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Abstract. In this work we model the ACME (a fictitious company
name) “printer case incident” and make its specification in Forensic Lu-
cid, a Lucid- and intensional-logic-based programming language for cy-
berforensic analysis and event reconstruction specification. The printer
case involves a dispute between two parties that was previously solved
using the finite-state automata (FSA) approach, and is now re-done in
a more usable way in Forensic Lucid. Our approach is based on the said
case modeling by encoding concepts like evidence and the related wit-
ness accounts as an evidential statement context in a Forensic Lucid
“program”. The evidential statement is an input to the transition func-
tion that models the possible deductions in the case. We then invoke the
transition function (actually its reverse) with the evidential statement
context to see if the evidence we encoded agrees with one’s claims and
then attempt to reconstruct the sequence of events that may explain the
claim or disprove it.

Keywords: Forensic Lucid, cybercrime investigation modeling, inten-
sional logic and programming, cyberforensics, finite-state automata.

1 Introduction

1.1 Problem Statement

The very first formal approach to cyberforensic analysis and event reconstruction
appeared in two papers [1,2] by Gladyshev et al. that relies on the finite-state
automata (FSA) and their transformation and operation to model evidence,
witnesses, stories told by witnesses, and their possible evaluation for the purposes
of claim validation and event reconstruction. One of the examples the papers
present is the use-case for the proposed technique – the “ACME Printer Case
Investigation”. See [1] for the corresponding formalization using the FSA by
Gladyshev and the proof-of-concept LISP implementation. We aim at the same
case to model and implement it using Forensic Lucid, which paves a way to be
more friendly and usable in the actual investigator’s work and serve as a basis
to further development in the area.

P. Gladyshev and M.K. Rogers (Eds.): ICDF2C 2011, LNICST 88, pp. 282–296, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012
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1.2 Proposed Solution

We show the intensional approach to the problem is an asset in the field of cyber-
forensics as it is promising to be more practical and usable than the plain FSA
and LISP. Since Lucid was originally designed and used to prove correctness of
programming languages [3,4,5,6], and is based on the temporal logic, functional
and data-flow languages its implementation to backtracking in proving or dis-
proving the evidential statements and claims in the investigation process as a
evaluation of an expression that either evaluates to true or false given all the
facts in the formally specified context.

Intensional Logic

From the logic perspective, it was shown one can model computations (the basic
unit in the finite state machines in [1,2]) as logic [7]. When armed with contexts
as first-class values and a demand-driven model adopted in the implementation
of the Lucid-family of languages [8,9,10] that constrains the scope of evaluation in
a given set of dimensions, we come to the intensional logic and the correspond-
ing programming artifact. In the essence, we model our forensic computation
unit in the intensional logic and implement it in practice within an intensional
programming platform [11]. We project a lot of potential for this work to be
successful, beneficial, and usable for cyberforensics investigation and intensional
programming communities.

Approach Overview

Based on the parameters and terms defined in the works of Gladyshev [1,2],
we have various pieces of evidence and witnesses telling their own “stories” of
an incident. The goal is to put them together to make the description of the
incident as precise as possible. To show that a certain claim may be true, the
investigator has to show that there are some explanations of evidence that agree
with the claim. To disprove the claim, the investigator has to show there is no
explanation of evidence that agree with the claim [1].

The authors of the FSA approach did a proof-of-concept implementation of
the proposed algorithms in CMU Common LISP [1] that we target to improve
the usability of by re-writing it in a Lucid dialect, that we call Forensic Lucid
(with a near-future possibility to construct a data-flow graph-based [12,13] IDE
for the investigator to use and train novice investigators as an expert system).

In this particular work we focus on the specification of the mentioned sam-
ple investigation case in Forensic Lucid while illustrating relates fundamental
concepts, operators, and application of context-oriented case modeling and eval-
uation. Common LISP, unlike Lucid, entirely lacks contexts build into its logic,
syntax, and semantics, thereby making the implementation of the cases more
clumsy and inefficient (i.e. highly sequential). Our system [8,14] offers distributed
demand-driven evaluation of Lucid programs in a more efficient way and is more
general than LISP’s compiler and run-time environment.
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2 Background and Related Work

To remain stand-alone and self-sufficient in this work we recite some material in
part that we extend from, or, deemed otherwise relevant works, such as previously
presented posters, works-in-progress, and conference papers [15,16,17,18,19] and
other related cited works for the benefit of the readers. An expanded e-print ver-
sion of this paper (that is also being updated from time to time) with more back-
ground information and references therein can be found at http://arxiv.org/
abs/0906.5181.

2.1 Intensional Logic and Programming

Intensional programming is based on intensional (or, in other words, multidimen-
sional) logics, which, in turn, are based on Natural Language Understanding (as-
pects, such as, time, belief, situation, direction, etc.). Intensional programming
brings in dimensions and context to programs (e.g. space and time in physics
or chemistry). Intensional logic adds dimensions to logical expressions; thus, a
non-intensional logic can be seen as a constant or a snapshot in all possible di-
mensions. Intensions are dimensions at which a certain statement is true or false
(or has some other than a Boolean value). Intensional operators are operators
that allow us to navigate within these dimensions [20].

2.2 Lucid Overview

Lucid [3,4,5,6,21] is a dataflow intensional and functional programming language.
In fact, it is a family of languages that are built upon intensional logic (which in
turn can be understood as a multidimensional generalization of temporal logic)
promoting context-aware demand-driven parallel computation model [18]. A pro-
gram written in some Lucid dialect is an expression that may have subexpres-
sions that need to be evaluated at certain context. Given the set of dimensions
D = {dimi} in which an expression varies, and a corresponding set of indexes,
or, tags, defined as placeholders over each dimension, the context is represented
as a set of <dimi : tagi> mappings. Each variable in Lucid, called often a
stream, is evaluated in that defined context that may also evolve using context
operators [22,23].

The first generic version of Lucid, the General Intensional Programming Lan-
guage (GIPL) [20], defines two basic operators @ and # to navigate (switch
and query) in the context space P . The GIPL is the first1 generic programming
language of all intensional languages, defined by the means of only two inten-
sional operators @ and #. It has been proven that other intensional programming
languages of the Lucid family can be translated into the GIPL [20].

1 The second is Lucx [23], and third is TransLucid [9].

http://arxiv.org/abs/0906.5181
http://arxiv.org/abs/0906.5181
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2.3 Forensic Lucid

This section summarizes concepts and considerations in the design of the Forensic
Lucid language, large portions of which were studied in the earlier work [18]. The
end goal of the language design is to define its constructs to concisely express
cyberforensic evidence as a context of evaluations, which can be the initial state
of the case (e.g. initial printer state when purchased from the manufacturer, see
Section 3), towards what we have actually observed (as corresponding to the
final state in the Gladyshev’s FSM) (e.g. when an investigator finds the printer
with two queue entries (Bdeleted, Bdeleted)). One of the evaluation engines (a
topic of another work) of the implementing system [11] is designed to backtrace
intermediate results to provide the corresponding event reconstruction path if it
exists. The result of the expression in its basic form is either true or false, i.e.
“guilty” or “not guilty” given the evidential evaluation context per explanation
with the backtrace(s). There can be multiple backtraces, that correspond to the
explanation of the evidence (or lack thereof) [18].

Language Characteristics

We use Forensic Lucid to model the evidential statements and other expressions
representing the evidence and observations as context. An execution trace of a
running Forensic Lucid program is designed to expose the possibility of the pro-
posed claim with the events that lead to a conclusion. Forensic Lucid capitalizes
its design by aggregating the features of multiple Lucid dialects needed for these
tasks along with its own extensions [18].

The addition of the context calculus from Lucx (stands for “Lucid enriched
with context” that promotes contexts as first-class values) for operators on simple
contexts and context sets (union, intersection, etc.) are used to manipulate
complex hierarchical context spaces in Forensic Lucid. Additionally, Forensic
Lucid inherits many of the properties of Objective Lucid and JOOIP (Java-
embedded Object-Oriented Intensional Programming language) for the arrays
and structural representation of data for modeling the case data structures such
as events, observations, and groupings and correlation of the related data, and
so on [18]. Hierarchical contexts in Forensic Lucid also follow the example of
MARFL [24] using a dot operator and by overloading both @ and # to accept
different types as their arguments.

The syntax and the operational semantics of Forensic Lucid were primarily
maintained to be compatible with the basic Lucx and GIPL [18]. This helpful
(but not absolutely necessary) when complying with the compiler and and the
runtime subsystems within the implementing system, the General Intensional
Programming System (GIPSY) [11].

Context of Evaluation

Forensic Lucid provides an ability to encode the “stories” told by the evidence
and witnesses. This constitutes the primary context of evaluation. The “return
value” of the evaluation is a collection of backtraces (may be empty), which
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contain the “paths of truth”. If a given trace contains all truths values, it’s an
explanation of a story. If there is no such a path, i.e. the trace, there is no enough
supporting evidence of the entire claim to be true [18].

In its simplest form, the context can be expressed as integers or strings, to
which we attribute some meaning or description. The context spaces are finite
and can be navigated through in all directions of the along dimension indexes,
potentially allowing negative tags in our tag sets of dimensions. Our contexts
can also be a finite set of symbolic labels and their values that can be inter-
nally enumerated [18]. The symbolic approach is naturally more appropriate for
humans and we have a machinery to so in Lucx’s implementation in GIPSY [22].

We define streams of observations os as our fundamental context units, that
can be a simple context or a context set. In fact, in Forensic Lucid we are defining
higher-level dimensions and lower-level dimensions. The highest-level one is the
evidential statement es, which is a finite unordered set of observation sequences
os. The observation sequence os is a finite ordered set of observations o. The
observation o is an “eyewitness” of a particular property along with the duration
of the observation. As in the Gladyshev’s FSA [2,1] that we model after, the basic
observations are tuples of (P,min, opt) in their generic form. The observations
in this form, specifically, the property P , can be exploded further into Lucx’s
context set and further into an atomic simple context [23,22]. (Actually P can be
any arbitrary expression E). Context switching between different observations
is done naturally with the traditional Lucid @ context switching operator [18].

The Gladyshev’s concept of a generic observation sequence [1] can be ex-
panded into the context stream using the min and opt values, where they will
translate into index values. Thus, obs = (A, 3, 0)(B, 2, 0) expands the property
labels A and B into a finite stream of five indexed elements: AAABB. Thus, a
Forensic Lucid fragment in Listing 1.1 would return the third A of the AAABB
context stream in the observation portion of o. Therefore, possible evaluations
to check for the properties can be as shown in Figure 1 [18].

The property values of A and B can be anything that context calculus al-
lows or even more generally any arbitrary E allowing to encode all kinds of case
knowledge. The observation sequence is a finite ordered context tag set [22]
that allows an integral “duration” of a given tag property. This may seem like
we allow duplicate tag values that are unsound in the classical Lucid semantics;
however, we find our way around it with the implicit tag index. The semantics
of the arrays of computations is not a part of either GIPL or Lucx; however,
the arrays are provided by Objective Lucid. We use the notion of the arrays to
evaluate multiple computations at the same context. Having an array of compu-
tations is conceptually equivalent of running an a Lucid program under the same
context for each array element in a separate instance of the evaluation engine
and then the results of those expressions are gathered in one ordered storage
within the originating program. Arrays in Forensic Lucid are needed to repre-
sent a set of results, or explanations of evidential statements, as well as denote
some properties of observations. (We explore the notion of arrays in Forensic
Lucid much greater detail in another work) [18].
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// Give me observed property at index 2 in the observat ion sequence
obs

o @. obs 2
where

// Higher−l e v e l dimension in the form of (P,min , opt )
ob se rva t i on o ;
// Equiva lent to wri t ing = { A, A, A, B, B } ;
// Equiva lent to wri t ing = A fby A fby A fby B fby B fby eod ;
ob se rva t i on sequence obs = (A, 3 , 0 ) (B, 2 , 0 ) ;
where

// Propert ies A and B are arrays of computations
// or any Expressions
A = [ c1 , c2 , c3 , c4 ] ;
B = E;
. . .

end ;
end ;

Listing 1.1. Observation Sequence With Duration

To make equivalence relation with the formal Gladyshev’s FSA approach,
computations ci correspond to the states q and event i that enable the transition.
For Forensic Lucid, we define ci as theoretically any Lucid expression o = E [18].

Observed property (context): A A A B B
Sub-dimension index: 0 1 2 3 4

o @.obs 0 = A
o @.obs 1 = A
o @.obs 2 = A
o @.obs 3 = B
o @.obs 4 = B

To get the duration/index position:

o @.obs A = 0 1 2
o @.obs B = 3 4

Fig. 1. Handling Duration of an Observed Property in the Context

In Figure 1 a possibility is illustrated to query for the sub-dimension indices
by raw property where it is present. This produces a finite stream of valid indices
that can be used in subsequent expressions, or, alternatively by supplying the
index we can get the corresponding raw property at that index. The latter feature
is still under investigation of whether it is safe to expose it to Forensic Lucid
programmers or make it implicit at all times at the implementation level. This
method of indexing was needed to remedy the “problem” of “duplicate tags”: as
previously mentioned, observations form the context and allow durations. This
means multiple duplicate dimension tags with implied subdimension indexes
should be allowed as the semantics of traditional Lucid approaches do not allow
duplicate dimension tags. It should be noted however, that the combination of
the tag and its index in the stream is still unique and is nicely folded into the
traditional Lucid semantics [18].
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Transition Function

A transition function (derived from the same notion from the works of Gladyshev
et al. [1,2]) determines how the context of evaluation changes during computa-
tion. It represents in part the case’s crime scene modeling. A general issue exists
that we have to address is that the transition function ψ is usually problem-
specific. In the FSA approach, the transition function is the labeled graph itself
[1]. We follow the graph of the case to model our Forensic Lucid equivalent [18].

In general, Lucid has already basic operators to navigate and switch from
one context to another, that can be said equivalent to state switching. These
operators represent the basic “built-in” transition functions in themselves (the
intensional operators such as @, #, iseod, first, next, fby, wvr, upon, and asa

as well as their inverse operators [18]. However, a specific problem being modeled
requires more specific transition function than just plain intensional operators. In
this case the transition function is a Forensic Lucid function where the matching
state transition modeled through a sequence of intensional operators [18]. In fact,
the forensic operators are just pre-defined functions that rely on the traditional
and inverse Lucid operators as well as context switching operators that achieve
something similar to the transitions [18].

Generic Observation Sequences

We adopt a way of modeling generic observation sequences as an equivalent
to the box operator from the Lucx’s context calculus [23,22] in the dimensional
context that defines the space of all possible evaluations. The generic observation
sequence context contains observations whose properties’ duration is not fixed
to the min value as in (P,min, 0) as we studied so far. The third position in
the observation tuple, opt is not 0 in the generic observation and as a result in
the containing observation sequence, e.g. os = (P1, 1, 2)(P2, 1, 1). Please refer
to [1,2,18,19] for more detailed examples of a generic observation sequence [18].

Primitive Operators

The basic set of the classic intensional operators is extended with the similar
operators, but inverted in one of their aspects: either negation of trueness or
reverse of direction of navigation. Here we provide a definition of these opera-
tors alongside with the classical ones (to remind the reader what they do and
enlighten the unaware reader). The reverse operators have a restriction that they
must work on the bounded streams at the positive infinity. This is not a strin-
gent limitation as the our contexts of observations and evidence in this work
are always finite, so they all have the beginning and the end. What we need is
an ability to go back in the stream and, perhaps, negate in it with classical-like
operators, but reversed [18].

Following the steps in [20], we further represent the definition of the operators
via @ and #. Again, there is a mix of classical operators that were previously
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defined in [20], such as first, next, fby, wvr, upon, and asa as well as the new
operators from this work [18].

Forensic Operators

The operators presented here are based on the discussion of the combination
[1] function and others that form more-than-primitive operations to support the
required implementation. The comb() operator is realized in the general manner
in Forensic Lucid for combining analogies of multiple partitioned runs (MPRs)
[1], which in our case are higher-level contexts, in the new language’s dimension
types [18].

• combine corresponds to the comb function described earlier. It is defined in
Listing 1.2.

/∗∗
∗ Append given e to each element of a given
∗ stream e under the contex t o f d .
∗ @return the r e su l t i n g combined stream
∗/

combine ( s , e , d ) =
i f i s e od s then eod ;
else ( f i r s t s fby . d e ) fby . d combine ( next s , e , d ) ;

Listing 1.2. The combine Operator

• product corresponds to the cross-product of contexts, translated from that
of the LISP example and added with context. It is defined in Listing 1.3.

/∗∗
∗ Append elements of s2 to element of s1
∗ in a l l p o s s i b l e combinations .
∗/

product ( s1 , s2 , d) =
i f i s e od s2 then eod ;
else combine ( s1 , f i r s t s2 ) fby . d product ( s1 , next s2 )

Listing 1.3. The product Operator

3 Modeling Printer Case in Forensic Lucid

3.1 ACME Manufacturing Printing Case

This is one of the cases we re-examine from the Gladyshev’s FSA approach [1].

The local area network at some company called ACME Manufacturing
consists of two personal computers and a networked printer. The cost
of running the network is shared by its two users Alice (A) and Bob
(B). Alice, however, claims that she never uses the printer and should
not be paying for the printer consumables. Bob disagrees, he says that he
saw Alice collecting printouts. According to the manufacturer, the printer
works as follows:
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1. When a print job is received from the user, it is stored in the first
unallocated directory entry of the print job directory.

2. The printing mechanism scans the print job directory from the be-
ginning and picks the first active job.

3. After the job is printed, the corresponding directory entry is marked
as “deleted”, but the name of the job owner is preserved.

4. The printer can accept only one print job from each user at a time.
5. Initially, all directory entries are empty.

The investigator finds the current state of the printer’s buffer as:
1. Job From B Deleted
2. Job From B Deleted
3. Empty
4. Empty
5. ...

Investigative Analysis

If Alice never printed anything, only one directory entry must have been used,
because the printer accepts only one print job from each user at a time [1]. How-
ever, two directory entries have been used and there are no other users except
Alice and Bob. Therefore, it must be the case that both Alice and Bob submit-
ted their print jobs in the same time frame. The trace of Alice’s print job was
overwritten by Bob’s subsequent print jobs. As a result, a finite state machine
is constructed to model the situations as in the FSA [1] to indicate the initial
state and other possible states and how to arrive to them when Alice or Bob
would have submitted a job and a job would be deleted [1]. The FSM presented
in [1] covers the entire case with all possible events and transitions resulted due
to those events. It is modeled based on the properties of the investigation, in this
case the printer queue’s state according to the manufacturer specifications and
the two potential users. The modeling is assumed to be done by the investigator
in the case in order to perform a thorough analysis. It also doesn’t really matter
how actually it so happened that the Alice’s print job was overwritten by Bob’s
subsequent jobs as is not a concern for this case any further. Assume, this be-
havior is derived from the manufacturer’s specification and the evidence found.
The investigator will have to make similar assumptions in the real case [1].

The authors of [1] provided a proof-of-concept implementation of this case in
Common LISP (not recited in here) which takes about 6-12 pages of printout
depending on the printing options set and column format. Using our proposed
solution, we rewrite the example in Forensic Lucid and show the advantages
of a much finer conciseness and added benefit of the implicit context-driven
expression and evaluation, and parallel evaluation that the LISP implementation
lacks entirely.

3.2 Sample Forensic Lucid Specification

The simulated printer case is specified in Forensic Lucid as follows. ψ is imple-
mented in Listing 1.5. We then provide the implementation of Ψ−1 in [18] in
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Listing 1.6. Finally, the “main program” is modeled in Listing 1.4 that sets up
the context hierarchy and the invokes Ψ−1. This specification is the translation
of the LISP implementation by Gladyshev described earlier [1] and described in
this section in semi-structured English.

The “Main Program”

In Listing 1.4 where the computation begins in our Forensic Lucid example. This
is an equivalent of main() or program entry point in other mainstream languages.
The goal of this fragment is to setup the context of evaluation which is core to the
case – the evidential statement es. This is the highest level dimension in Lucid
terms, and it is hierarchical. This is an unordered list (set) of stories and witness
accounts of the incident (themselves known as observation sequences); ordering
in the program of them is arbitrary and has an array-like structure. The relevant
stories to the incident are that of Alice, the evidence of the printer’s final state
as found by the investigator, and the “expert testimony” by the manufacturer
of how the printer works. These observation sequences are in turn defined as
ordered collections of observations nesting one lever deeper into the context. The
printer’s final state dimension F is the only observation for the printer found by
the investigator, which is an observation of the property of the printer’s queue
“Bob’s job deleted last” syntactically written as “B deleted” as inherited from
Gladyshev’s notation. Its duration is nothing special, that it was simply present.
The manuf observation sequence dictated by the manufacturer’s specification
that the printer’s queue state was empty initially for an undetermined period
$ of time when the printer was delivered. These are two observations, followed
in time/ Alice’s line (also tow observations) is that from the beginning Alice
did not not any actions signified by the properties P such as “add B” or “take”
(implying the computation “add A” has never happened (0 duration for the
“infinity” i.e. till the investigator examined the printer); which is Alice’s claim.
alice claim is a collection of Boolean results for possible explanations or lack
thereof for Alice’s claim in this case at the context of all this evidence and as
evaluated by invpsiacme Ψ−1. If Alice’s claim were to check out; the results
would be “true”; “false” otherwise.

Modeling Forward Transition Function ψ

In Listing 1.5 ψ illustrating the normal flow of operations to model the scene.
Which is also a translation from LISP from Gladyshev [1] using Forensic Lucid
syntax and operators described in [18]. The function is modeled per manufacturer
specification and focuses on the queue of the printer. “A” corresponds to “Alice”
and “B” to “Bob” along with their prompted queue actions to add deleted
print jobs. The code is a rather straightforward translation of the FSM/LISP
code in [1]. S is a collection of state properties observed. c is a “computation”
action to add or take print jobs by the printer’s spooler. d is a classical Lucid
dimension type along which the computation is happening (there can be multiple
dimensions and evaluations going on).
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a l i c e c l a im @ es
where

e v i d e n t i a l statement e s = [ p r i n t e r , manuf , a l i c e ] ;

ob s e rva t i on sequence p r i n t e r = F ;
ob s e rva t i on sequence manuf = [Oempty , $ ] ;
ob s e rva t i on sequence a l i c e = [ Oal ice , F ] ;

ob s e rva t i on F = ( ‘ ‘ B de le ted ’ ’ , 1 , 0) ;
ob s e rva t i on Oal i c e = ( P a l i c e , 0 , +i n f ) ;
ob s e rva t i on Oempty = ( ‘ ‘ empty ’ ’ , 1 , 0) ;

// No ‘ ‘ add A ’ ’
P a l i c e = unordered { ‘ ‘ add B ’ ’ , ‘ ‘ take ’ ’ } ;

a l i c e c l a im = invpsiacme (F , e s ) ;
end ;

Listing 1.4. Developing the Pinter Case: “main”

acmepsi ( c , s , d ) =
// Add a pr in t job from Alice
i f c == ‘ ‘ add A ’ ’ then

i f d1 == ‘ ‘A ’ ’ | | d2 == ‘ ‘A ’ ’ then s ;
else

i f d1 in S then ‘ ‘A ’ ’ fby . d d2 ;
else

i f d2 in S then d1 fby . d ‘ ‘A ’ ’ ;
else s ;

// Add a pr in t job from Bob
else i f c == ‘ ‘ add B ’ ’ then

i f d1 == ‘ ‘B ’ ’ | | d2 == ‘ ‘B ’ ’ then s ;
else

i f d1 in S then ‘ ‘B ’ ’ fby . d d2 ;
else

i f d2 in S then d1 fby . d ‘ ‘B ’ ’ ;
else s ;

// Printer takes the job per manufacturer s p e c i f i c a t i on
else i f c == ‘ ‘ take ’ ’

i f d1 == ‘ ‘A ’ ’ then ‘ ‘ A de l e ted ’ ’ fby . d d2 ;
else

i f d1 == ‘ ‘B ’ ’ then ‘ ‘B ’ ’ fby . d d2 ;
else

i f d2 == ‘ ‘A ’ ’ then d1 fby . d ‘ ‘ A de l e ted ’ ’ ;
else

i f d2 == ‘ ‘B ’ ’ then d1 fby . d ‘ ‘ B de l e ted ’ ’ ;
else s ;

// Done
else s fby . d eod ;

where
dimension d ;
S = [ ‘ ‘ empty ’ ’ , ‘ ‘ A de le ted ’ ’ , ‘ ‘ B de l e ted ’ ’ ] ;
d1 = f i r s t . d s ;
d2 = next . d d1 ;

end ;

Listing 1.5. “Transition Function” ψ in Forensic Lucid for the ACME Printing Case

Modeling Inverse Transition Function Ψ−1

In Listing 1.6 is the inverse Ψ−1 backtracking implementation with the purpose
of event reconstruction, also translated from LISP to Forensic Lucid like the
preceding fragments using the Forensic Lucid operators. It is naturally more
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invpsiacme ( s , d) = backtrace s
where

backtrace s = [A, B, C, D, E, F , G, H, I , J , K, L , M ] ;
where

A = i f d1 == ‘ ‘ A de l e ted ’ ’
then d2 pby . d ‘ ‘A ’ ’ pby . d ‘ ‘ take ’ ’ else eod ;

B = i f d1 == ‘ ‘ B de l e ted ’ ’
then d2 pby . d ‘ ‘B ’ ’ pby . d ‘ ‘ take ’ ’ else eod ;

C = i f d2 == ‘ ‘ A de le ted ’ ’ && d1 != ‘ ‘A ’ ’ && d2 != ‘ ‘B ’ ’
then d1 pby . d ‘ ‘A ’ ’ pby . d ‘ ‘ take ’ ’ else eod ;

D = i f d2 == ‘ ‘ B de le ted ’ ’ && d1 != ‘ ‘A ’ ’ && d2 != ‘ ‘B ’ ’
then d1 pby . d ‘ ‘B ’ ’ pby . d ‘ ‘ take ’ ’ else eod ;

E = i f d1 in S && d2 in S
then s pby . d ‘ ‘ take ’ ’ else eod ;

F = i f d1 == ‘ ‘A ’ ’ && d2 != ‘ ‘A ’ ’
then

[ d2 pby . d ‘ ‘ empty ’ ’ pby . d ‘ ‘ add A ’ ’ ,
d2 pby . d ‘ ‘ A de le ted ’ ’ pby . d ‘ ‘ add A ’ ’ ,
d2 pby . d ‘ ‘ B de le ted ’ ’ pby . d ‘ ‘ add A ’ ’ ]

else eod ;

G = i f d1 == ‘ ‘B ’ ’ && d2 != ‘ ‘B ’ ’
then

[ d2 pby . d ‘ ‘ empty ’ ’ pby . d ‘ ‘ add B ’ ’ ,
d2 pby . d ‘ ‘ A de le ted ’ ’ pby . d ‘ ‘ add B ’ ’ ,
d2 pby . d ‘ ‘ B de le ted ’ ’ pby . d ‘ ‘ add B ’ ’ ]

else eod ;

H = i f d1 == ‘ ‘B ’ ’ && d2 == ‘ ‘A ’ ’
then

[ d1 pby . d ‘ ‘ empty ’ ’ pby . d ‘ ‘ add A ’ ’ ,
d1 pby . d ‘ ‘ A de le ted ’ ’ pby . d ‘ ‘ add A ’ ’ ,
d1 pby . d ‘ ‘ B de le ted ’ ’ pby . d ‘ ‘ add A ’ ’ ]

else eod ;

I = i f d1 == ‘ ‘A ’ ’ && d2 == ‘ ‘B ’ ’
then

[ d1 pby . d ‘ ‘ empty ’ ’ pby . d ‘ ‘ add B ’ ’ ,
d1 pby . d ‘ ‘ A de le ted ’ ’ pby . d ‘ ‘ add B ’ ’ ,
d1 pby . d ‘ ‘ B de le ted ’ ’ pby . d ‘ ‘ add B ’ ’ ]

else eod ;

J = i f d1 == ‘ ‘A ’ ’ | | d2 == ‘ ‘A ’ ’
then s pby . d ‘ ‘ add A ’ ’ else eod ;

K = i f d1 == ‘ ‘A ’ ’ && d2 == ‘ ‘A ’ ’
then s pby . d ‘ ‘ add B ’ ’ else eod ;

L = i f d1 == ‘ ‘B ’ ’ && d2 == ‘ ‘A ’ ’
then s pby . d ‘ ‘ add A ’ ’ else eod ;

M = i f d1 == ‘ ‘B ’ ’ | | d2 == ‘ ‘B ’ ’
then s pby . d ‘ ‘ add B ’ ’ else eod ;

where
dimension d ;
S = [ ‘ ‘ empty ’ ’ , ‘ ‘ A de le ted ’ ’ , ‘ ‘ B de l e ted ’ ’ ] ;
d1 = f i r s t . d s ;
d2 = next . d d1 ;

end ;

Listing 1.6. “Inverse Transition Function” Ψ−1 in Forensic Lucid for the ACME
Printing Case
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complex than ψ due to a possibility of choices (non-determinism) when going
back in time so all of them have to be explored. This backtracking, if successful,
for any claim, would provide the Gladyshev’s “explanation” of that claim, i.e.
the claim attains its meaning and is validated within the provided evidential
statement. Ψ−1 is based on the traversal from F to the initial observation of the
printer’s queue as defined in “main”. If such path were to exist, then Alice’s
claim would have had an explanation. pby (preceeded by) is the Forensic Lucid
inverse operator of classical Lucid’s fby (followed by). backtraces is an array
of event backtracing computations identified with variables; their number and
definitions depend on the crime scene and are derived from the state machine of
Gladyshev.

4 Conclusion

We presented the basic overview of Forensic Lucid, its concepts, ideas, and ded-
icated purpose – to model, specify, and evaluation digital forensics cases. The
process of doing so is significantly simpler and more manageable than the pre-
viously proposed FSM model and its common LISP realization. At the same
time, the language is founded in more than 30 years research on correctness
and soundness of programs and the corresponding mathematical foundations of
the Lucid language, which is a significant factor should a Forensic Lucid-based
analysis be presented in court. We re-wrote in Forensic Lucid one of the sample
cases initial modeled by Gladyshev in the FSM and Common LISP to show the
specification is indeed more manageable and comprehensible than the original
and fits in two pages in this paper.

We also still realize by looking at the examples the usability aspect is still
desired to be improved further for the investigators, especially when modeling
ψ and Ψ−1, as a potential limitation, prompting one of the future work items to
address it further.

In general, the proposed practical approach in the cyberforensics field can also
be used to model and evaluate normal investigation process involving crimes not
necessarily associated with information technology. Combined with an expert
system (e.g. implemented in CLIPS [25]), it can also be used in training new
staff in investigation techniques. The notion of hierarchical contexts as first-
class values brings more understanding of the process to the investigators in
cybercrime case management tools.

5 Future Work

• Formally prove equivalence to the FSA approach.
• Adapt/re-implement a graphical UI based on the data-flow graph tool [12]
to simplify Forensic Lucid programming further for not very tech-savvy in-
vestigators by making it visual. The listings provided are not very difficult
to read and quite manageable to comprehend, but any visual aid is always
an improvement.
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• Refine the semantics of Lucx’s context sets and their operators to be more
sound, including Box and Range.

• Explore and exploit the notion of credibility factors of the evidence and
witnesses fully.

• Release a full standard Forensic Lucid specification.
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