
T. Korakis, M. Zink, and M. Ott (Eds.): TridentCom 2012, LNICST 44, pp. 178–193, 2012. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012 

Implementation and Performance Evaluation  
of a New Experimental Platform  

for Medium Access Control Protocols 

Francisco Vázquez Gallego1, Jesús  Alonso-Zarate1, Danica  Gajic2,  
Christian  Liss2, and Christos  Verikoukis1 

1 Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) 
Parc Mediterrani de la Tecnologia (PMT), Av. Carl Friedrich Gauss, 7 

08860 Castelldefels (Barcelona), Spain 
{francisco.vazquez,jesus.alonso,cveri}@cttc.es 

2 InnoRoute GmbH, P.O. Box 260114 
80058 Munich, Germany 

{gajic,liss}@innoroute.de 

Abstract. OpenMAC is presented in this paper as an innovative experimental 
platform suitable for field testing and performance evaluation of Medium Access 
Control (MAC) protocols developed in C++. The concept design of OpenMAC 
avoids the use of hardware-specific code or Hardware Description Language 
(HDL), softening the learning curve and accelerating the implementation 
process. This paper describes the OpenMAC hardware/software architecture and 
shows its benefits with a design example of a Carrier Sense Multiple Access 
(CSMA) protocol. Finally, the paper provides the implementation details and 
presents performance results of a practical test to demonstrate how OpenMAC 
can fulfill strict MAC timing specifications and thus perform as a device 
backwards compatible with standards. 
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1 Introduction 

The Medium Access Control (MAC) layer defines the rules to access a shared 
communication medium, indicating when and how a specific node is granted access to 
transmit or receive data. Several MAC protocols have been proposed in the literature 
due to their key impact into the performance and energy-efficiency of communication 
networks. However, most of these works present only theoretical analysis or 
simulation, and just in very few cases they have been actually tested in the field. 
Experimental prototyping and real testing are essential processes for evaluating the 
protocols under realistic physical (PHY) layer conditions due to the fact that the 
inclusion of real-world effects in theoretical models often leads to intractable 
problems and computer-based simulation techniques are affected by the variability 
and, usually lack PHY layer accuracy [1]. 

The requirements for a MAC experimental platform are tightly related to the key 
functions of the MAC layer, which are briefly described as follows: 
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1) Provide access to PHY layer information, e.g., to monitor the channel status for 
Clear Channel Assessment (CCA) in order to know whether the channel is idle or 
busy. 

2) Enable PHY layer re-configuration to select various PHY parameters such as 
data-rate, modulation, transmit-power, frequency-channel, etc. 

3) Enable precise scheduling and timing, e.g., to ensure that transmissions occur 
during time-slots in Time Division Multiple Access (TDMA) protocols. 

4) Guarantee fast identification of received control packets which have to be quickly 
processed to generate answers and make decisions rapidly. 

5) Guarantee fast packet transmission, e.g., in contention-based protocols packets 
must be transmitted with minimum delay when the channel is detected to be 
clear. 

In addition, an ideal platform should also: 

1) Smooth the learning curve to create a prototype from a protocol concept design. 
2) Guarantee the fulfillment of the protocol time-specifications to ensure backwards 

compatibility with standards in case it is required. 
3) Provide flexible interfacing to experiment with different PHY layers. 

A number of research projects have addressed the implementation of experimental 
platforms to test MAC protocols [2]. Two categories of platforms have been identified 
in the literature: platforms based on commercial Network Interface Cards (NIC) and 
platforms based on custom hardware. 

Commercial off-the-shelf 802.11 NIC-based platforms [3]-[5] split the 
implementation of the MAC layer functions between the firmware on the networking 
card, which implements the time-critical functions, and the software-driver running on 
the computer hosting the card, which implements the time-tolerant functions. NIC-
based solutions constitute an inexpensive prototyping approach and facilitate 
reprogramming the MAC protocol functions by modifying the software-driver. 
However, the interface between the host-computer and the NIC introduces 
unpredictable delays which may compromise the precise scheduling and the 
compliance with strict timing requirements of the MAC protocol. For this reason, time-
critical functions are programmed in the NIC firmware, which usually cannot be easily 
reconfigured, thus limiting the flexibility to efficiently customize certain MAC 
functions. This limitation is extended to the access to information and configuration of 
the PHY layer, thus not allowing for MAC-PHY cross-layer designs. 

Several custom hardware platforms [6][7] have been implemented as an alternative 
to NIC-based platforms, e.g., TUTWLAN [8], Universal Software Radio Peripheral 
(USRP) [9] and GNU Radio [10], Wireless Open-Access Research Platform (WARP) 
[11], CalRadio [12], OpenAirInterface [13], among others. Custom hardware platforms 
are equipped with an analog Radio-Frequency (RF) front-end connected to a built-in 
computing subsystem by means of analog-to-digital and digital-to-analog converters. 
The computing subsystem performs both the PHY digital base-band processing (BBP) 
and the MAC functions. These solutions are based on Field-Programmable-Gate-
Arrays (FPGAs), embedded processors, or Digital-Signal-Processors (DSP). They 
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offer full control over the MAC and the PHY layers. The implementations based on 
FPGA allow partitioning the MAC into software and custom hardware-accelerators, 
offering even more processing power. In addition, they enable to experiment with 
different PHY layers and to design MAC-PHY cross-layer optimizations. 

On the other hand, state of the art custom-hardware platforms have some 
disadvantages. Their implementation cost is very high and they show a steep learning 
curve to start prototyping. The protocol designer needs to understand the hardware 
details to develop hardware-specific C-code in order to fulfill the tightest protocol 
time-constraints. However, MAC designers are typically familiar with high-level 
programming languages, e.g., C++, which may endanger the implementation of time-
critical functions. While the use of FPGAs allows hardware-acceleration and may 
relax the software optimization requirements, it forces the protocol designer to learn a 
Hardware Description Language (HDL). This is the main motivation for the 
development of the OpenMAC platform, which intends to bring MAC prototyping 
capabilities closer to the research community. OpenMAC introduces a special 
hardware/software partitioning of the MAC protocol that eases the task to fulfill the 
most challenging MAC timing-specifications with non hardware-specific code. The 
protocols can be entirely designed in C++ and hardware is transparent to the designer. 

The contribution of this paper is threefold. Firstly, it describes the implementation 
of the OpenMAC platform architecture presented in [14], which is summarized in this 
paper to make it self-contained. Secondly, it provides a comprehensive description of 
the measurement procedure and performance evaluation of the platform. Thirdly, it 
provides an example of implementation of a contention-based protocol. 

The remainder of this paper is organized as follows. Section 2 briefly describes the 
hardware/software architecture of OpenMAC. Section 3 provides a code example for 
a MAC protocol. The hardware implementation of OpenMAC is described in Section 
4. The performance results of the OpenMAC platform are reported and discussed in 
Section 5. Finally, Section 6 concludes the paper. 

2 OpenMAC Platform Architecture 

The architecture of the OpenMAC platform is depicted in Fig. 1. The implementation 
of a MAC protocol is split into the Software (SW) MAC and the Hardware (HW) 
MAC modules. The reason for this HW/SW partitioning is to enable the use of non-
hardware-specific C/C++ code for protocol prototyping and to fulfill the MAC 
protocol time specifications. 

The SW MAC implements non time-critical MAC functions in C++ code. The SW 
MAC is prevented from accessing long data payloads in order to minimize non-
deterministic software latencies. Instead, the SW MAC only needs to access the 
packet headers and packet-descriptors to make simple MAC decisions. 

The HW MAC executes time-critical MAC operations and heavy computation 
functions by means of hardware acceleration, e.g., Clear Channel Assessment (CCA), 
packet error control, encryption, etc. In addition, the HW MAC provides an efficient 
hardware mechanism to guarantee precise and deterministic MAC scheduling, e.g., 
time slots in reservation-based protocols, and back-off periods and inter-frame 
spacing in contention-based protocols. 
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Fig. 1. Hardware/Software architecture of the OpenMAC platform 

The HW MAC interfaces to the PHY digital BBP through the MAC/PHY 
interface, which supports fast transfer of packets and control parameters. The HW 
MAC configures various PHY parameters on the BBP such as the data-rate, 
modulation, transmit power, and carrier selection. In a similar way, the HW MAC 
monitors some variables that are read from the PHY layer, e.g., Received Signal 
Strength Indicator (RSSI). Access to PHY layer information at the MAC and upper 
layers is important in order to support cross-layer optimizations. 

The layers above the MAC are integrated in a host computer (Host-PC) connected 
to the OpenMAC platform through the Host Interface. However, the upper layers can 
also be integrated in the SW MAC processor when stand-alone operation is required. 
The current design of the Host Interface has the same architecture as the HW MAC. 

The shared-memory is a common storage place for accelerating the packet 
transactions among the SW MAC, HW MAC, and the Host-PC by means of a Direct 
Memory Access (DMA). The SW MAC accesses the shared-memory through the 
Processor Local Bus (PLB). The HW MAC stores in the shared-memory the packets 
received from the PHY, and it reads the ones to be transmitted through the PHY. 
Similarly, the Host-PC stores in the shared-memory the packets coming from upper 
layers and reads the ones stored by the HW MAC in the reception process. 

Each packet is referenced by a packet-pointer that identifies the base address where 
the packet is located in the shared-memory. The SW MAC exchanges packet-pointers 
with the HW MAC and with the Host-PC through the OpenMAC interface. 

The remainder of this section is organized as follows. Section 2.1 describes the 
structure of the packets in the shared-memory. The operation of the HW MAC blocks 
is detailed in Section 2.2. Finally, Section 2.3 describes the SW MAC functionalities 
and details the functions of the Hardware Abstraction Layer of OpenMAC. 

2.1 Packet-Descriptors 

A packet in the shared-memory is comprised of three components: 

1) The packet-header contains control information related to the MAC protocol. 
2) The data-payload contains the actual useful data of the packet. 
3) The packet-descriptors contain control and status information required for 

transmission and reception. 
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Two types of packet-descriptors are considered: MAC and PHY descriptors. The 
structure and contents of these packet descriptors are summarized in Table 1 and 
Table 2 for the transmission and reception processes, respectively. 

Table 1. Packet-descriptors used in packet transmission 

MAC Layer descriptors 
PacketLength Length of packet-header and data-payload in bytes 
TimeStamp Time when the SW MAC wants to start transmitting a packet 
EnableRxTimeOut To enable/disable the HW MAC to detect a time-out event in 

packet-reception after a packet is transmitted 
EnableBackoff To enable/disable the HW MAC to perform backoff process 
RxTimeOut Time-out interval to be used by the HW MAC to receive a new 

packet just after a packet-transmission if EnableRxTimeOut is 
enabled 

Backoff Max. duration of the backoff period to be used by the HW MAC 
for the transmission of a packet when EnableBackoff is enabled 

PHY Layer descriptors 
Modulation Modulation type used for a transmission 
DataRate Data-rate used for transmission at the PHY layer 
TxPower Transmission power 
Carrier Frequency band and carriers used for transmission 

Table 2. Packet-descriptors used in packet reception 

MAC Layer descriptors 
PacketLength Length of packet-header and data-payload in bytes 
TimeStamp Time when the packet was received from the PHY layer 
CRCresult Indicates if the current packet was received without error 
PHY Layer descriptors 
Modulation Modulation type used for the reception of a packet 
DataRate Data rate at which the packet was received at the PHY layer 
RSSI The RSSI is a measure of the RF energy received 

The SW MAC can read or write the packet-descriptors by accessing directly to the 
packets' structures in the shared-memory. The HW MAC transfers the PHY layer 
packet-descriptors among the shared-memory and the PHY layer. 

2.2 Hardware MAC 

The HW MAC is a digital module designed in VHDL. It has been created to support 
any time-critical function that can be required by any type of MAC protocols (i.e., 
contention-based, reservation-based, and hybrid MAC protocols), and to avoid re-
design efforts for adapting the HW MAC to new functions. 

In this section, the functionalities and the interaction among the HW MAC 
elements are described. A block diagram of the HW MAC is shown in Fig. 2. 
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The connection between the HW MAC and the SW MAC modules is implemented 
with the two interfaces shown in the left hand side of the diagram: the DMA bus to 
the shared-memory and the OpenMAC interface directly to the SW MAC. 

The transfer of packets is performed through the shared-memory using the DMA 
bus. In the transmission process, packets are read from the shared-memory by the Tx 
DMA block and then parsed to extract the packet-descriptors at the Tx Packet Parsing 
block. In the reception process, the packet-descriptors are first collected and 
registered by the Rx Packet Formatting block, and then the packets are written into 
the shared-memory by the Rx DMA block. 

The SW MAC exchanges packet-pointers (PP) with the Tx PP Manager and Rx PP 
Manager blocks through the OpenMAC interface. The packet-pointers are temporarily 
buffered in the TxPP FIFO and RxPP FIFO blocks, respectively, for transmission and 
reception. In the transmission process, the SW MAC sends the packet-pointers to the 
Tx PP Manager block. In the reception process, the Rx PP Manager notifies to the SW 
MAC when a new packet has been stored in the shared-memory. In the case that the 
RxPP FIFO is empty, the Rx PP Manager block notifies to the SW MAC, which sends 
one or more available packet-pointers. This approach overcomes possible latencies 
introduced by the SW MAC and guarantees that packets received from the PHY layer 
can be stored into the shared-memory immediately. 

As shown in Fig. 2, the OpenMAC interface is connected to the internal registers 
of the Channel State Monitor and the Configuration BBP/RF blocks. In their turn, 
these two are connected to the PHY layer through the MAC/PHY interface, shown in 
the right hand side of the diagram. This interface supports hardware-accelerated 
transfers of data and control parameters between the HW MAC and the PHY layer. 
The Channel State Monitor block periodically senses the channel status (e.g., RSSI, 
busy, or idle) provided by the PHY layer. The channel status is read by the Backoff 
Controller block, or by the SW MAC, to implement CSMA. 

 
 

 

Fig. 2. Hardware MAC Module Functional Block Diagram 
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The Configuration BBP/RF block configures the PHY layer (i.e., the Digital BBP 
and the Analog RF Front-End) by transferring the contents of its configuration 
registers (e.g., modulation, transmit power, carrier selection, etc). The configuration 
registers can be updated at any time from the SW MAC through the OpenMAC 
interface. In addition, the PHY configuration can be performed in a packet by packet 
basis by sending the PHY packet-descriptors (detailed in Table 1) at the beginning of 
each packet transmission. 

The HW MAC includes two packet processing paths devoted to the execution of 
time-critical functions in packet transmission and reception, e.g., Cyclic Redundancy 
Code (CRC), encryption, packet aggregation, etc.  Packets are fetched from the shared 
memory, processed, and transferred to the MAC/PHY interface, and inversely with 
packets received from PHY. 

Finally, the HW MAC includes three hardware blocks devoted to provide simple, 
precise and deterministic scheduling and timing to the MAC layer: 

1) The General Timer block provides a time indication signal (TimeCount) to the 
other blocks with a time resolution of 1 µs. 

2) The RxTimeOut Detector block detects when no packet is received within a time 
period (i.e., RxTimeOut packet-descriptor in Table 1) after the last transmission, 
e.g., acknowledgement (ACK) is lost for the previous data-packet transmission. 

3) The Backoff Controller block determines the time instants to trigger the packet 
transmission by comparing the TimeCount signal with the TimeStamp packet-
descriptor. It can be configured to execute a backoff process using the Backoff 
packet-descriptors, detailed in Table 1, and the channel status (PHY_cs) provided 
by the Channel State Monitor block. 

2.3 Software MAC 

The SW MAC is a C++ program that runs on an embedded processor without 
operating system. While the packet-processing load is concentrated on the HW MAC, 
which transfers great volumes of data through the shared-memory to exchange 
packets with the Host-PC, the SW MAC only accesses the packet-descriptors and 
packet-headers to make simple MAC protocol decisions (e.g., check the destination 
address, identify the packet type, determine time-stamps for transmission, etc). 
Therefore, by avoiding the need to access long data-payloads from software, the 
OpenMAC platform reduces software latencies and thus facilitates the fulfillment of 
strict timing constraints of the MAC protocol without using hardware specific code. 

The use of packet-descriptors (described in Section 2.1) simplifies the access from 
the SW MAC to the hardware, i.e., HW MAC, Host Interface, and PHY layer 
parameters. The SW MAC simply performs fast read or write access to the packet-
descriptor stored in the shared-memory that needs to monitor or configure. This 
approach avoids the use of dedicated and complex software functions to access the 
PHY, reduces the complexity in the development of the MAC protocol, and 
minimizes delays. 

In order to make the hardware details transparent to the protocol designer, a 
Hardware Abstraction Layer (HAL) is included in OpenMAC. The HAL is comprised 
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of a set of software functions which ease the access to the HW MAC and the Host 
interface. A HAL function is a very short piece of C-code that executes read/write 
accesses to the hardware internal registers through the OpenMAC interface. 

The functions of the OpenMAC HAL are described in Table 3. The input argument 
named channel used in all the HAL functions allows selecting among the channels 
connected to the OpenMAC interface bus: the PHY channel (HW MAC) and the 
HOST channel (Host interface). Both channels have basically the same architecture as 
the HW MAC module described in Section 2.2. 

Table 3. Functions of the OpenMAC Hardware Abstraction Layer 

Function: packet_pointer get_packet(char channel) 
Description: It returns the packet-pointer of a new packet that has been received from 
channel and has been stored in the shared-memory. 
Function: void send_packet(packet_pointer  tx_pointer, char channel, 
unsigned int timestamp) 

Description: It writes the packet-pointer tx_pointer of the next packet to transmit through 
the channel. The transmission will start at the time indicated by the packet-descriptor 
timestamp, passed as an argument. 
Function: unsigned int check_send_packet(char channel) 
Description: It returns the integer number of packets that are still pending to be 
transmitted through the channel. The packets are buffered in the Tx FIFO of the channel. 
Function: unsigned int check_get_packet(char channel) 
Description: It returns an integer value that can be mapped into the state of the reception 
process: (1) a new packet has been received from the channel and stored in the shared-
memory, (2) the channel needs packet-pointers for the reception of new packets, and (3) a 
time-out event has been detected after the last transmitted packet. 
Function: void pointer_allocation(char channel, char n, 
packet_pointer *rx_pointer) 

Description: It writes into the RxPP FIFO of the channel a list of n packet-pointers, 
rx_pointer, which will be used to store in the shared-memory new packets received. 
Function: unsigned int get_phy_cs(char channel) 
Description: It returns the status (RSSI, busy, idle) of the PHY layer connected to channel. 
Function: void config_phy(char channel, unsigned short modulation, 
unsigned short data_rate, unsigned short tx_power, unsigned short 
carrier_select) 

Description: It writes the parameters, passed as input arguments, to configure the channel. 
Function: unsigned int get_timer(char channel) 
Description: It returns the current TimeCount value of the General Timer shown in Fig. 2. 
Function: void reset_timer(char channel) 
Description: It resets the General Timer block of the channel. 

3 Example of CSMA Protocol 

This section presents an example of implementation of a CSMA protocol in the SW 
MAC processor. The aim of this description is to demonstrate how simple the design 
of a MAC protocol using OpenMAC can be. 
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In CSMA, a node that has data to transmit first senses the channel. In the case that 
the channel is clear, the node starts transmitting. Otherwise, the node initiates a 
random backoff and waits for the channel to be idle. The backoff timer is 
decremented along time; it is frozen when the channel is busy, and it is resumed when 
the channel becomes idle again. When the backoff timer expires, i.e., gets to zero, the 
packet is transmitted if the channel is idle, otherwise the backoff is reinitiated. When 
a data-packet is sent, the transmitting node waits for an ACK from the intended 
destination. If the ACK is not received within a timeout, the packet is retransmitted. 

The SW MAC code for CSMA is shown below. It is divided in two parts: 

(1) Transmission of Data-Packets from Host-PC to PHY. The data-packets 
transmitted from the Host-PC to the PHY are temporarily stored in the variable 
buffer_HOST2PHY of type packet. A new packet can only be stored in the 
buffer_HOST2PHY when it is free, i.e., an ACK has been received for the previously 
transmitted data-packet. The hardware Backoff Controller implements the backoff 
process and the RxTimeOut Detector generates the ACK time-out events. Therefore, 
the SW MAC has only to configure the associated packet-descriptors (i.e., 
EnableBackoff, Backoff, EnableRxTimeOut, and RxTimeOut) on each data-packet 
transmission. If an ACK time-out event is detected, the data-packet is re-transmitted. 

(2) Reception of Packets from PHY to Host-PC. The packets received from PHY 
are temporarily stored in the buffer_PHY2HOST, of type packet, to be later 
transferred to the Host-PC. Since the throughput among the Host-PC and OpenMAC 
can be assumed higher than the throughput among OpenMAC and PHY, the 
buffer_PHY2HOST is always ready to store new received packets. The SW MAC 
first checks the Cyclic Redundancy Code (CRC) descriptor of the received packet. 
Then, the SW MAC checks the destination address and the packet type. If it is a data-
packet, it is transferred to the Host-PC and the SW MAC starts the transmission of an 
ACK to the PHY delayed a Short Inter Frame Space (SIFS) from the time-stamp of 
the received packet. If an ACK is received, the buffer_HOST2PHY is released. 

Example code of a CSMA protocol implemented in the SW MAC processor. 

packet_pointer TxPP, RxPP; 
packet buffer_HOST2PHY, buffer_PHY2HOST, ACK; 
unsigned int status_HOST = 0, status_PHY = 0; char buffer_ready = 1; 
while(1){ 
/* PART 1: transmission of data-packets from Host-PC to PHY */ 

status_HOST = check_get_packet(HOST); 
/* Packet-pointer requested for data-packet reception from HOST? */ 
if ((status_HOST & RxPP_REQUEST) && buffer_ready) 

pointer_allocation(HOST, 1, &buffer_HOST2PHY); 
/* Data-packet stored in buffer_HOST2PHY by the HOST_IF? */ 
if (status_HOST & RxPACKET_RDY) {   

buffer_ready = 0; /* buffer_HOST2PHY is busy with new packet */ 
TxPP = get_packet(HOST); /* get the packet-pointer */ 
/* write some of the MAC and PHY packet-descriptors */ 
TxPP-> EnableRxTimeOut = ENABLED; /* enable Rx time-out */ 
TxPP-> RxTimeOut = ACKTIMEOUT; /* time-out to receive ACK */ 
TxPP-> EnableBackoff = ENABLED; /* enable backoff */ 
TxPP-> Backoff = CW; /* Contention-Window for backoff process */ 
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TxPP-> TxPower = TX10dBm; /* configure PHY tx power */ 
send_packet(TxPP, PHY, 0); /* transfer the packet to HW MAC */ 
} 

/* Time-out detected after the last data-packet sent to PHY? */ 
if (status_PHY & RxTIMEOUT) send_packet(TxPP, PHY, 0);/* tx again*/ 

 
/* PART 2: reception of packets from PHY to Host-PC */ 

status_PHY = check_get_packet(PHY); 
/* Packet-pointer requested for packet reception from PHY? */ 
if (status_PHY & RxPP_request) 

pointer_allocation(PHY, 1, &buffer_PHY2HOST); 
/* Packet stored in buffer_PHY2HOST by the HW MAC? */ 
if (status_PHY & RxPACKET_RDY){ 

RxPP = get_packet(PHY); /* get the packet-pointer */ 
 if (RxPP->CRCresult == OK){ /* check that CRC is correct */ 

for (i=0; i<6; ) /* check the destination MAC address */ 
if (RxPP->DstAddr[i] == my_Addr[i]) i++; else break; 

if (i==6){ /* destination MAC address is correct? */ 
send_packet(RxPP, HOST, 0); /* transfer to HOST */ 
if (RxPP->Type == DATA){ /* is it a data-packet? */ 

/* calculate time-stamp to transmit an ACK */ 
TxTimeStamp = RxPP->TimeStamp + SIFS; 
/* transfer ACK to HW MAC */ 
send_packet(&ACK, PHY, TxTimeStamp); 
} /* is it an ACK? then release the buffer_HOST2PHY */ 

else if (RxPP->Type == ACK) buffer_ready = 1; 
} 

} 
   } 
} 

4 Hardware Implementation 

The OpenMAC platform architecture has been implemented and tested on a Commercial 
Off-The-Shelf (COTS) FPGA-based development board. The technical features of this 
board are detailed in Table 4. It contains a Xilinx Virtex-5 FPGA [15] which integrates 
two PowerPC440 processors. One of the processors is used to run the code of the SW 
MAC and the other is left unused for future applications, e.g., development of high-
performance upper layers for standalone OpenMAC nodes. The rest of the FPGA 
implements the following digital modules: the HW MAC, the Host Interface, the 
OpenMAC interface bus, the shared-memory, and the MAC/PHY interface. 

Table 4. Features of the FPGA-based Development Board 

Board part-number HTG-V5-PCIE-100-2 (from HiTech Global, LLC [16]) 
FPGA Xilinx Virtex-5 XC5VFX100T-3 
Processors 2 PowerPC 440 (hard cores) 
RAM Memory 512MB DDR2-SDRAM, expandable up to 2GB 
Flash Memory 4 MB 
Interface with Host 8-lanes PCI Express End-Point connector. 

2 Gigabit Ethernet ports. 
Interface with PHY 2 connectors (QSE type) with 64 pairs of Low Voltage 

Differential Signals (LVDS) or 128 single-ended signals. 
Outputs of 5V and 3.3V supply for add-on PHY modules. 
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The shared-memory module is implemented using on-chip Random Access 
Memory (RAM) blocks of the FPGA. The Double Data Rate-Synchronous Dynamic 
RAM (DDR-SDRAM) module, included in the FPGA-based board, is left unused for 
future extensions with huge memory requirements. 

The PowerPC440 processor clock has been set to 400MHz in order to provide high 
speed to the SW MAC. For the processor peripheral cores (i.e., HW MAC, Host 
Interface, and shared-memory) and for the communication buses (i.e., OpenMAC 
interface, PLB, and DMA buses) the clock frequency has been selected as low as 
100MHz in order to facilitate and speed-up the FPGA implementation process. 

The FPGA-based board includes one Peripheral Component Interconnect (PCI) bus 
and two Gigabit Ethernet PHY ports based on the Alaska 88E1111 transceiver from 
Marvell. One of the Ethernet ports is used to connect the OpenMAC platform with the 
Host-PC. The PCI bus is foreseen to plug the board into a desktop computer in 
applications with greater bandwidth and throughput requirements. 

The expansion connectors of the FPGA-based board allow the implementation of a 
flexible MAC/PHY interface with external PHY layer boards. Two different PHY 
layer solutions can be implemented: 

1) A complete PHY which incorporates the BBP and the Analog RF Front-End. 
2) The BBP can be implemented inside the FPGA and an external Analog RF Front-

End can be used for the RF operation. 

So far, a Gigabit Ethernet PHY has been used for the proof-of-concept of OpenMAC. 
The use of a wired solution is mainly motivated by the lack of availability on the 
market of low-cost high-performance wireless PHY solutions which do not require 
great implementation efforts. 

5 Performance Evaluation 

The aim of this section is to show the ability of the OpenMAC platform to meet the 
time-constraints of a standardized MAC protocol. As an example, in the context of the 
IEEE 802.11 Standard for Wireless Local Area Networks [17], the data-packet 
reception and post processing to decide whether to transmit an ACK or not, and the 
initialization of the transmission of the ACK, must be done within less than a SIFS 
interval, i.e., tens of microseconds, in order to be able to tolerate non-negligible 
propagation delays as well. 

The remainder of this section is organized as follows. First, Section 5.1 details the 
performance metrics. The experimental setup is briefly described in Section 5.2 and, 
finally, the performance results are discussed in Section 5.3. 

5.1 Performance Metrics 

The following metrics have been considered for the performance evaluation of 
OpenMAC. The time metrics are shown in the timing diagram of Fig. 3. 
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Fig. 3. Timing diagram of the HW MAC and SW MAC processes within TxT, RxT, and TAT 

• Transmission Time (TxT) is defined as the time elapsed from the moment when 
the SW MAC initiates the transfer of the associated packet-pointer to the HW 
MAC, until the moment when the HW MAC finishes the transmission of the 
packet to the PHY. 

• Throughput in transmission is defined as the length of transmitted packets 
divided by the corresponding TxT (assuming a constant packet length). 

• Reception Time (RxT) is defined as the time elapsed from the moment when the 
first byte of a received packet enters into the HW MAC, until the moment when 
the SW MAC reads the packet-pointer. 

• Throughput in reception is defined as the length of the received packets divided 
by the corresponding RxT (assuming a constant packet length). 

• Turn-Around Time (TAT) is defined as the time elapsed from the moment 
when the first byte of a received packet enters into the HW MAC, until the 
moment when the HW MAC finishes the transmission of an answer packet 
(ACK) to the PHY. During this time, the SW MAC reads the packet-pointer, 
checks the packet header and descriptors, and transfers the ACK packet-pointer. 

It is worth noting that the processing delays introduced by the PHY layer are not 
considered in the definition of TxT, RxT, and TAT. The TAT is the most critical time 
parameter for those protocols which rely on handshaking of control packets, e.g., the 
ACKs used in the IEEE 802.11 Standard, as it defines the capability to respond to 
received packets in due time. This parameter is the key to ensure backwards 
compatibility with current standards. 

5.2 Experimental Setup 

The performance of the OpenMAC platform architecture has been assessed using the 
board described in Section 4. The wired Gigabit Ethernet PHY layer has been used for 
the setup shown in Fig. 4, which does not include the Host Interface for simplicity. 
One of the Ethernet transceivers has been connected through its Gigabit Media 
Independent Interface (GMII) to the MAC/PHY interface in the FPGA. Then, the 
OpenMAC platform has been connected to a Gigabit Ethernet port of a computer. 
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Fig. 4. Experimental setup used for the performance tests of OpenMAC 

The following procedure has been used to measure the TxT, RxT, TAT, and the 
different throughput values. 

1) The OpenMAC platform transmits or receives packets to/from the computer 
through the Gigabit Ethernet PHY. 

2) The following HAL functions, described in Section 2.3, are included in a test 
program to receive, to transmit, to monitor the status, and to allocate packet-
pointers: 
get_packet(), send_packet(), check_get_packet(), check_send_packet(), and 
pointer_allocation(). 

3) The get_timer() function is utilized to measure time periods between two 
different instants. In this way, the time measurements are simplified by 
employing the time-base provided by the HW MAC. 

4) In order to transmit Ethernet packets with a controlled length to the OpenMAC 
platform, the ping command is executed on the desktop computer as: 
ping -t -l length ip_address_openMAC . 

5) The transmission and reception throughput values have been computed by 
dividing the packet length by the TxT and RxT measurements, respectively. 

5.3 Experimental Results 

The experiments have been performed with different data-packet lengths (100, 500, 
1000, and 1500 bytes) and ACK packets of 46 bytes, which is the minimum data field 
length in Ethernet frames. Fig. 5 shows the results for TxT, throughput in 
transmission, RxT, throughput in reception, and TAT. 

In terms of throughput, OpenMAC performs close to the maximum available 
throughput in Gigabit Ethernet with long data-packets (1000 to 1500 bytes), which is 
1Gbps. As far as the turn-around-time values are concerned, OpenMAC achieves 
values of the TAT that are below 16 µs for short packets (46 to 500 bytes) and below 
20 µs for long packets (1000 to 1500 bytes). It is worth noting that, for short packets, 
and if the PHY layer device connected to OpenMAC was changed to one compliant 
with the IEEE 802.11 Standard [17], OpenMAC would fulfill the SIFS time (16 µs) 
specified in the standard for OFDM PHY layer using a bandwidth of 20MHz. 
Similarly, for long packets, OpenMAC is in compliance with the SIFS time (32 µs) 
using a bandwidth of 10MHz. In addition, the TAT could still be reduced by 
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increasing the clock frequency of the processor peripheral cores (i.e., HW MAC, and 
shared-memory) and of the communication buses (i.e., OpenMAC interface, PLB, and 
DMA buses) above the currently utilized 100MHz. This frequency adjustment could 
yield a reduction of more than 20% of the TxT, RxT, and TAT results obtained in the 
current implementation. 

The measurements that have been carried out on the FPGA board demonstrate that 
the OpenMAC platform fulfils the strictest timing specifications of the IEEE 802.11 
Standard. 
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Fig. 5. (a) TxT, RxT, TAT, and (b) throughput in Tx/Rx (with respect to the packet-length) 

6 Conclusions 

OpenMAC has been presented in this paper as an innovative platform suitable for the 
development and experimental testing of MAC protocols. It has been implemented 
using a COTS FPGA-based board with a processor integrated in the FPGA. 
OpenMAC provides full flexibility and re-configurability to develop any MAC 
protocol, to change the PHY layer, and to do research with cross-layer optimizations. 
The main objectives considered in the design of OpenMAC have been:  

1) To speed-up the development process of a MAC protocol by simplifying the 
conversion from the theoretical model down to implementation,  

2) To fulfill the protocol time-constraints, and  
3) To attain precise scheduling. 

Regarding the complexity of the protocol development cycle, OpenMAC allows 
implementing MAC protocols entirely designed in C++, without operating system in 
the embedded processor, and with hardware fully transparent to the protocol designer, 
who does not have to optimize hardware-specific C, assembly or HDL code. 

OpenMAC integrates a set of software HAL functions that abstract the accesses to 
hardware. In addition, it delegates the packet processing to hardware accelerators and 
prevents software from accessing high-volume data-payloads. The software accesses 
only short packet-descriptors and packet-headers, which facilitate the fulfillment of 
MAC time constraints. Moreover, OpenMAC contains hardware accelerators devoted 
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to configure and monitor the PHY layer, and to perform backoff processes, which 
avoids software to fast access to PHY. Regarding scheduling and timing, OpenMAC 
includes hardware elements to accurately control time events. 

The performance of the OpenMAC platform has been tested experimentally using 
Gigabit Ethernet PHY. It performs at maximum throughput of 1 Gbps and yields turn-
around-times below 20 µs for long packets (1000 to 1500 bytes) and below 16 µs for 
short packets (46 to 500 bytes). Hence, OpenMAC can fulfill strict MAC timing 
specifications such as the ones of the IEEE 802.11 Standard. 

OpenMAC achieves successfully the aforementioned objectives and brings 
prototyping capabilities closer to the research community by overcoming the 
limitations of state of the art. Future work will be aimed at attaching a custom 
wireless PHY layer (e.g., the WARP reference design [11]) to the OpenMAC 
platform. Furthermore, the execution of the OpenMAC software will be accelerated 
by using hardware interrupts, instead of software polling, to notify the state of the 
OpenMAC hardware modules. 
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