Receive
certificate

Receive
credential

 AM
Create
Sliver

Receive
manifest

Fig. 1. Overall architecture detailing user inter-
actions with entities in the federation

Null Ticket Sliver
Sliver
and

Ticket

Redeem Ticket Update Sliver

Release
Ticket

Redeem TicketDelete SliverRelease Ticket

Delete
Slice

Get Ticket

Update Ticket

Fig. 2. Life cycle of a sliver. Edges are labeled
with the name of the operation that causes the
state transition.

ProtoGENI AMs also export an expanded interface relative to the GENI standard.
Specifically, they can issue tickets, which are guarantees of resource provision for the
owner of the ticket. When a user redeems one of these tickets with the AM, the AM
creates a sliver, and the user can begin running an experiment. ProtoGENI AMs also
support the ability to update existing slivers.

ProtoGENI has sophisticated requirements for authentication and authorization, com-
plicated by the fact that different parts of the system are owned and operated by different
organizations, each of which may need to enforce custom local policies.

The authentication system is based on the IETF PKIX model [5], while the autho-
rization mechanism involves the presentation of cryptographically signed credentials
(which behave analogously to X.509 Attribute Certificates [6]). Together, these prim-
itives allow the warranting of identities, the granting and delegation of permissions,
and the verification of identity and privilege. Most importantly, all of these operations
may be performed by different principals, who need no direct knowledge of each other.
ProtoGENI’s authentication and authorisation system are detailed elsewhere [31].

3.3 Running an Experiment

Putting these pieces together, a user goes through the following steps to run an experi-
ment (see Figure 1).

Creating a Slice: He contacts an SA (usually the “home” SA), and requests a new slice.
If the request is granted, the SA gives him a name for the new slice and the credentials
necessary to manipulate it. At this point, no resources are yet allocated.

Discovering Resources: Next, the user selects the components that he will use to build
his network. This can be done in a number of different ways. The simplest is to ask each
AM in the system to enumerate the resources it has available; the user asks the CH for
a list of federated AMs (or uses a cached copy of this list), and then asks each AM for
an “advertisement” describing its resources. Alternately, he may make use of network
embedding tools [22] to help select appropriate components.

Creating Slivers: Once the user has selected a set of components, he creates a “request”
describing the network to be built. The user sends this request to each AM from which
he wants resources. When granting such a request, the AM returns a “ticket”, promising

Designing a Federated Testbed 327

the use of those resources. If not all ticket requests are granted, the user may keep the
tickets he has and/or try to obtain new tickets to replace the failed requests. Once he is
satisfied with the set of tickets held, those tickets may be “redeemed” at the AMs that
issued them, causing slivers to be created.

Using Resources: The user may now log into the slivers and begin running experiments.
Programming, configuring, or logging in to a sliver is done with component-specific
methods; many components are accessed through ssh, but other access methods may
be required for some components. The user may modify the slice while it is running,
and releases all slivers when the experiment is complete.

4 Interactions between Federates

ProtoGENI has been designed to keep federates as loosely coupled as possible; they
do not depend on central services, and the only parts of the system involved in a given
operation are those directly affected by it. In the extreme case, if a federate is cut off
from communication with the rest of the federation, users who can reach the federate
are still able to create slices and slivers on it.

This is possible because, in keeping with the design principles of decentralized ar-
chitecture, minimization of dependencies, and distributed knowledge, ProtoGENI goes
to great lengths to ensure that minimal state synchronization is required between AMs,
SAs, and the CH. This section describes the interactions these services have with each
other and with users. We concentrate on where ProtoGENI stores state, how it avoids
centralized services, and how failures are managed. Because the full ProtoGENI APIs
[20] are too large to cover in depth here, we introduce only the calls necessary to under-
stand state management.

4.1 Slice State

ProtoGENI does not attempt to guarantee a globally consistent view of the state of
each slice. Instead, it uses a loose consistency model in which each of the individual
authorities and managers maintain their own state.

The authoritative source for user and slice records is the SA that issued them, and the
authoritative source for sliver information is the AM on which the sliver exists. Because
the URNs used in ProtoGENI encode the issuing authority, it is possible to determine
the correct authority to query simply by examining an object’s name. If, for example, a
AM wishes to find out more about a user who has created a slice on it, the AM may use
the user’s URN to identify and query the user’s home SA.

When a sliver is created, the AM is not provided with a global picture of the slice: the
sliver request (whose format is covered in Section 5) need only contain the resources on
the AM in question and any links to directly adjacent AMs that need to be configured
as part of the slice. Information about the rest of the slice is not needed for the AM to
create its slivers, and maintaining a global view would require that the AM be notified
of changes anywhere in the slice, even if those changes do not directly affect it.

As a convenience, SAs register users and their slices at the CH. Records at the CH
are not considered authoritative, however, since a network partition might delay updates

328 R. Ricci et al.

to them. Nor does the CH maintain a list of slivers; this list is constantly changing, and
could never be completely up to date without adding a large amount of synchroniza-
tion (and consequently delay) to the system. Each AM attempts to inform a slice’s SA
whenever a sliver is created or destroyed, but as with records in the CH, these data are
advisory rather than authoritative.

Slice and Sliver Lifetimes. Because authoritative slice state is distributed across SAs
and AMs, and we cannot guarantee that they remain in contact throughout the lifetime
of the slice, we give each slice and sliver an expiration date. This way, we can be assured
that all slivers are eventually cleaned up and their resources reclaimed.

There are important nuances, however, in the relationship between slice and sliver
lifetimes. Because each sliver must belong to a slice, the sliver must not outlive its slice.
If it did, this could lead to a situation in which the user would lose control of the sliver.

The first consequence of this requirement is straightforward: the expiration time for
each sliver is bounded by the expiration time of the slice itself. The slice credential that
is generated by an SA when then slice is created contains that slice’s expiration time.
When slivers are added to the slice, AMs must simply ensure that the slivers’ expirations
are no later than the slice’s expiration.

The second consequence is that a slice cannot be deleted before it expires. It is possi-
ble that slivers exist that the SA is unaware of; a AM may have been unable to contact
the SA to inform it of the sliver’s existence. Therefore, the SA cannot know with cer-
tainty that deleting the slice is safe and will leave no orphaned slivers. As a result, slice
names cannot be re-used by experimenters before they expire. Since the namespace for
slices is effectively unbounded in size, this is not a major concern.

Both slices and slivers may be renewed before they expire; the slice’s lifetime must
be extended before the slivers’.

Resource Reservation across AMs. Slices that cross AMs present a dilemma: we
would ideally like the process of allocating or updating slivers to be atomic across all
AMs. As a concrete example, consider a slice with existing slivers from two different
AMs. We would like to make a change on both slivers, but only if both of the changes
succeed. If either one is denied, we want to roll back to the original configuration with-
out losing existing resources or otherwise changing the slivers. However, the loosely-
coupled nature of the federation precludes using global locks or global transactions.

Instead, we consider the resource allocation process on each AM to be a separate
local transaction, and model the life cycle of each sliver as a state machine, shown in
Figure 2. We designed the state machine with minimal abstraction in mind, allowing
clients or other intermediaries to build a transactional abstraction across AMs on top of
our lower-level per-AM API. Each sliver can be in one of four states:

1. The Null state, in which the sliver does not exist (has not yet been created, or has
been destroyed).

2. The Ticket state, in which the user holds a ticket promising resources, but the sliver
is not instantiated on the component.

3. The Sliver state, in which the sliver has been instantiated, but the user does not hold
a valid ticket.

Designing a Federated Testbed 329

4. The Sliver and Ticket state, in which the user has both an instantiated sliver and a
ticket.

This state machine makes sliver manipulation a three-step process:

1. Get the list of currently available resources from each AM.
2. Request a new ticket on each AM; this step obtains a guarantee of resources, but

does does not actually instantiate a new sliver or modify an existing sliver.
3. Redeem the tickets at each AM to “commit” the resource change.

Steps 1 and 2 are not atomic: if other users are simultaneously trying to reserve re-
sources to their own slices, the second step may fail. In a distributed system like Proto-
GENI, it is not feasible to lock the resource lists for any length of time. Since con-
tention for resources is generally rare in ProtoGENI, a form of optimistic concurrency
control [11] is employed to both avoid locking and to ensure that users will find out if
someone else has already reserved a resource.

If the second step fails on some AMs, but not others, the user has three options.
First, he can decide to simply redeem the tickets that he was successful in getting. A
user trying to get as many slivers as possible might employ this strategy. Second, he
can abort the transaction by releasing the new tickets he obtained. This will return the
slivers to their previous states (either Null or Sliver) without modifying them. Third, he
can employ a more sophisticated strategy, in which he holds onto the tickets that he did
receive, and requests tickets from a new set of AMs to replace those that were denied.

Our experience running the Emulab testbed [30] suggests that retries due to the race
between steps 1 and 2 will be rare. Emulab uses a similar optimistic model in which the
resource database is not locked during allocation, and despite the fact that Emulab sees
heavy use, of 9,500 experiment swap-ins (analogous to ProtoGENI sliver creations) in
the past year, only 21, or 0.2%, had to be retried due to contention for resources.

In addition to its lifetime, each ticket has a “redeem by” time, which is set to expire
much sooner; typically, in a matter of minutes. If the user does not redeem the ticket in
time, the resources are reclaimed. This guards against clients that do not complete their
transactions in a timely fashion.

4.2 Behavior in the Face of Failures

ProtoGENI passes as much context as possible in API calls, so that they can be self-
contained. While this does result in some extra overhead in the calls, the benefit is that
the user can continue to make progress in the presence of network or service failures.
For example, a user obtains authorisation credentials from his home SA, and these
credentials are passed by the user to AMs when requesting tickets. As described in [31],
the AM receiving this material can verify its authenticity without contacting the issuer.

The result is that users can continue to use the system in the face of failures in one or
more services, including the CH. For example, if an SA is down, its users cannot create
new slice names, but can continue to interact with any existing slices and slivers. As
long as they do not lose the slice credentials obtained upon slice creation, there is no
need to contact the SA to manipulate the slivers in the slice. The lone exception is to
extend the life of a slice before it expires. However, this can be done at any time before
the slice expires, so transient errors are not fatal.

330 R. Ricci et al.

While SAs attempt to register new slices at the CH, and AMs attempt to register new
slivers with the slice’s SA, failure to do so does not cause slice or sliver creation to
fail. Making this registration mandatory would significantly increase the dependencies
in the system, and reduce its ability to operate in the face of service failure.

5 Resource Specification

Resource specification is a core part of interacting with a testbed and must fulfill three
functions: First, AMs must be able to describe their available resources. Second, users
need to describe what resources they would like to acquire. Third, AMs must provide
information required for users to make use of those resources.

To perform these functions, we have developed a new resource specification format,
RSpec, which is an XML-formatted descriptive language. In keeping with the principle
of minimal abstraction, our specification is declarative rather than imperative. While
an imperative language would add descriptive power, it is more difficult to analyze and
manipulate. Adopting a descriptive format makes it possible for many tools to process
and transform resource descriptions, and encourages composition of tools.

One key principle behind our RSpec design is distributed knowledge. Because knowl-
edge of resources is distributed, every entity in the system can independently provide
information about resources. We use progressive annotation to allow a client to coordi-
nate data from multiple sources: operations take a resource specification as input and
yield that same specification annotated with additional information as output.

5.1 Annotation

Our specification format comes in three variants, each one designed to serve a slightly
different function. Multiple entities in the system can provide knowledge about a single
resource, and we allow calls to these entities to be composed by a client. An RSpec
describes a topology made up of nodes, interfaces, and links that connect them. Anno-
tations can provide additional information about the topology or resources.

Advertisements. Advertisements are used to describe the resources available on a AM.
They contain information used by clients to choose components. The AM provides at
least a minimal description of these resources. Our architecture then allows its advertise-
ment to be passed to measurement services or others who may discover more informa-
tion about the resources. At each such service, the advertisement is further annotated.

This progressive annotation of advertisements enables our distributed knowledge
model. An AM can change the set of resources advertised without first notifying or ne-
gotiating with other federates. AMs provide their own authoritative information about
which resources they manage and the availability of those resources.

At the same time, other entities can describe resources. A service might measure
shared resources to determine which ones are the most heavily used. Or it might provide
information about bandwidth and delay between networked components. Annotating
services do not need to coordinate with any AMs, who need not even be aware of their
existence.

Designing a Federated Testbed 331

Requests. Requests specify which resources a client is selecting from AMs. They con-
tain a mapping between physical components and abstract nodes and links.

When the client has an advertisement with the information they need, they create a
request describing which resources they require. Some requests, called bound requests,
specify precisely which resources are needed—“I want pc42, pc81, and pc9.” Other
requests provide a more abstract, or unbound, description—“I want any three PCs.”

Once the request is generated, it goes through an annotation process similar to that
of the advertisement. If there are unbound resources in a request, it may be sent along
with an advertisement to an embedding service which annotates the request with spe-
cific resource bindings. In order to minimize dependencies, embedding services are not
associated with a particular AM and receive both a request and one or more advertise-
ments from the client. The client then sends the bound request returned by the embed-
ding service to a AM in order to acquire the resources. Each resource is tagged with the
AM that should allocate it. This means that the client can simply send the same request
to all relevant AMs and each one will allocate only those resources which it controls.

Manifests. Manifests provide information about slivers after they have been created by
the AM. This information is typically needed by users so that they can make practical
use of the resources: details such as host names, MAC addresses, ssh port numbers,
and other useful data. This information may not be known until the sliver is actually
created (e.g. dynamically assigned IP addresses). The manifest is returned to the user
upon sliver creation.

5.2 Extensibility

To allow AMs to make unique resources available, we must provide a mechanism for al-
lowing them to advertise new kinds of resources. Our core RSpec is therefore designed
for distributed knowledge, allowing different federates to provide their own indepen-
dent extensions. The base RSpec schema verifies within a single namespace and allows
elements or attributes from other namespaces to be inserted anywhere. These fragments
are then verified using extension-specific schemata. We allow extensions on any vari-
ant of the RSpec, thus allowing extensions to be created and used by any entity in the
federation.

Our extensions have a number of useful properties:

1. Extensions are safely ignored: Not all clients or servers will support all extensions.
If a client or server does not support a particular extension, then the tags which
are part of that extension will be ignored. This allows extensions to be created and
deployed incrementally with much greater ease than a change to the core RSpec.

2. Extensions are modular: Each extension can mix elements or attributes into the
main RSpec, but those elements and attributes are explicitly tied to the extension
namespace. Every extension can co-exist with every other extension.

3. Extensions are validated: In order to tag extensions, each one uses a unique XML
namespace. We are thus able to validate any XML document using the core schema.
The extensions themselves are also validated. We use independent schemata for
each extension and validate the elements in the namespaces for each extension
against its schema.

332 R. Ricci et al.

6 Experiences

The primary indicator of the success of our design is that ProtoGENI is a running, active
system; the current federation contains sixteen AMs, and over 300 users have created
more than 3000 slices. To evaluate our system more concretely, we first describe our
experiences in creating and running the ProtoGENI federation, then show results from
quantitative tests of the system.

6.1 Framework Design

ProtoGENI has been open to users and tool developers throughout its development.
This allowed our experiences with actual users and experimenters to guide our design
decisions. Described below are some of the lessons we have learned from seeing our
system used by others.

Slice and Sliver Lifetimes: One area of the system that required very careful design
was the lifetime of slices and slivers. We have found that this aspect of the system is
consistently confusing to users; they expect to be able to delete both slivers and slices,
and have trouble understanding why slice names cannot be deleted before they expire.
However, as discussed in Section 4.1, this cannot be allowed, given the decentralized
architecture of our system: an SA cannot be sure that all slivers are really gone until the
expiration time on the slice (which bounds the expiration time on its slivers.)

Adding to the confusion is the fact that a slice name can be reused on an individual
AM. In other words, the holder of a slice credential may create, destroy and then create
a sliver again. As far as the AM is concerned, if no local sliver currently exists for a
slice, then it is willing to create one. In fact, this is exactly what many users do.

Users will often create a slice name, and then use that credential to create and destroy
many slivers on the same AM. This works since users usually know the state of their
own experiments. It has also resulted in an unintended consequence: users may create a
slice name, and set the expiration time to many months in the future. Since users often
forget to destroy their slivers, resources can get tied up doing nothing for a long time.
When this became a common problem, we established a policy which requires slices to
be renewed every five days.

UUIDs: Our initial strategy was to use UUIDs [12] as identifiers. One advantage was
that they can be generated by any party with a high confidence that they will be unique.
They are also opaque, meaning that clients do not have to do any work in parsing or
interpreting them. However, we discovered that using a flat namespace for all objects
had one major drawback.

There is no inherent mapping between identifiers and authorities. A flat namespace
requires a lookup service to resolve the authority issuing an identifier. For example,
verifying that an identifier was issued by a particular authority would require one to
first resolve the UUID to that authority. While decentralized resolvers for flat names-
paces do exist (such as DHTs), we saw that including the authority in the identifier, and
thus skipping this first step, was more in keeping with our minimization of dependen-
cies principle, so that operations require contacting only the entities directly involved
in them.

Designing a Federated Testbed 333

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40M
ea

n
S

liv
er

 C
re

at
io

n
T

im
e

(s
)

of Nodes

Mean Time to Create a Sliver (Single AM)

Fig. 3. Mean time to create slivers of various
sizes

0

50

100

150

200

250

300

0 1 2 3 4 5M
ea

n
S

liv
er

 C
re

at
io

n
T

im
e

(s
)

of Aggregate Managers

Mean Time to Create a Sliver (Multiple AMs)

Fig. 4. Mean time to create slivers on multiple
AMs

Sliver Lifecycle: When designing the ProtoGENI API, we tried to make it easy to use
resources that are distributed geographically, under different administrative domains,
and controlled by distinct management authorities. Users are faced not only with the
task of deciding what resources they want, but they must also contact independent au-
thorities to ask for those resources. As described in Section 4.1, dealing with resource
allocation failures is complicated for both the system and the users. Worse still are sliver
updates, especially those that span multiple AMs.

The life cycle diagram shown in Figure 2 was the result of user experience and multi-
ple design iterations. An early version of the API used the same method to modify both
an unredeemed ticket and an existing sliver. In the latter case, the user had to present the
original ticket, even though the ticket had already been redeemed and was technically
worthless. The user was also required to hang onto this ticket in case he wanted later
modify the sliver. Furthermore, if the user decided to release this new ticket, he was
left in an even less complete state, with an active sliver and no ticket to modify it later.
As described in Section 4.1, this sequence is a common activity, as users allocate and
modify resources across a set of AMs.

As more users signed up to run experiments with ProtoGENI, we received numerous
questions about updating tickets and slivers. It was at this point that we decided to for-
malize the sliver lifecycle as a state machine, but our early attempts resulted in designs
with a large number of states, making them difficult to understand. We finally arrived at
the state machine in Figure 2, which puts the user in control of what to do with denied
ticket requests, while minimising the size of the state machine.

6.2 Testing the System

In this section, we look at two metrics. We measured the time required to create slices
both on a single AM and across multiple federates. In addition, we injected various
faults and examined the behavior of the system when dealing with them.

Slice Creation Time. We have run tests on the federation to determine the duration of
typical user tasks. For our experiment, we ran a test script using the following sequence
of steps: get a user credential, create a slice, list component managers at CH, discover
resources on one or more AMs, get a ticket, and finally redeem the ticket. We ran these

334 R. Ricci et al.

Register

GetTicket
RedeemTicket

StartSliver

Fig. 5. Breakdown of time spent creating sliver

Table 1. Operability during failures. Each row
is an attempted operation. Columns are com-
ponent failures. Cells show if the given oper-
ation succeeds, can succeed if the client has
cached the indicated object, or always fails
(×).

Failed Entity
Operation CH SA AM
Discover Res. AM List Self Cred. ×
Create Slice Success × Success
Get Ticket Success Slice Cred. ×
Redeem Ticket Success Slice Cred. ×
Start Sliver Success Slice Cred. ×
Stop Sliver Success Slice Cred. ×
Delete Sliver Success Slice Cred. ×
Sliver Login Success Success Success

tests with up to 35 nodes to see how increasing the size of the request affected the
results. Figure 3 shows our results.

We also ran experiments using multiple AMs: between one and four. Figure 4 shows
the time required to allocate nodes as the number of AMs increases. Each trial allocated
20 nodes total, but split the allocation of those nodes across a different number of AMs.
As the number of AMs used increases, so does the time required to allocate nodes. This
increase in time could be mitigated by contacting the AMs in parallel. The single AM
case was run at a relatively lightly-loaded AM and so runs unusually fast relative to the
times seen in Figure 3.

The time spent creating a ten node sliver (averaged over multiple runs) is detailed
in Figure 5. The Register step accounts for all the negotiation with the SA to allocate
the slice name and obtain slice credentials. All subsequent steps are carried out at the
AM: GetTicket reserves components to the sliver, and is potentially expensive because
it attempts sophisticated optimization not only to satisfy the immediate request, but also
to maximize the proportion of future sliver demands which can be met [22].

The following RedeemTicket stage prepares the allocated components for use in
the sliver: for instance, disk images are transferred [9] to nodes where necessary, and
VLANs are programmed into switches (but not brought up). Our current implementa-
tion also performs auxiliary tasks for user convenience at this point (such as configuring
DHCP servers with information about control network interfaces, and registering DNS
names for nodes in the sliver). The final StartSliver period is frequently the lengthi-
est, although much of the operation is beyond the direct control of the AM. It involves
rebooting each node in the sliver into the newly defined environment, as well as complet-
ing configuration tasks that are most easily deferred until boot time (such as configuring
routing tables for the experimental networks).

Some of the time a client spends interacting with the system is spent gathering in-
formation it has already fetched during previous runs, such as the list of AMs, the
user’s “self credential,” and credentials for slices that are being reused. In addition to

Designing a Federated Testbed 335

providing additional robustness in the face of failure, caching these values can reduce
the time it takes for a user to successfully create slivers. This provides a constant time
speedup regardless of how many nodes or AMs are involved in creating a sliver. Our
experiments show that this reduces the time taken to create a sliver by 17 seconds on
average.

Behavior in the Face of Faults. Our federation was designed to cope with failure of
one or more elements. In order to test this, we injected faults into the system in order
to emulate a network partition. In each test, one federated entity was isolated from the
federation and the client. We then attempted various operations to see whether they
succeeded, failed, or required some cached client-side information to work. The results
of these experiments are shown in Table 1.

If the CH fails or is isolated from the federation, the client can still perform opera-
tions on any AM it can reach, as well as the client’s SA. In order to discover resources
on a AM, the client would need to have a cached list of AMs in the federation; because
this list does not change frequently, most clients will have a fairly recent copy. The only
consequence of using an out-of date AM list is that the client may miss the opportunity
to use AMs that have recently joined.

The SAs are responsible for managing users and their slices. If an SA fails, its users
can no longer create slices or acquire credentials to manipulate existing slices. If a user
already has a self credential, it can be invoked to discover resources on any AM in
the federation. If the user has already created a slice, it has not expired, and the client
has cached the slice credential, then the user can still create and manipulate slivers on
any AM.

When a AM fails, the user cannot perform resource discovery or sliver creation, or
any sliver manipulation calls on that particular AM. Depending on whether the failure
is with the AM or the component itself, the user may still be able to log in to the slivers
that have already been created. The failure of one AM does not affect the user’s ability
to use other AMs in the federation.

7 Conclusion

Federated testbeds provide new opportunities for experimentation, but also raise a num-
ber of design challenges. We applied five design principles to the design of ProtoGENI,
resulting in a loosely coupled system that preserves local autonomy for federates. Proto-
GENI provides a low-level interface to discovering and reserving testbed resources; our
future work will build upon this fundamental framework to provide higher-level abstrac-
tions and services for experimenters.

Acknowledgments. Many people have been active participants in the GENI design
process, which arrived at the basic design described in Section 3. While the total num-
ber of contributors to this process is large, we would like to specifically acknowledge
the chairs of the GENI Facility Architecture Working Group and heads of the GENI

336 R. Ricci et al.

control frameworks: Larry Peterson (PlanetLab), John Wroclawski (TIED), Jeff Chase
(ORCA/BEN), and Max Ott (OMF). Others major contributors to the design process
have included Aaron Falk, Ted Faber, Steve Schwab, and Ilia Baldine.

References

1. Anderson, D.G., Balakrishnan, H., Kaashoek, M.F., Morris, R.: Resilient overlay networks.
In: Proc. of the ACM Symposium on Operating Systems Principles (SOSP), Banff, Canada
(October 2001)

2. Antoniadis, P., Fdida, S., Friedman, T., Misra, V.: Federation of virtualized infrastructures:
sharing the value of diversity. In: Proc. of the 6th International Conf. on Emerging Network-
ing EXperiments and Technologies (CoNEXT), Philadelphia, PA (November 2010)

3. Bavier, A., Feamster, N., Huang, M., Rexford, J., Peterson, L.: In VINI veritas: Realistic and
controlled network experimentation. In: Proc. of the ACM Special Interest Group on Data
Communication (SIGCOMM), Pisa, Italy (August 2006)

4. Chatzigiannakis, I., Koninis, C., Mylonas, G., Fischer, S., Pfisterer, D.: WISEBED: an open
large-scale wireless sensor network testbed. In: Proc. of the 1st International Conf. on Sensor
Networks Applications, Experimentation and Logistics (September 2009)

5. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet X.509
public key infrastructure certificate and certificate revocation list (CRL) profile. Request for
Comments 5280, IETF (May 2008)

6. Farrell, S., Housley, R., Turner, S.: An internet attribute certificate profile for authorization.
Request for Comments 5755, Internet Engineering Task Force (January 2010)

7. Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. International Jour-
nal of Supercomputer Applications 11(2) (summer 1997)

8. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual orga-
nizations. International Journal of High Performance Computing Applications 15(3) (August
2001)

9. Hibler, M., Stoller, L., Lepreau, J., Ricci, R., Barb, C.: Fast, scalable disk imaging with
Frisbee. In: Proc. of the 2003 USENIX Annual Technical Conf., San Antonio, TX, pp. 283–
296 (June 2003)

10. Kim, N., Kim, J., Heermann, C., Baldine, I.: Interconnecting International Network Sub-
strates for Networking Experiments. In: Korakis, T., Li, H., Tran-Gia, P., Park, H.-S. (eds.)
TridentCom 2011. LNICST, vol. 90, pp. 116–125. Springer, Heidelberg (2012)

11. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM Transac-
tions on Database Systems 6(2) (June 1981)

12. Leach, P., Mealling, M., Salz, R.: A universally unique identifier (UUID) URN namespace.
Request for Comments 4122, Internet Engineering Task Force (July 2005)

13. McKee, S.: The ATLAS computing model: status, plans and future possibilities. Computer
Physics Communications 177(1–2) (July 2007)

14. Miyachi, T., Basuki, A., Mikawa, S., Miwa, S., Chinen, K., Shinoda, Y.: Educational environ-
ment on StarBED: case study of SOI Asia 2008 spring global E-Workshop. In: ACM Asian
Conf. on Internet Engineering. Bangkok, Thailand (November 2008)

15. Moats, R.: URN syntax. Request for Comments 2141, Internet Engineering Task Force (May
1997)

16. The ORCA GENI control framework, http://www.nicl.cs.duke.edu/orca
17. Ott, M., Seskar, I., Siraccusa, R., Singh, M.: ORBIT testbed software architecture: Sup-

porting experiments as a service. In: Proc. of the International ICST Conf. on Testbeds
and Research Infrastructures for the Development of Networks and Communities (Trident-
Com),Trento, Italy (February 2005)

http://www.nicl.cs.duke.edu/orca

Designing a Federated Testbed 337

18. Peterson, L., Bavier, A., Fiuczynski, M.E., Muir, S.: Experiences building PlanetLab. In:
Proc. of the USENIX Symposium on Operating Systems Design and Implementation (OSDI),
Seattle, WA (November 2006)

19. Peterson, L., Ricci, R., Falk, A., Chase, J.: Slice-based federation architecture (June 2010),
http://groups.geni.net/geni/wiki/SliceFedArch

20. ProtoGENI Project: ProtoGENI API (May 2012), http://www.protogeni.net/trac/
protogeni/wiki/API

21. Rakotoarivelo, T., Jourjon, G., Ott, M., Seskar, I.: OMF: A control and management frame-
work for networking testbeds. ACM SIGOPS Operating Systems Review 43(4) (January
2010)

22. Ricci, R., Alfeld, C., Lepreau, J.: A solver for the network testbed mapping problem. ACM
SIGCOMM Computer Communication Review (CCR) 33(2), 65–81 (2003)

23. Ripeanu, M., Bowman, M., Chase, J.S., Foster, I., Milenkovic, M.: Globus and PlanetLab re-
source management solutions compared. In: Proc. of the 13th IEEE International Symposium
on High-Performance Distributed Computing (HPDC 2004), Honolulu, HI (June 2004)

24. Burin des Roziers, C., Chelius, G., Ducrocq, T., Fleury, E., Fraboulet, A., Gallais, A., Mitton,
N., Noél, T., Vandaele, J.: Using SensLAB as a First Class Scientific Tool for Large Scale
Wireless Sensor Network Experiments. In: Domingo-Pascual, J., Manzoni, P., Palazzo, S.,
Pont, A., Scoglio, C. (eds.) NETWORKING 2011, Part I. LNCS, vol. 6640, pp. 147–159.
Springer, Heidelberg (2011)

25. Sevinc, S.: A Path to Evolve to Federation of TestBeds. In: Korakis, T., Li, H., Tran-Gia, P.,
Park, H.-S. (eds.) TridentCom 2011. LNICST, vol. 90, pp. 126–141. Springer, Heidelberg
(2012)

26. Viecco, C.: Use of URNs as GENI identifiers (June 2009),
http://gmoc.grnoc.iu.edu/gmoc/file-bin/urn-proposal3.pdf

27. Wahle, S., Tranoris, C., Denazis, S., Gavras, A., Koutsopoulos, K., Magedanz, T., Tompros,
S.: Emerging testing trends and the Panlab enabling infrastructure. IEEE Communications
Magazine 49(3) (March 2011)

28. Wahle, S., Magedanz, T., Campowsky, K.: Interoperability in Heterogeneous Resource Fed-
erations. In: Magedanz, T., Gavras, A., Thanh, N.H., Chase, J.S. (eds.) TridentCom 2010.
LNICST, vol. 46, pp. 35–50. Springer, Heidelberg (2011)

29. Webb, K., Hibler, M., Ricci, R., Clements, A., Lepreau, J.: Implementing the Emulab-
PlanetLab portal: Experience and lessons learned. In: Proc. of the First Workshop on Real,
Large Distributed Systems (USENIX WORLDS), San Francisco, CA (December 2004)

30. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M., Barb,
C., Joglekar, A.: An integrated experimental environment for distributed systems and net-
works. In: Proc. of the USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI), Boston, MA (December 2002)

31. Wong, G., Ricci, R., Duerig, J., Stoller, L., Chikkulapelly, S., Seok, W.: Partitioning trust
in network testbeds. In: Proc. of the 45th Hawaii International Conf. on System Sciences
(HICSS-45), Wailea, HI (January 2012)

http://groups.geni.net/geni/wiki/SliceFedArch
http://www.protogeni.net/trac/protogeni/wiki/API
http://www.protogeni.net/trac/protogeni/wiki/API
http://gmoc.grnoc.iu.edu/gmoc/file-bin/urn-proposal3.pdf

	Designing a Federated Testbed as a Distributed System
	Introduction
	Related Work
	Architecture
	GENI
	ProtoGENI Architecture
	Running an Experiment

	Interactions between Federates
	Slice State
	Behavior in the Face of Failures

	Resource Specification
	Annotation
	Extensibility

	Experiences
	Framework Design
	Testing the System

	Conclusion
	References

