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Abstract. Distributed network testbeds like GENI aim to support a potentially
large number of experiments simultaneously on a complex, widely distributed
physical network by mapping each requested network onto a share or “slice” of
physical hosts, switches and links. A significant challenge is network mapping:
how to allocate virtual nodes, switches and links from the physical infrastructure
so as to accurately emulate the requested network configurations.

In this paper we present the VF2x virtual network mapping system. Based on
the VF2 subgraph isomorphism detection algorithm designed for matching large
graphs, VF2x incorporates several novel algorithmic improvements. These and
careful implementation make VF2x perform more than two orders of magnitude
faster than the fastest previously published algorithm.

In evaluating our algorithm, we generated an extensive test workload based on
analysis of a 5-year trace of experiments submitted to the popular Emulab testbed,
and using the current ProtoGENI topology. We use this test workload to evalu-
ate the performance of VF2x, showing that it can allocate resources to virtual
networks on a large testbed in a matter of seconds using commodity hardware.

Keywords: Network testbeds, virtual network mapping, subgraph isomorphism.

1 Introduction

Network testbeds are used by networking researchers to experiment with new proto-
cols, applications, and systems, and are generally shared between users to reduce the
considerable capital cost involved. A testbed consists of a set of physical resources –
compute nodes (usually PCs), switches, links, etc. – together with a control plane which
allocates resources. Users submit “requests” in the form of specifications of particular
network configurations (nodes, topology, etc.) they would like to experiment with, when
they require the resources, and for how long. In response, the control plane allocates, if
possible, a set of resources to the users at the requested time.

Resources can be physical machines or links, but are often virtual “slices” of real
resources. Multiplexing enables a plurality of diverse virtual networks to coexist on a
shared physical network infrastructure [1–3]. Widely distributed testbeds like GENI [4]
aim to support a potentially large number of experiments simultaneously by mapping
each requested network onto a share or “slice” of physical hosts, switches and links.

A significant challenge in the context is virtual network mapping: how to map a
virtual network (VN) topology with resource constraints to specific nodes and links in
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a given physical network (PN) infrastructure so as to accurately emulate the network
configurations requested by users. This mapping problem is difficult in theory and in
practice due to the four properties summarized in [5]: diverse topologies, resource con-
straints, online requests and admission control. Even simplified variants of the mapping
problem with relaxed properties turn out to be difficult: assigning nodes in a switched
Ethernet-connected testbed without violating bandwidth constraints can be reduced to
the NP-hard multiway separator problem [6], and even when the nodes are pre-selected,
the link mapping problem for VN requests with link constraints is still NP-hard [5].

In this paper we present a new algorithm, VF2x, based on the VF2 subgraph isomor-
phism algorithm for matching large graphs [7]. VF2x performs network mapping more
than two orders of magnitude faster than the previously-published vnmFlib (also based
on VF2) but reduces solving time for near-worst-case problem instances through more
careful implementation and several novel algorithmic changes: constructing a candidate
queue, applying heuristic sorting, and introducing a new “timeout-and-relax” strategy.

In the rest of this paper, we first provide some background and related work of the
problem, and then in Section 3 we describe the VF2x algorithm, discuss the imple-
mentation issues and algorithmic improvements, and evaluate its effectiveness through
simulation. In Section 4.1 we explain the generation of a more realistic test workload
derived from a 5-year trace of experiments submitted to the Emulab testbed. Using the
generated test workload, we evaluate the performance of VF2x in Section 4. In Section 5
we make a conclusion.

2 Background and Related Work

Until recently, most testbeds supporting specification of network properties were central-
ized, such as Emulab [8] and DETER [9]. These testbeds emulate a variety of network
topologies using a small number of high-port-count, high-capacity switches to approxi-
mate a physical crossbar between machines. This testbed mapping problem with band-
width constraints has been proven to be NP-complete [10]. Simulated annealing has been
successfully applied to this situation [11], but does not work well for large-scale virtu-
alized network testbeds [12].

Other recent virtual network mapping algorithms make different assumptions in or-
der to apply efficient heuristics to make the problem tractable.

Zhu and Ammar [13] assume unlimited physical network resources and then try to
achieve low and balanced load on both physical nodes and links. Their algorithm, VNA-
I, subdivides the general topology in the VN request into multiple small star topologies,
and then exploits the flexibility of these small topologies.

Lu and Turner [14] consider the offline problem of mapping a virtual network with
a backbone-star topology to the physical network with the aim of getting sufficient
capacity to accommodate any traffic pattern specified by traffic constraints.

Yu et al. [5] propose a two stage solution to the problem. They first map the virtual
nodes, and then map the virtual links using shortest path and multi-commodity flow
(MCF) algorithms. The authors focus on improving the link mapping through substrate
support for path splitting and migration. Razzaq and Rathore [15] also propose a two
stage solution, but without the assumption of substrate support: virtual nodes are first
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mapped as closely as possible to the physical network, then virtual links are mapped to
the shortest paths which satisfy the demands.

Chowdhury et al. [16] propose algorithms which provide better coordination be-
tween the two stages. The virtual nodes are mapped to the physical nodes in a way that
facilitates the mapping of the virtual links to the physical paths in the subsequent phase.
The mapping problem is solved using a Mixed Integer Program (MIP) formulation. The
authors also assume substrate support.

Several algorithms consider network migration and reconfiguration. Butt et al. [17]
note the importance of differentiating physical network resources and argue that
topology-aware mapping together with reoptimizing bottleneck mappings can improve
the acceptance ratio. Schaffrath et al. [18] formalize the mapping problem as a linear
mixed integer program and allow dynamic reconfiguration of existing mappings.

Of particular interest is the vnmFlib network mapping library implemented by Lis-
chka and Karl [19]. Noting the relationship between the network mapping problem and
subgraph isomorphism detection, they develop a backtracking algorithm based on the
VF2 algorithm used in the pattern recognition community for finding subgraph isomor-
phisms in large graphs. VnmFlib maps virtual nodes and links in a single stage and
achieves better and faster mappings than the two stage approach used by Yu et al. [5],
and works especially well for large virtual networks with strong resource constraints.

While many algorithms (including VF2x) can produce optimal results (subject to
some utility function), this frequently involves exhaustive search and is therefore ex-
pensive. Moreover, it is rarely required; in practice a near-optimal solution in reason-
able time is preferable. Emulab’s simulated annealing algorithm [11] is a good example
of exploiting this property.

However, the Emulab approach suffers from two limitations: firstly, it does not al-
ways return the same result due to its use of randomness, which makes the debugging
of the algorithm challenging. Furthermore, it sometimes fails to find a solution that sat-
isfies all the constraints even if such a solution exists. This is illustrated by the “ugly”
example included in the Emulab source code. In contrast, VF2x is deterministic in all
its heuristics, and for this “ugly” mapping problem, can find a solution with no violation
in constraints in considerably less time.

3 VF2x Algorithm and Implementation

Recent proposals for distributed testbeds such as GENI presume a federated, distributed
physical infrastructure over which virtual networks (“slices”) are instantiated. Low
cross-sectional bandwidth is expected in such testbeds. At present, the various proposed
GENI frameworks address the mapping problem in different ways: ProtoGENI [20] in-
herits the existing assign mapping algorithm from Emulab; ORCA-BEN [21] uses
NDL-OWL ontology language to express substrate and a sequence of request and re-
lease operations, and relies on Jena RDF and OWL reasoning engines to perform topol-
ogy mapping [22]. The cost of the mapping operation is not prohibitive since the BEN
network is small.

We found vnmFlib [19] to be especially suitable for the network testbed mapping
problem, as explained above. However, in the process of trying to apply vnmFlib di-
rectly to our testbed resource allocator, we find several limitations of both the algorithm
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and its implementation which we explain in detail below. This motivated us to develop
VF2x, our own VF2-derived virtual network mapping algorithm.

3.1 Implementation Decisions

As with vnmFlib, VF2x extends VF2 with semantic constraints on virtual node and link
attributes (a key requirement for testbed applications) and a pre-defined distance value ε
which, unlike VF2, allows virtual links to be mapped to multi-hop paths in the physical
network of length at most ε.

Algorithm 1 shows the main skeleton of VF2x mapping algorithm. Variable depth
maintains account of how many nodes have been successfully mapped so far. At each
step, a new pair of nodes (n,m) is generated to try to match against each other. The
feasible(n,m) function checks the syntactic (structure of the graph) and semantic
(node and link attributes) feasibility of the mapping. If it succeeds, the mapping is re-
membered; otherwise, we try the next pair until we reach a dead end and backtrack().

Algorithm 1. VF2x mapping algorithm
Input: Attributed graph Gvn and Gpn

Output: Mapping from M(Gvn) to Gpn

while |M| � |Gvn| and depth > 0 do1

(n,m)← genpair();2

if n < 0 or m < 0 then3

backtrack();4

depth← depth − 1;5

end6

else if feasible(n,m) then7

M(m)← n;8

depth← depth + 1;9

end10

end11

VF2x improves dramatically over vnmFlib through a combination of careful imple-
mentation and several algorithmic improvements. The implementation techniques can
be summarized as follows: VF2x is implemented entirely in C (about 1,500 lines) based
on the existing igraph library [23] implementation of VF2; VF2x supports modelling of
network topologies as both directed and undirected graphs, while vnmFlib is restricted
to topologies modeled only as directed graphs; unlike vnmFlib, VF2x avoids non-tail
recursion; and finally, VF2x computes neighbors in a lazy manner and populates the
adjacent neighbor table on demand, while vnmFlib recomputes neighbors every time.

By themselves, these implementation decisions make a dramatic difference in perfor-
mance. Table 1 compares our VF2x implementation to vnmFlib using two simple map-
ping problems. To fairly compare the two implementations, we turn off the “splittable”
option (to map the flow in a virtual link to multiple paths in the physical network), solve
the mapping problems for directed graphs only, and set ε to 2 for both implementations.
The hardware used is the same as that used in Section 4.
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As seen from Table 1, even these better implementation techniques by themselves
allow VF2x_base to already solve the problems in roughly two orders of magnitude
less time than vnmFlib, without employing vnmFlib’s sorting heuristics.

We are not the first to observe the performance issues with vnmFlib [24], but our
goal here is to demonstrate that VF2-based algorithms in general can be implemented
with good performance for reasonable problem sizes.

Table 1. VF2x vs. vnmFlib

Example1a Example2b

Steps Time(ms) Steps Time(ms)

vnmFlib 3 2.786 20 18.994
VF2x_base 10 0.130 29 0.370
VF2x_candi 9 0.117 16 0.329
VF2x_candi_sort 4 0.089 14 0.050
a VN: 3 nodes and 3 links; PN: 6 nodes and 9 links.
b VN: 11 nodes and 10 links; PN: 14 nodes and 15 links.

Besides careful implementation, VF2x_base can be further optimized through al-
gorithmic changes which prune/reorganize the search space further and thus lead to a
better solution in less time.

Table 1 includes two of the algorithmic changes we use in VF2x: using a candi-
date queue and applying heuristic sorting. With these changes, the number of matching
steps is reduced. Details of these and other algorithmic changes, and their performance
impact, are given in the rest of this section.

3.2 VF2x with a Candidate Queue

To map a virtual node n to the physical network, rather than matching n against every
node available from the physical network, VF2 matches only against those nodes within
ε hops of the physical nodes already mapped.

VF2x uses a candidate queue to prune the search space still further. We first find all
the nodes that n’s neighbors have been mapped to. In the example shown in Figure 1,
n’s neighbors n1, n2 are mapped to m1, m2. Then, we calculate the intersection of E(m1)
and E(m2). Here, E(m) is the set of nodes at most ε hops away from m in the physical
network. In fact, the only possible candidates for n are elements of this intersection and
we call it n’s candidate queue. In Figure 1, the candidates are the light gray ones in the
shadowed area. The candidate queue improves solving time by reducing the number of
candidates to match: genpair() only generates candidate pairs (n,m) where m belongs
to the candidate queue. Table 1 shows the improvement obtained (the VF2x_candi row).

3.3 Heuristic Sorting of Network Topologies

Like VF2, VF2x is based on a depth-first search strategy. The sequence of the candi-
date pairs generated depend on how the nodes are ordered in the virtual and physical
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Fig. 1. The generation of n’s candidate queue

networks. This suggests that sorting the nodes according to heuristics can reorganize
the search tree, and find a better solution in less time.

Different heuristics can be applied. vnmFlib sorts the generated candidate pairs based
on the resource consumption of the virtual nodes; VF2x sorts graph nodes such that
switches are ordered before hosts (whether a graph node is a switch or a host is indi-
cated by the additional “type” attribute which is introduced for a testbed environment),
furthermore high-degree nodes are sorted ahead of low-degree ones. Figure 8(b) in Sec-
tion 4.2 shows the effectiveness of this heuristic of mapping more-constrained resources
first.

3.4 Batching

Another extension VF2x makes for a testbed environment is to support batch solving:
mapping several virtual network requests in one solving process even though they share
the same physical network resources. The original VF2 algorithm does not support
this and can only detect isomorphism for the disconnected subgraphs (VN requests) by
mapping the virtual nodes from these requests to different physical nodes. With this
extension, the same physical switch can be shared by different requests even though
different switches in the same request are mapped to different physical ones.

3.5 Timeout-and-Relax for ε

The vnmFlib authors propose two algorithms to pick an appropriate ε (recall that virtual
links are only mapped to paths shorter than ε): VnmFlib-simple uses a fixed ε, while
vnmFlib-advanced starts with ε = 1, exhaustively searches for a mapping, and then
successively increments ε until one is found or until ε reaches 10.

For smaller ε, fewer candidate nodes need be considered, but the tighter constraints
can increase the required exploration of the search space. Informally, for small ε, if a
solution exists, it is likely that it will be found early in the search.

This observation leads us to adopt an additional heuristic to mitigate occasional
worst-case performance of VF2x (the general problem remains NP-hard), which we
term “timeout-and-relax”. Instead of always running VF2x to completion, we start with
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small ε and impose a small time limit on the solving time, aborting the algorithm if it
exceeds the limit. We then increase ε and the value of timeout, and retry. This approach
attempts a good compromise between shorter solving time of a smaller ε, and higher
success rate of a larger ε. As shown in Figure 9, this strategy brings down the average
solving time considerably compared to fixed ε and timeout values.

3.6 Algorithm Analysis with Synthetic Workload

Using the GT-ITM tool, we generated 10 separate physical networks with 100, 150,
200, . . . , 550 nodes. Each node pair is randomly connected with probability 0.1. In this
way, the physical network with 100 nodes are connected by around 500 links. We also
generated 200 virtual networks. The size of the virtual networks is uniformly distributed
between 2 to 20 and the nodes are connected with probability 0.5. The CPU capacity
and the link bandwidth follow a uniform distribution ranging from 1 to 100 for the
physical networks and ranging from 1 to 50 for the virtual networks. While synthetic,
these randomly generated virtual and physical networks are of the same characteristics
as those used by other researchers [5, 13, 19].

To evaluate each algorithmic change introduced above, we run a set of experiments
to map 200 virtual networks to each of the 10 physical networks using variants of
VF2x. In these experiments, ε is fixed and set to 2 and timeout is set to 5s. The
VF2x algorithm variants compared are: VF2x_base, VF2x_candi and VF2x_candi_sort.
VF2x_base is an extended VF2 which supports semantics constraints and maps vir-
tual links to multi-hop paths. VF2x_candi extends VF2x_base with a candidate queue
which further prunes the search space. VF2x_candi_sort applies heuristic sorting to
VF2x_candi and sorts the nodes by the degree. Heuristic sorting reorganizes the search
space in a way to find a better mapping in less time.

We ran all the experiments on a machine with an Intel Core2 Q6700 (quad-core
2.66 GHz) CPU and 4GB memory. The machine was running Ubuntu Linux 10.04 LTS
Lucid Lynx, and we used version 0.5.4 of the igraph library.
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Figure 2 compares the three algorithm variants by mapping 200 virtual networks
to the same 100-node physical network. As we can see, algorithmic improvements
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dramatically reduce the solving time and improve the mapping success rate: among
200 requests, within 5s, VF2x_base fails to map 65 requests, VF2x_candi fails to map
61 requests, while VF2x_candi_sort manages to bring the number down to 26. If we set
the timeout to 500s, one request fails after exhausting the search space and 11 requests
fails due to timeout.

Figure 3 plots the solving time of VF2x_candi_sort to map 200 randomly generated
virtual networks to three different physical networks: 100 nodes with 483 links, 300
nodes with 4513 links, and 500 nodes with 12458 links. As shown in the figure, for more
than 65% of the requests, VF2x uses less time to map them to the 100-node physical
network. However, it takes substantially more time for about 20% of the requests, and
even times out for 26 requests out of 200. Physical network size does play an important
role in the algorithm and we investigate this subject further in Section 4.3. Moreover,
within the same time limit, the timeout-and-relax strategy can improve the success rate
significantly, as we show in Section 4.2.
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Figure 4 plots the solving time of VF2x_candi_sort to map 4 virtual networks of 4
nodes / 4 links, 8 nodes / 12 links, 12 nodes / 34 links, and 16 nodes / 54 links separately
to the 10 different physical networks. As the figure shows, the solving time increases
roughly exponentially with the physical network size as well as the virtual network size.
However, this is still acceptable for these problem sizes since VF2x is able to map the
virtual network of 16 nodes / 54 links to the physical network of 500 nodes / 12458
links within 100ms.

4 Evaluation Using Real Testbed Workloads

Since networking testbeds are still relatively new, particular those which are distributed
in nature and permit complex topological requests, it is not clear what kind of workload
is representative for a testbed resource allocator. Much related work uses GT-ITM to
simulate requests and testbed network topologies, as we have done to analyze different
VF2x algorithm variants in Section 3.6.
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However, these randomly generated undirected graphs cannot faithfully represent
real testbed requests and infrastructures. Therefore, in this section, we describe the gen-
eration of a more plausible test workload and use it to evaluate VF2x. While we make
no authoritative claims that the workload generated is representative, we do argue that
it is based on plausible data and assumptions. The hardware used is the same as that
used in Section 3.6.

4.1 Workload Generation

Physical Topology. We extracted physical topology information from ProtoGENI1 and
build our physical topology with 627 nodes (including switches and hosts) and 1163
links based on the resource information from the Utah ProtoGENI site. We simplify
the topology by summing up the bandwidth of all links from the same host to the same
switch instead of including all “duplicated” links. This physical topology is used for all
the experiments shown in this section.
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Request Stream. We then derive a sequence of virtual network requests from a com-
plete sequence of Emulab topology requests for 5 years up to June 2007, essentially
covering every experiment submitted to Emulab before that date. This trace consists of
23818 projects, 127586 topology requests among which 52089 are unique (the Emulab
.top files are not identical). Figure 6 shows the distribution of the requested network
sizes.

Temporal Characteristics. We assume that virtual network requests arrive dynam-
ically. The users submit “requests” stating desired network resources, when they are
needed, and for how long. In response, the testbed resource allocator will decide whether
to accept the requests and if so, which specific physical resources will be allocated.

In order to construct a realistic request workload, two important temporal variables
must be modeled: the request arrival rate and duration which defines for how long the
user actively uses the allocated resources.

1 http://www.protogeni.net/trac/protogeni

http://www.protogeni.net/trac/protogeni
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The arrivals of the requests are modeled as a Poisson process with a mean of λ re-
quests per time window. As a reference, we roughly calculate the request arrival rate for
the Emulab request trace. Based on the fact that Emulab received 127586 top requests
over 4 years, we conclude that Emulab received 4 requests per hour on average. Using
4 as a base value, in the following experiment, we vary λ to increase or decrease offered
load. This distribution model naturally does not take into account load spikes on the
system (such as before conference deadlines).

Request duration is modeled as a Gamma distribution. which have long been used for
modeling demand distribution in queuing systems [25, 26]. We choose the parameters
shape = 0.3 and scale = 20, and generate 1000 duration values with the distribution
as follows: 266 values are less than 10 minutes, 117 between 10 and 30 minutes, 90
between 0.5 and 1 hour, 459 between 1 and 24 hours, 68 between 1 and 7 days.

Based on the distribution models, we annotate the Emulab request stream with two
time parameters – when to request resources and when to release them – and generate
our workload from this. The workload is used in Section 4.4 to evaluate our testbed
resource allocation with VF2x mapping algorithm.

4.2 Additional Heuristics for the Test Workload

Analysis of the Test Workload. Unlike the random virtual and physical networks
generated by GM-ITM, nodes both in the physical topology described above and in
our new request stream have an additional “type” attribute indicating whether they are
switches or nodes. By analyzing the number of components of the requested virtual
network graph, we found that the majority of the requests are connected graphs. Among
them, most have tree topology and 20% of the trees are single nodes, as shown in
Figure 7. Among these tree-topology requests, the structure in Figure 5 is common,
where the hosts between switches are running DummyNet and acting as delays.

To explore the best heuristics we can apply to the test workload, we use the physical
network described in Section 4.1, and generate a series of trees of various sizes follow-
ing the structure pattern shown in Figure 5. We ran the VF2x mapping algorithm with
different ε values (the maximum length of the physical path that a virtual link can be
mapped to) and different sorting heuristics.
ε values are 1, 2, 3 and 4. Our baseline for comparison is “doing nothing”: ordering

virtual and physical nodes as they are declared in the specification; the second heuristic
is the one we describe in Section 3: sorting virtual and physical switches and hosts in
descending order of their degrees: first switches from high to low degree, then hosts
from high to low degree (so that switches are mapped first).

By comparing Figures 8(b) and 8(a), we can see that the heuristic to order/map
switches and hosts based on their degrees can reduce the solving time and increase the
success rate within a solving time limit of 10s.

These two experiments both show some interesting properties of ε. First, the smaller
the ε value is, the fewer candidate nodes are to be considered, which results in less
solving time. Second, the smaller the ε value is, the more constrained it is to find a
satisfiable solution. This can result in longer solving time for the cases where a solution
with smaller ε exists but requires more exploration of the search space, or when failing
to find a mapping solution due to a timeout. Third, the smaller the ε value is, the more
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Fig. 8. Solving time for trees of various sizes

sensitive the solving time is to the order of the nodes. In Figure 8(b), a tree of size 5 takes
more time to solve than tree of size 9. The 5-tree orders the nodes as S 0, S 1, S 2,H0,H1
while the 9-tree orders them as S 1, S 2, S 0,H0,H1,H2, ...H5 according to the sorting
heuristic. These observations led us to adopt the “timeout-and-relax” technique: we
start with small ε and small timeout, and increase ε and the value of timeout after each
timeout. This approach aims at a good compromise between faster average solving time
of smaller ε, and higher success rate of larger ε.

Applying Heuristics to the Test Workload. Having shown the effectiveness of the
sorting heuristic, in the next experiment we use our request stream to investigate the
effectiveness of the “timeout-and-relax” strategy. We randomly choose 2000 requests
out of 52089 Emulab requests and individually map each of them to the same physical
topology introduced in Section 4.1. We compare two different strategies: the simple
strategy in which ε is fixed and set to 4 with timeout = 10s; the timeout-and-relax
strategy in which ε is dynamic with different timeouts: (ε = 2, 1s), (ε = 3, 2s), (ε =
4, 7s). In both experiments, the sorting heuristic described above is applied.

Figure 9(a) and Figure 9(b) plot the solving time against the virtual network size.
Here, the virtual network size is defined as the total number of nodes and links. Fig-
ure 9(c) depicts the solving time CDF for fixed ε = 4 and dynamic ε = [2, 3, 4]. From
these figures, we can see that: with timeout-and-relax, VF2x solves most (more than
85%) mapping problems in less time, while it also achieves a higher success rate and
the number of timeout cases decreases from 119 to 74.

Figure 9(d) shows this comparison in more detail by plotting the solving time with
fixed ε against the solving time with dynamic ε. As we can see, most of the mapping
problems are solved in less time with dynamic ε and a majority of them are twice as
fast. The dots plotted in the center right of the figure are the 45 requests which fail with
fixed ε but succeed with dynamic ε. The dots plotted in the top right corner are the 74
requests (out of 2000) which fail to be mapped within 10s.

The algorithm used in all the next set of experiments is VF2x_candi with the above
sorting heuristic and timeout-and-relax strategy applied.
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Fig. 9. Solving 2000 Emulab requests

4.3 Repeated Requests to Exhaust Physical Resources

In this section, we use a simple test workload to investigate the sequential and global
allocation strategies. The test workload is a round-robin sequence of four requests from
Emulab request history which contain one node, 4 nodes, 7 nodes and 13 nodes sepa-
rately. For the two allocation strategies, we investigate the solving time to map physical
resources to the successive requests, as well as the total proportion of physical resources
that are allocated. In the experiment, we deliberately repeat the request in order to in-
vestigate, for one specific request, the influence of the shrinking physical resource pool.

With the sequential solving strategy, we allocate resources to each request, mark
the resources allocated as unavailable and never reallocate them, and continue until
we exhaust all physical resources. During this process, physical resource utilization is
increasing and the free physical resources are decreasing. Figure 10(a) plots the rela-
tionship between the solving time for one specific request and the shrinking physical
network. It shows how, initially, the solving time decreses since the available resources
are abundant the search space is shrinking. This trend stops in the middle when the
platform has much fewer resources available and the solver has to nearly exhaust the
(smaller) search space to find a solution.

With the global solving strategy, whenever we process a new request, we reassign
resources to all the requests seen so far in one mapping process, without respecting any
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Fig. 10. Exhausting physical resources

previous resource assignment. As we have observed in [27], with global solving, the
execution time increases exponentially as more constraint programs are solved simul-
taneously in the ECLiPSe solver we used [28]. To our surprise, with the batch solving
described in Section 3.3, the solving time in VF2x does not increase exponentially. As
shown in Figure 10(b), after a sharp increase at the beginning, the execution time in-
creases linearly. This is due to the fact the requests are repeating themselves. At the
beginning, VF2x takes some time (still within 10ms) to find mappings for the first 4
requests. Then, since successive requests are identical, they reuse the switch mappings
generated beforehand and this significantly prunes the search space. This shows that
batch solving is a surprising promising technique for solving a set of structurally recur-
ring requests efficiently.

4.4 Long Trace Behavior

In this section, we use the full test workload generated in Section 4.1 to evaluate our
testbed resource allocator with the VF2x mapping algorithm.

We run the simulations for 200 time windows with different request arrival rates:
λ = 4, 8, 16 which correspond to 800, 1600, 3200 requests in each simulation instance.
The generation of the request workload and the physical network topology used in
the simulations is described in Section 4.1. We use a client simulator to send resource
requests and release requests to the allocator. Upon receiving a resource request, the
allocator runs VF2x to decide whether or not to accept the request, if yes, it decides
which physical resources to allocate and removes them from the physical network; upon
receiving a release request, the allocator will revoke the resources and return them to
the physical network.

In Figure 11, the dotted line depicts the utilization of the physical network (dividing
the number of allocated hosts by the total number of physical hosts) under a request
arrival rate of λ = 4. The solid line shows the utilization in an “ideal” scenario where
all the requests are accepted and satisfied. Of 800 requests, the allocator refuses 69 due
to resource insufficiency and fails to map 7 requests to the physical network within 10s.
For these timeout cases, we can relax their resource constraints and retry the mapping
with VF2x.
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Fig. 12. Executing the generated trace of arrival rate λ = 4, 8, 16

0 50 100 150 200
Size of requested virtual networks (v+e)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

s
o
lv

in
g
 t

im
e
 (

m
s
)

Success

Failure

Timeout

(a) λ = 4

0 50 100 150 200
Size of requested virtual networks (v+e)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

s
o
lv

in
g
 t

im
e
 (

m
s
)

Success

Failure

Timeout

(b) λ = 8

Fig. 13. Executing the generated trace of arrival rate λ = 4, 8

Figure 12 shows the physical network utilization under different request loads. After
some warm-up time, the system enters a more steady state as leases are requested and
released “evenly”. In the end, when no more requests are received, the allocator grad-
ually releases all the resources. By comparing the lines for different λ, we can see that
the higher the load, the more likely it is that the allocator can fit small requests into the
network and achieve higher utilization.

Figure 13 shows the solving time (including failures and timeouts) of VF2x in map-
ping the requests of different sizes to the changing physical network in the continuous
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resource allocation process. As we can see, with a bigger λ value, the provider receives
more requests in a given time slot, and this results in a higher failure rate because of its
limited capacity.

5 Conclusion

We have presented VF2x, a new virtual network mapping algorithm based on the VF2
subgraph isomorphism detection algorithm. VF2x supports semantic constraints and
is able to map virtual links to multi-hop paths. Several algorithmic improvements are
introduced: using a candidate queue, applying heuristic sorting and adopting timeout-
and-relax strategy.

The design of suitable network mapping algorithms for network testbeds (and, in-
deed, similar scenarios such a datacenter networks and cloud facilities) is still in its
infancy, and the idealized problem is, in theory, computationally hard.

However, we have shown that a combination of good choice of algorithm, pragma-
tism with regard to timeouts, and careful attention to implementation details can pro-
vide a fast way of embedding virtual networks in a physical substrate – when combining
algorithmic optimizations, implementation, and heuristics like sorting and timeout-and-
relax, VF2x is over two orders of magnitude faster than previous systems like VnmFlib.
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