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Abstract. Users of large-scale testbeds often need a group of nodes
with a reasonable level of stability to execute applications and exper-
iments. Although monitoring the stability of nodes themselves is cer-
tainly part of the solution, it is important to classify and select groups
of nodes according to their ability to communicate among themselves.
In this work we call such groups of nodes “stable wormholes”, and de-
scribe strategies to find those wormholes based on monitoring end-to-end
pairwise interactions. Data acquired is used to find five different types
of wormholes, each with a different stability pattern. The system was
implemented in PlanetLab. Extensive experimental results are reported
evaluating the proposed strategies. A comparison with another tool that
selects nodes based on node stability alone is also presented. The exe-
cution of a MapReduce application shows that nodes selected with the
proposed strategy ran the application significantly faster.
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1 Introduction

Uncertainty is arguably the major obstacle for developing dependable distributed
systems. As even in static systems it is impossible to solve agreement problems
when communication and computing time bounds are unknown and at least
one node may crash [I0], the situation can only get worse in more unstable
networks. It is not difficult to see that depending on the level of instability it
may be impossible for a distributed application to complete successfully.

As Verissimo points out in [22], current network environments often present
an spectrum of synchrony, that varies from components that present perfectly
predictable behavior to those that have a completely uncertain behavior. These
properties can be found in time, i.e. during the timeline of their execution sys-
tems become faster or slower, presenting lower or higher bounds to execute. The
properties can also be found in space: some components are more predictable
and/or faster than others, actions performed in or amongst on these nodes have
better defined and/or smaller bounds. Verissimo defined a hybrid distributed sys-
tem model, Wormbholes |21, in which different loci of the system have different
properties which correspond to different sets of assumptions.

T. Korakis, M. Zink, and M. Ott (Eds.): TridentCom 2012, LNICST 44, pp. 146-[[61] 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



Monitoring Pairwise Interactions to Discover Wormholes 147

In this work we describe a monitoring strategy for finding wormholes in hybrid
distributed systems, i.e. those that cannot be classified either as synchronous
nor as asynchronous. Several different types of wormhole selection criteria are
proposed, all of them based on the ability of pairs of nodes to communicate
among themselves. At the heart of this strategy, end-to-end interactions between
pairs of nodes are monitored, i.e. the response times, measured at the application
level. All pairs are monitored, from each node to each other node.

Acquired data is used to build a graph that represents the system from the
point of view of the different nodes. This graph is called stability graph. An edge
of a stability graph indicates a stable communication - according to a criterium
- between the corresponding nodes on which the edge is incident. Based on the
obtained graph it is possible to find wormholes, i.e. groups of nodes that together
have behaved in a stable way. Several wormhole selection strategies were defined,
each with a different stability pattern.

We employed the global research testbed, PlanetLab [5] in order to evaluate
the proposed monitoring and wormhole selection approaches. In our previous ex-
perience of running HyperBone [4] in PlanetLab we had found out that several
nodes of this important testbed presented a very unstable behavior. HyperBone
is an overlay network that allows the execution of distributed applications on a
virtual hypercube. In order to execute parallel and distributed tasks, HyperBone
requires a set of nodes that present a reasonably stable behavior. We found out
that it is not trivial to find such a large set of such nodes in PlanetLab. Some-
times it is not easy even to find a set of nodes each of which can communicate
with all others. At a given time, a large set consisting of such nodes might not
even exist. Another characteristic we found out is that a communication chan-
nel is frequently not symmetric: if a node considers another to be stable, the
opposite might not be true. Moreover, a given node might consider two other
nodes to be stable, but those two nodes may not consider each other stable. All
communication patterns are possible in this environment.

Although there are tools for monitoring and selecting PlanetLab nodes for
the execution of experiments [T9IBGIT7IT33], they employ criteria on the sta-
bility of the nodes themselves, such as processing load or available memory, for
example. None of them selects groups of nodes also considering their ability to
communicate among themselves.

We describe extensive experimental results of our wormhole selection strate-
gies obtained from monitoring PlanetLab. The first set of experiments consists
in evaluting the different wormhole selection strategies, also checking how pre-
dictable each wormhole is, i.e. how it behaves as time passes. We also checked
experimentally how nodes of a wormhole selected by our tool fared when ex-
ecuting an experiment. We compared the performance of the wormhole with
the performance of nodes selected by another PlanetLab node selection tool,
SWORD. Both sets of nodes executed a MapReduce application. Results show
that in most cases the wormhole nodes ran the application significantly faster.

The rest of this paper is organized as follows. Section 2l describes related work.
Section [3] defines the online monitoring strategy, as well as the stability graphs
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and the wormhole selection strategies. Section Ml presents experimental results
obtained in PlanetLab. Conclusions follow in section

2 Related Work

The original Wormholes hybrid distributed system model was proposed by
Verissimo [22I21]. This is a realistic model that is based on the fact that net-
works often present an spectrum of synchrony, that varies from components that
present perfectly predictable behavior to those that have a completely uncertain
behavior. Wormholes correspond to a subsystem - defined in time or space - that
behaves in a predictable way.

In [I§] the authors report the development of end-to-end dependable dis-
tributed applications and mobility-aware services in ubiquitous communication
scenarios. They assume the use of off-theshelf components (COTS) and unreli-
able wireless communication links. The proposed strategy is based on a hybrid
system architecture, which considers the existence of wormholes: subsystems
with better properties than the rest of the system. A wormhole provides spe-
cialized timeliness and trustworthiness services that may be used to construct
more dependable and resilient applications. The implementation of an embedded
wormbhole is reported.

The Partitioned Synchronous Distributed System Model [12] is another hybrid
model that assumes that a subsystem is timely, i.e. provides known upper bounds
on communication and computation times. In [I6] the authors describe how to
implement perfect failure detectors in this system. The implementation assumes
the existence of a timeliness oracle, that classifies processes and channels as
timely or untimely.

Another work that employs similar ideas for selecting supernodes in P2P
nodes is reported in [I4]. The superpeer selection problem is hard because in a
P2P network a large number of superpeers must be selected from a huge and
dynamically changing network in which neither the peer’s characteristics nor the
network topology are known a priori. A set of superpeers has similarities with
a wormhole. The supernodes must be well-dispersed throughout the network,
and must fulfill additional requirements such as load balance, resource needs,
adaptability to churn, and heterogeneity.

We applied our proposed wormhole selection strategies to PlanetLab. There
are other tools that aim at selecting PlanetLab nodes for the execution of exper-
iments. CoMon [19] is a monitoring system specifically designed for PlanetLab.
The objective is to provide information about the environment to users and ad-
ministrators. CoMon collects information about the nodes themselves, such as
CPU and memory usage, for example. All the information gathered by CoMon
helps finding “problematic” nodes and slices. Also, CoMon provides a tool for
selecting nodes which satisfy given restrictions. This work differs from Comon in
respect to the monitored data and the way nodes are selected. CoMon monitors
just attributes related to the nodes themselves, while the monitoring strategy
presented in this work monitors the interaction between pairs of nodes. The node
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selection in CoMon uses just the last data obtained from nodes, while the node
selection strategies proposed in this work can use data relative to any period
of time.

Vivaldi [6] is a fully distributed synthetic coordinate system whose objective
is to predict the RTT between hosts, i.e. determine the RT'T between two hosts
without having one host effectively communicating with the other. Vivaldi’s
algorithm assign synthetic coordinates to each host, in such a way that the
distance between the coordinates of two hosts corresponds to the RTT between
them. The monitoring strategy described in this work is similar to Vivaldi as
both employ the RTT as the basic monitoring metric. But in Vivaldi the RTT
is an estimation that, even with good precision, does not consider faults and
network problems. Furthermore, in our strategy the RTT is measured in both
ways, i.e. we do not consider the RTT to be symmetric.

SWORD [3] is an application for resource discovery. It allows users to describe
the desired resources with requirements related to nodes themselves and their in-
teraction. In this way, SWORD is a tool for selecting nodes which satisfy various
criteria specified by the user. But SWORD itself performs just the node selec-
tion. It is necessary to obtain the node’s monitoring data from another system.
Using that data SWORD is capable of selecting the best nodes that satisfy the
given restrictions. There is an implementation of SWORD in PlanetLab which
uses data from CoMon.

SWORD is similar to the work described in this paper, as both are strategies or
selecting nodes in which applications experiments will be run. Experiments com-
paring the nodes selected by SWORD and by the proposed node selection strate-
gies were executed and are described. Since it uses data from CoMon, the version
of SWORD available for use in PlanetLab has the same differences to our strategy
as CoMon, i.e. it uses only data related to the nodes themselves, not their interac-
tion. Furthermore, the data corresponds to the last measurement obtained from
nodes, while we considered data sampled during a whole time frame.

In [9] we describe results of our observation of PlanetLab based on a offline
monitoring strategy, based on which we extracted cliques of stable nodes. In
the current work we present a different, on line monitoring strategy and for-
mally define both the monitoring strategy and five different wormhole selection
strategies, one of which is the clique.

3 Online Monitoring and Node Selection

This section describes the proposed monitoring strategy. We then define the
stability graph that is built by applying a stability criterium to the monitoring
data, and finally define five different types of stable wormholes that can be
obtained from the stability graph.

3.1 Monitoring Pairwise Interactions

Consider a network, represented as directed graph G = (V| E), where V is the
set of vertices corresponding to network nodes, and E the set of edges such that
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the ordered pair (i,7) is an edge if node ¢ communicates directly with node j,
i.e. without employing intermediate nodes.

The purpose of the proposed monitoring strategy is to provide data that can
be used to select a set of nodes W, called a stable wormhole, such that for any
two nodes r,s € W, W C V, the communication initiated by r with s can
be considered stable. In other words, wormhole nodes are able to communicate
among themselves in stable way, which of course depends on the stability criteria
defined below.

Every node of the monitored network executes a monitoring daemon, specified
as follows. Periodically, Vi € V', node i sends a message to each other node and
waits for a reply. Upon receiving the reply message, the Round Trip Time (RTT)
is computed using the local clock, and tuple (i, 7, rtt; ;, timestamp) is stored.
The timestamp corresponds to the local time instant at which the measure was
obtained. We assume that clocks are roughly synchronized, for example with the
level of accuracy that is obtained with the Network Time Protocol (NTP) [2] in
the Internet.

Monitoring is supposed to run at the application level, thus RTT measure-
ments vary not only because of network issues, but also due to the situation of
the node himself, for instance the number of processes on the scheduler’s queue
and CPU usage.

Even if a daemon stores recently colleted measurements locally, at some point
data is sent to a central monitor that eventually collects measured data from
all daemons. Due to the large amount of data that this strategy generates, and
the fact that recent data is more important that previous samples, the central
monitor summarizes sequences of tuples for predefined time frames. For example,
in our PlanetLab experiment described in the next section, we summarized data
per hour, day, month and year. Summarization computes both the mean and
standard deviation of measurements for a given pair of nodes within a given
time frame. Thus, the summary for ordered pair (i,j) for a given time frame
T = [to,t1] and set of tuples (4, j, rtt; j, timestamp) is the average p; jr =<
rtt; jlto < timestamp < t1 >, plus the standard deviation o, ;7 used as a
measument of the dispersion.

Given two consecutive time frames it is also possible to compute the average
and standard deviation of the most recent timeframe taking into account the
summary obtained for the previous time frame.

3.2 Building the Stability Graph

From the monitoring data acquired, the central monitor builds a so called sta-
bility graph S for time frame T = [tg, t1]. Before the stability graph is formally
defined, we give the definition of “stability” itself, i.e. we define the criteria used
to classify a given pairwise interaction as stable or unstable. Consider the ordered
pair of nodes (i, ) monitored as described above. A threshold 6 is defined as the
maximum value allowed for an RTT sample. We then compute the frequency
in which the round trip times fall below 6, considering the two sets of tuples
(i, j, rtt, timestamp) and (7,1, rtt, timestamp), such that tg < timestamp < t;.
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Node i is said to consider node j to be stable if at least a fraction p of the
obtained rtt; ; < 6. The analogous procedure is used to check whether node
j considers node i to be stable. In our PlanetLab experiments we employed
p = 90%. Stability Graph T' = (Vp, Ep) is an non-directed graph defined as
follows. An edge (i,j) € Er (thus node ¢ € Vp and node j € V) if an only if
both node ¢ considers node j to be stable within 7', and node j considers node
1 to be stable within T'.

3.3 Finding Stable Wormbholes

After the stability graph S is built, we reach the final stage, i.e. searching for
wormbholes, i.e. a connected set of nodes with a reasonable level of stability, that
could be employed to run distributed applications that require a “reasonable”
level of stability. Although at first we assumed that finding a wormhole was
equivalent to finding a clique in S, i.e. there should be an edge between any two
vertices in Vp of S, experience taught us less strict criteria could lead to more
stable, more predictable wormholes. In particular, the clique represents an overly
restricted criteria, and the number of nodes (wormbhole size) is often not large
enough. In this subsection we present the five different types of stable wormholes
we defined and evaluated: Minimum Degree, Highest Minimum Degree, K-Core,
Core and Stable Clique.

Minimum Degree. The least strict strategy for finding wormholes is the one
based on Minimum Degree. This strategy returns a stable wormhole W, such
that node ¢ € W if the degree of node i in S degs (i) > dynin, for a given minimum
degree dnin. Thus the Minimum Degree strategy filters nodes by their degrees
in the stability graph. Only nodes with degree higher than the minimum degree
which is entered as an input parameter are selected.

The rationale behind this strategy is that it may suffice to find nodes that can
communicate in a a stable fashion with a large number of other nodes. However
it is possible that two nodes in a Minimum Degree wormhole are not able to
communicate with each other in a stable way.

Highest Minimum Degree. The Highest Minimum Degree strategy receives
as input parameter the desired number of nodes in the stable wormhole, m.
Given that parameter, an algorithm is executed on stability graph S to find
such a group of m nodes with the highest possible minimum degree, D, ;.
This strategy thus selects a wormhole with a specified minimum size (number
of nodes) and with the highest possible minimum degree for that size. A trivial
polynomial algorithm can be used to find a Highest Minimum Degree wormhole.

k-Core. The k-Core strategy finds a k-core on the graph representing the sys-
tem. A k-Core is the largest group of nodes that form a subgraph C of the sta-
bility graph S that has minimum degree equal to k. In other words, this strategy
selects a group of nodes that have a minimum degree among themselves, i.e. each
selected node has a degree higher than or equal to k& within the wormhole. The
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input parameter in this case is the minimum degree k. This strategy is more
restrictive than the Minimum Degree and Highest Minimum Degree, since the
degrees in those two other strategies may involve nodes not in the wormhole.

The algorithm to compute a k-core from S is polynomial. It starts by building
subgraph S; = (V1, E1), such that node ¢ € S iff degs (i) > k. Note that an edge
(i,j) € Er is also in Fj if both 4,5 € S1. The process is then repeated: create
subgraph S2 = (Va, E3) selecting from all nodes of S; those that have degree
greater than or equal to k. Eventually the resulting subgraph is equal to the
original graph, this is the k-core, the largest set of nodes in the stability graph
S that have minimum degree k among themselves.

Core. The Core strategy finds the stability graph core. A core is the largest
group of nodes that form a subgraph with the highest minimum degree possible;
i.e. the core of a graph is the k-Core with the highest value of k that is not
empty. This strategy thus returns the largest set of nodes that have the highest
minimum degree among them.

In order to find the Core wormhole the algorithm described above in the
k-Core strategy is executed on a binary search for the largest k that returns
a non-empty set of nodes. Initally k& = n/2, half the number of nodes in the
system; the lower bound (b;) is 0 and the upper bound (b,,) is n. If the k-core
is non-empty, then k is set to (b, + k)/2 otherwise k is set to (b; + k)/2. This
process is repeated until an empty set of nodes is returned; the core is the last
non-empty k-core.

Stable Clique. The Stable Clique strategy finds a clique [§] - a complete sub-
graph - of the stability graph. In a clique there is an edge between every pair of
nodes. Finding cliques is a NP-hard problem [I1]. Therefore finding the largest
clique in a graph with a large number of edges, such as the graphs created by
the strategy described in this work, is impracticable, since the nodes - in which
experiments will be run - must be selected quickly. To address this problem, the
Stable Clique strategy uses two parameters: the minimum size of the clique and
the maximum processing time. We employed a well-known depth-first search al-
gorithm for generating all maximal cliques of an undirected graph, that employs
pruning and is feasible in practice [20]. The algorithm is executed until a clique
with a size higher than or equal to the specifed minimum size is found. Alter-
natively, if such clique is not found within the specified time limit, the largest
clique found so far is selected. This strategy is the most restrictive one, since
there must be an edge between every pair of selected nodes.

4 Experimental Results

This section describes experimental results obtained from a PlanetLab imple-
mentation of the wormhole selection strategies. When the experiments were ex-
ecuted in 2011, PlanetLab consisted of 983 nodes. Although the complete set of
nodes were monitored, the number of nodes that actually ran the system varied
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from 500 and 600 nodes. This was because a large number of nodes continuously
alternated being online and offline, and some other nodes remained unreachable
during the whole period of the experiments. In all experiments described in this
section each node measured the RTT to each other node every 5 minutes.

Two groups of experiments were conducted. The first group consisted of an
evaluation of the node selection strategies. Several stability graphs were built
using monitoring data obtained during continuous periods each consisting of 3
weeks. The second group of experiments, described in subsection .2 aimed at
comparing nodes selected by our strategy with nodes selected by another Planet-
Lab monitoring tool. This comparison was performed by executing a MapReduce
application on nodes selected both with our tool and with the other tool.

4.1 Evaluation of the Wormhole Selection Strategies

This experiment was based on monitoring data collected from January 30, 2011
at 00:00, to February 19, 2011, at 23:59 (UTC -3), for a total of 21 days. Stability
graphs were built at each hour during this period. The RTT thresholds employed
for generating the stability graphs were 0.05s, 0.1s, 0.15s and 0.2s; 4 graphs were
built per hour, for a total of 2016 graphs. Both the average and maximum degrees
of all stability graphs were computed. Figure [I] shows the average and maximum
degrees observed considering a threshold of 0.1s. Figure [2] shows the analogous
results when a threshold of 0.2s was employed. It is not difficult to see that the
values for both the average and maximum degrees were significantly higher when
the threshold was 0.2s. For instance, the average degree was about 60 during the
whole period in which the threshold was 0.1s; as the threshold was increased
to 0.2s, the average degree increased to 130. Higher threshold values are not
reported because the return meaningless results: a very high threshold does not
filter nodes and interactions which are highly unstable (variations fall within the
threshold).

After the stability graphs were generated, we executed the several wormhole
selection strategies. Each strategy was executed to find wormholes on the sta-
bility graphs. The purpose of this experiment is to evaluate the performance of
the different strategies as time passes.

The Minimum Degree is the simplest strategy: we counted the number of
nodes in the stability graphs with degree greater than or equal to the minimum
specified. The minimum degrees evaluated were 50, 100, 150 and 200. Figure
shows the number of nodes selected with the Minimum Degree strategy for
several days period using a RTT threshold of 0.1s. For minimum degree 50,
for example, the number of nodes selected remained close to 450 during the
observation time, note that this is about 80% of the total number of monitored
nodes, which ranged from 500 to 600 nodes.

Next we evaluated the performance of the Highest Minimum Degree strategy.
In this strategy we specify the number of nodes, and verify the maximum degree
of any such group in the stability graphs. Figure @ shows, for a threshold of 0.1s,
the highest minimum degree identified over 21 days for groups of 50, 100, 150,
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Average Degree
Maximum Degree -------

Fig. 1. Average and maximum degrees of the stability graphs built with threshold of
0.1s

Average Degree
Maximum Degree -------

Fig. 2. Average and maximum degrees of the stability graphs built with a threshold
of 0.2s

200 and 300 nodes. For 300 nodes, for example, the highest minimum degree was
about 100; for groups of 50 nodes the highest minimum degree was about 180.

In order to evaluate the Core strategy, cores were extracted from all stability
graphs. The number of selected nodes and the minimum degree among them
were recorded. Figure [0l shows the results for a threshold of 0.1s, considering
the whole observation period. We can observe that the number of varied widely,
while the minimum degree presented a low variability. Furthermore, frequently
the mininum degree was close to the number of nodes selected, thus the sub-
graph induced by the selected nodes presents high density, i.e. there are edges
between most node pairs, which means that in the graph cores obtained each
node considers the majority of the others to be stable.

Our main purpose in evaluating the Stable Clique strategy was to check
whether a Stable Clique maintains itself as time passes. Three Stable Cliques
were computed on the first stability graph considering a 1-day monitoring
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Fig. 3. Number of nodes selected with the Minimum Degree Strategy for a threshold
of 0.1s

50 nodes
100 nodes -------

300 nodes ——-—

150

100

50

Fig. 4. Highest Minimum Degree for groups of different sizes, threshold of 0.1s

period. During that day we computed for each of the remaining stability graphs
if that Stable Clique was still there. The RTT threshold used to compute the
initial clique was equal to 0.05s; in order to check whether the clique was still
there we used a threshhold of 0.1s. The reason we computed the initial clique
with this low threshold (the most strict of all thresholds employed in all experi-
ments, employed to find both an initial clique as well as a initial core in the next
experiment we report below) was that it would allow us to initially select nodes
that were interacting in a very stable pattern. Then when checking the clique
we would employ a larger threshold to allow for some variation.

Figure [6l shows how each of the three fared during a representative time frame
(one day). We show for each group of nodes, the number of nodes that remained
fully connected among themselves. The threshold was of 0.1s. It is possible to
see that only one group of nodes remained as a clique for most of the time (not
all the time though). From our observations we reached the conclusion that the
Stable Clique employs a criterium that is too restrictive, and the selected group
of nodes most probably will not hold the desired properties for long.
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Fig. 5. Minimum degree and number of nodes selected with the Core strategy, threshold
0.1s
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Fig. 6. The performance of Stable Cliques during one representative day

The Core strategy - which is less restrictive than the Stable Clique - proved to
be a better choice for selecting a group of nodes that presented among themselves
a stable communication pattern for a longer time frame. In order to check how
the nodes selected using the Core strategy behave as time passes, we selected
nodes using this strategy the first stability graph of a one day period. Again
for the initial selection we employed a strict threshold of 0.05s. 62 nodes were
selected. Figure[llshows the average, minimum and maximum degree for these 62
nodes during a 1-day observation period, with threshold equal to 0.1s. Note that
as in the Stable Clique experiment above here we employed a larger threshold
to monitor the core, in comparison with the original threshold with which the
core was selected at first. This makes room for some fluctuation in the stability
among nodes.

The average degree had a very low variation during the whole observation
period, as well as the maximum degree - which remained constant. The minimum
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Fig. 7. Average, minimum and maximum degrees of nodes selected with the Core
strategy

degree, however, had a much higher variation. However, even when the minimum
degree varied this did not impact the average degree. This indicates that few
nodes were affected by some instability. Also, the average degree was close to
the maximum degree during the whole period, showing that the majority of the
nodes in the cores presented a stable behavior among themselves during the
whole period.

Discussion. Although the Minimum Degree and Highest Minimum Degree
strategies consistently return a larger number of nodes, these strategies do not
guarantee that the group of nodes all present a stable communication pattern
among themselves. On the other hand, the Stable Clique strategy only selects a
group of nodes such that all of them are able to communicate in a stable pat-
tern with all others. However this proved to be too restrictive, and difficult to
sustain as time passes. The results show that the Core strategy is the best: it
selects good sized groups of nodes that are able to interact among themselves in
a pretty stable way and remained so for longer.

4.2 Comparison with Another Tool

In order to compare the performance of nodes selected with the proposed strate-
gies and those selected with another tool, we executed experiments using MapRe-
duce. MapReduce [7] is a software framework aimed at distributed computing on
large data sets. MapReduce requires the definition of a mapping function, which
transforms the data in key/value pairs, and a reduction function, which gathers
the key/value pairs to obtain the final result. A MapReduce application can be
automatically parallelized and executed in a set of hosts. A node divides the
input data between several other nodes, each of which then repeats the process.
The set of nodes form a tree. When a node completes its mapping, the result
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is sent back to its parent in the tree. This process continues until the first node
receives all mapped data and performs the final computation (reduction).

The MapReduce implementation used in this experiment was Apache Hadoop
[1]. Hadoop is a framework for the execution of distributed applications. It pro-
vides a distributed file system, HDFS (Hadoop Distributed File System), and
an implementation of MapReduce. When Hadoop is started the HDFS and the
system responsible for executing the applications (including MapReduce ones)
are instantiated in all nodes. In order to execute MapReduce applications with
Hadoop, the input data must be inserted in HDFS, since all applications will
be run on top of this file system. All nodes then have access to any part of the
data, which can be effectively stored in any other node.

For the sake of comparing the performance of nodes selected by the proposed
strategies we employed SWORD [3], which was described above in section [2
and provides the closest functionality to our tool, being specifically designed
for selecting PlanetLab nodes for running experiments. We selected our Core
strategy for this comparison, since it gave our best results when all strategies
were compared. The values chosen for all parameters used, both for SWORD
and for the Core strategy, were as restrictive as possible. The attributes used in
SWORD for selecting nodes were the response time of the nodes (based on the
CoMon server), and the one minute load which should be less than or equal to
10 in all experiments.

The MapReduce application used was a wordcount, which counts how many
occurences of each word appear in an input file. The text file used in the exper-
iments had size 1GB, and was created randomly. The experiment consisted in
executing this application several times, both using nodes selected by SWORD
and selected by the Core strategy. For every measured metric we computed the
mean and the standard deviation, as well as the maximum median, and minimum
value.

Two different experiments were conducted, in both cases we employed 100
PlanetLab nodes. After the nodes were selected, Hadoop was started on all
nodes. The input file was then inserted in HDFS. Then, the MapReduce appli-
cation was run 15 times, one after the other. After these executions completed,
measurements were recorded. This procedure was performed twice (for a total
of 30 runs), each time using a group of nodes selected differently.

The first experiment was executed on July 15th 2011. 100 nodes were first
selected using SWORD at 10:50 (UTC -3), after that the experiment was run
on those nodes. Later 100 nodes were selected using the Core strategy at 18:00
(UTC -3) and the experiment was executed again. Table [Il shows the results
obtained from the 30 executions (15 using each set of nodes). Nodes selected by
the Core strategy ran the application significantly faster. Except for the standard
deviation, all values corresponding to the nodes selected by SWORD were about
two times the values obtained for the nodes selected by the Core strategy.

The second experiment was executed on July 18th 2011. This experiment con-
sisted of the same procedures employed for the first one, but with an important
difference: we first executed the application on the nodes selected by the Core
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Table 1. Comparison results (first experiment): execution time

SWORD Core

Average 22min 59s 9min 25s
Standard Deviation 12min 18s 6min 3s

Median 18min 54s 7min 34s
Lowest 6min 47s 4min 21s
Highest 58min 19s 28min 49s

Table 2. Comparison results (second experiment): execution time

SWORD Core
Average 20min 17s 8min 18s
Deviation 17min 33s 1lmin 49s
Median 16min 57s 8min 23s
Lowest 7min 46s 5min 10s
Highest 83min 25s 11min 42s

strategy. This was done to check whether there was an impact of the period of
the day in which the experiments were run. In this experiment, 100 nodes were
first selected using the Core strategy at 11:28. After the execution finished, 100
nodes were selected using SWORD at 14:40 and the experiment was run again.
Table 2 shows the results obtained from the 30 executions (15 per set of nodes).
As in the first experiment, nodes selected by the Core strategy ran the applica-
tion significantly faster, but in this experiment the standard deviation was much
higher for nodes selected by SWORD. Also, the highest execution time for nodes
selected by SWORD was by far higher than the highest execution time for nodes
selected by the Core strategy. The low standard deviation might indicate that
the nodes selected by the Core strategy presented a ”good” stability during the
whole experiment duration.

Discussion. In both experiments, nodes selected by the Core strategy ran the
application significantly faster than nodes selected by SWORD. These results
show that even on a highly unstable network such as PlanetLab, the strategies
described in this paper were able to select nodes that presented a reasonable
stable communication pattern among themselves.

5 Conclusions

Based on the fact that current network environments often present a spectrum
of synchrony, that varies from components that present perfectly predictable
behavior to those that have a completely uncertain behavior, in this work we
described strategies to find sets of nodes that can be considered to be stable
according to various criteria. Such groups of nodes are called stable wormholes
and the criteria for discovering wormholes are based on monitoring end-to-end
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pairwise interactions. Monitoring data is used to build stability graphs which
in turn are used to find five different types of wormholes, each with a different
stability pattern, ranging from cliques to sets of nodes with a minimum degree.
The system was implemented in PlanetLab, and we report results of a compari-
son between different wormhole selection strategies. Experiments comparing the
performance of nodes selected by the proposed strategies with nodes selected by
a tool that is based on node stability alone are also presented. The execution of a
MapReduce application on those nodes show that, in most cases, nodes selected
by the proposed strategies ran the application significantly faster.

Future work includes developing a tool for PlanetLab users that accepts more
input parameters, such as the size of a desired wormhole. Developing new strate-
gies for finding wormholes, such as the connectivity of the subgraph is also a
new research direction. Another issue that can be expanded in the future is the
classification of stability using other criteria such as an for instance adaptive
thresholds.
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