
Evaluating the Forensic Image Generator

Generator

Christian Moch and Felix C. Freiling

Department of Computer Science
University of Erlangen-Nuremberg

Am Wolfsmantel 46, 91058 Erlangen, Germany
{christian.moch,felix.freiling}@cs.fau.de

Abstract. The Forensic Image Generator Generator (Forensig2) is a
system that allows to produce file system images for training in forensic
computing. We report experiences of using Forensig2 within a course
on forensic computing. Apart from revealing the pitfalls when using
artificially generated images in class, we argue that they can be used
to quantify the difficulty of an analysis problem and, in turn, help to
understand misinterpretation issues in practice.

Keywords: forensic images, privacy protection, forensic computing
education.

1 Introduction

The forensic image generator generator (Forensig2) [3, 4] is a program to gen-
erate “interesting”, albeit artificial, hard disk images for forensic analysis exer-
cises. The input to Forensig2 is a script (a program) that produces an image,
i.e., the generation of complex images can be automated. This is an advantage
over creating such images by hand, as it is done today in many courses on foren-
sic computing. The script itself also forms the ground truth, i.e., the sequence
of operations that caused the state of the evidence. This is important for the
examiner to evaluate the performance of a student in the digital investigation.
Furthermore, since the image is totally artificial, there are no privacy concerns
in comparison to using real evidence or second hand hard disks in class.

The structure of using the tool is depicted in Figure 1. As input, a script
written by the instructor, which determines the actions performed on the image,
is used. The input language is Python and so the use of random numbers in
scripts is possible. The use of randomness makes it possible to create multiple
slightly different images using only one input script. To make the image genera-
tion repeatable, Forensig2 does not directly produce an image. In the first step
it eliminates randomness and produces a generator for the final image. In the
second step, the actual image is produced. This is the reason of the square in
the acronym Forensig2 because, in effect, it generates an image generator.

P. Gladyshev and M.K. Rogers (Eds.): ICDF2C 2011, LNICST 88, pp. 238–252, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Evaluating the Forensic Image Generator Generator 239

Forensig²

input script
(with random behavior)

image generator script
(no random behavior)

Forensig²
second pass

file system image

human analysis

report on
found evidence

log of evidence
(ground truth)

comparison by
Instructor

Forensig²
first pass

Fig. 1. Using Forensig2 in digital investigation exercises [3]

1.1 Deficiencies of Forensig2

Forensig2 is used in different universities and with law enforcement to train stu-
dents in forensic analysis. However, it has some clear deficiencies. First of all,
since an instructor has to write an input script, it is not usable by instructors
who have no programming experience. Another problem is that Forensig2 has
problems creating evidence caused by user interaction through the GUI. This
is unfortunate, since such evidence is particularly interesting in practice. Some
of the disadvantages can be compensated with manual intervention, by interrupt-
ing the input script at a certain time, after which the script can be continued.
Finally, the usefulness of the tool has never been properly evaluated (or if so, we
are not aware whether it has been reported).

1.2 Evaluating Forensig2

We obtained a copy of Forensig2 from the project website [4] and used it to per-
form four studies during an undergraduate course on forensic computing (“Foren-
sische Informatik”) at the University of Mannheim in the summer term 2010 in
which more than 20 students participated. In each study, students had to ana-
lyze or create a hard disk image produced by Forensig2. Each study evaluated a
different aspect of Forensig2 or digital forensics in general:

1. In the first study, we investigated the usefulness of Forensig2 as a tool to
create images for analysis by students. They were given an artificial image
and had to write a report of their findings within six weeks. A comparison
between the findings of the students and the script of Forensig2 allowed us
to precisely assess the coverage of digital evidence that students achieved.

2. In the second study, we wanted to test the usability of Forensig2 from the
view of an instructor. In this study, students had to create their own images

240 C. Moch and F.C. Freiling

using Forensig2. We analyzed the scripts from the students and measured
the lines of code, the unique commands and the externally prepared files
that were needed to create an interesting image.

3. The third study focused on logical and technical flaws within images created
by Forensig2. Logical flaws are mistakes made by the author of the script. For
example, a logical mistake would be the use of Ubuntu Linux at a time before
Ubuntu Linux was founded. Technical flaws are any functional mistakes that
allow to detect the use of Forensig2. For example, a known technical flaw is an
irregularity in the unused space of the partition tables created by Forensig2.
Within this study we wanted to find other technical flaws too.

4. The last study had a more general scope: It aimed on determining the degree
of difficulty of a specific forensic problem. Our students had to analyze three
images within a fixed time in the lab and after each image they had to fill out
a questionnaire. With a statistical analysis we were able to determine the
degree of difficulty of the three images with respect to time-consumption and
knowledge needed to solve the image. With the ability to seamlessly generate
and vary images for such studies, Forensig2 can enable multiple such studies
in the future. In the long run, this may help in the quantifying the trust in
an investigator’s analysis depending on the type of evidence investigated.

1.3 Contributions

In this paper, we report on the results of the studies sketched above:

1. In the first study, most findings of students corresponded with the Forensig2

report, although our students also found some irritating evidence uninten-
tionally introduced by Forensig2. The large overlap of found (intentional)
evidence shows that Forensig2 can be used for educational purposes. Most
of the evidence that our students could not recover was due to the fact that
this evidence was technically unrecoverable, e.g., a deleted file which was
overwritten physically. The Forensig2 report still represents this evidence al-
though it is impossible to recover it. The unintended findings of our students
pointed to some technical shortcomings in Forensig2 and to inconsistencies
in the “story” of the case. (see also study 3)

2. The second study showed the possible uses of Forensig2 by instructors. We
had more than 20 scripts written by students who had never used Forensig2

before. The analysis of the scripts showed that it is possible to create inter-
esting images with the use of only 20 unique commands (of Forensig2) or
even less.

3. In the third study the students were able to find further technical flaws of
the tool. However, evidence that was not recoverable on the final image could
almost always be traced back to input scripts that made the evidence tech-
nically unrecoverable, e.g., if a command overwrites the evidence completely
or leaves no evidence at all. Students were also able to find some unintended
traces within the image created by Forensig2 which would make it possible
to create a signature for a Forensig2 image.

Evaluating the Forensic Image Generator Generator 241

4. The last study resulted in statistical data that allowed us to prove which
forensic problem is hard to solve and which is not. The data shows us that
it is possible to use Forensig2 to determine the complexity of a forensic
problem. We were able to show that there was no difference between finding
a regular file or a deleted file, while a deleted partition table is much harder
to analyze with respect to time and difficulty of the analysis.

Overall, we conclude that the use of Forensig2 in an educational environment is
possible, although this task has to be approached with caution.

1.4 Paper Structure

This paper is structured as follows: We first give some technical background on
Forensig2 in Section 2. This part can be skipped if the reader is already familiar
with the tool. We then present the results of the four studies in Sections 3, 4, 5
and 6. Section 7 concludes the paper.

2 Background

2.1 Forensig2 in a Nutshell

Forensig2 [3] offers the possibility to describe an entire computer together with
its operation system. It is possible to perform a complete installation of the
operating system in particular, to create realistic timestamps on the file system.
This is done by using the system emulator Qemu. Python was chosen to be
the scripting language for Forensig2. It allows the creation of many different
(but similar) disk images from one input file. Forensig2 can access a source of
randomness in the generator system but also can reproduce a particular image
as well.

Forensig2 input scripts can use a couple of auxiliary libraries that are part of
the extension of plain Python. These libraries can be divided into five areas: (1)
building the system, (2) time control, (3) execute operations, (4) documentation,
and (5) auxiliary modules.

Building the System. The building modules of the system are System, Disk,
CPU, Memory and GenericCard. With a combination of these modules it is possi-
ble to define an entire computer system including the installed operating system.

The System module is the central module which takes care of all other system
components. Building an entire system uses the metaphor of building systems
in the real world. To install a CPU, the system module provides a method
System.addCpu(CPUObject). In the same way a hard disk can be installed or any
other component. The module is also responsible to power the defined computer
system on or off.

The Disk module divides itself into SystemDisk and DataDisk and provides
the basic functionality for a hard disk. The SystemDisk represents a hard disk
with an installed operating system, while the DataDisk only has a filesystem. A
data disk, however, offers more possibilities in partitioning than a system disk.

242 C. Moch and F.C. Freiling

Time Control. Since a lot of important information is conveyed through time
stamps, taking control over time is very important for building disk images.
The Time module provides two different time structures, the truetime and the
systemtime, both starting at January 1, 1970. The concept of true time reflects
the time elapsed since the script started, while the concept of system time repre-
sents the actual time the system uses (the system clock). True time only flows in
one direction, i.e., it can be increased by arbitrary values but can not decrease.
So the true time acts like the time in the real world, with the difference that
time travels to the future are allowed. In contrast to this behavior the system
time has no restrictions.

Like the real time in the real world, both timelines are flowing constantly.
Every second the script is running, both timelines increment by a second, which
is important when using the true time. When the user sets the truetime to a
determined time, lets say May 19, 2009, 12:00 and then installs a system, the
truetime constantly flows while installing. If the install takes 20 minutes, then
true time will be May 19, 2009, 12:20.

Executing Operations. With the modules discussed before, a system can be
installed and the time of these actions can be determined. Having only a fresh
installed system on a given time would not be interesting for forensic analysis.
Further commands should be executed on the system, so a kind of user inter-
action has to be integrated. The commander module models user interaction.
Every command that runs on the installed system must be passed through the
commander module.

Documentation. Knowing the ground truth is important for the instructor so
that results obtained from forensic analysis by students can be well assessed.
Most actions are documented by the input script itself. However, if randomness
is used, it is necessary to be able to output specific values into the log file of the
image. Thus, in every module a logging function is implemented that writes the
actions taking place to a single report file. Sometimes, the instructor also wants
the status of a module at a specific time within the generation process to be
documented. The Reporter module provides this functionality, since it writes a
report on demand while the generation process takes place.

Auxiliary Modules. The auxiliary modules collect helpful support tools for
forensic image generation. The Converter module provides many kinds of con-
versions: From decimal to hexadecimal, from ASCII to decimal, and even some
specific conversions like CHS (cylinder, head, sector) to LBA (logical block ad-
dress). The Hexer module can be used to manipulate files byte by byte.

3 Analysis of Artificial Images in Class

In this exercise, the task for our students was to analyze an image produced by
Forensig2. We did not tell the students about the source of the image; they did
not know if the image is artificial or not.

Evaluating the Forensic Image Generator Generator 243

In total, 24 students participated in this exercise. They were randomly as-
signed to one of two different image stories which we now explain.

The first story is taken directly from the code base of the Forensig2 distribu-
tion [4]. It describes the criminal acts of a famous German blackmailer in the
1990’s. The alias of this blackmailer was Dagobert (the German name for Uncle
Scrooge McDuck). He blackmailed a department store chain several times and
to enforce his demands, he planted bombs in the stores. The hard disk image
contains many hints to this story. There are several text-files where the black-
mailer writes down his thoughts before and after his criminal acts. There are
also some newspaper articles and some maps of the department stores on the
image. The time line of the files corresponds to the time line of the real world
story. To confuse the analysts, a second partition exists on the image containing
files which are not related to the case. In the story, this partition is used by
Dagoberts wife. At the end of the time line, some files are deleted and finally
the partition table was destroyed.

We created the second story ourselves, and it tells a modern version of the
Robin Hood saga. The basic idea of “robbing from the rich and giving to the
poor” was mimicked by text files containing an amount of money. These text files
were digitally signed by the Sheriff of Nottingham and distributed (copied) to
the rich people. In the story we build a system with an installed Ubuntu Linux.
On this system, we created four users. “Robert.de.Rainault” which represents
the Sheriff of Nottingham, “Robert.Hut” as Robin Hood, and two other users
which are called “rich” and “poor”.

In the story line the user “Robert.de.Rainault” created some digitally signed
text files with a certain amount of money and moved the files to the home
folder of the user “rich”. “Robert.Hut” moved these files to the home folder
of the user “poor”, furthermore he was able to steal (copy) the private keys
of “Robert.de.Rainault”. From now on he was able to create his own digitally
signed text files. “Robert.Hut” created some of these files and copied them to the
home folder of the user “poor”. In the end, the home directory of “Robert.Hut”
was deleted. To have at least one piece of evidence that is not related to the
case, we made a small brute force attack on the system. The user “root” tried
to login via ssh 10 times, traces could be found in the auth.log file.

All in all, we had a great coverage between the evidence we had hidden on
both images and the evidence found by our students. Some of the students found
all traces that were recoverable. They also analyzed the side scenes we placed in
the image. Nearly all students were able to recover the end state of the image
and could determine which files were located in which directory at the end. Some
students also managed to recover the time line, which is particularly essential to
understand the “Robin Hood” case.

An interesting approach to recover the time line was made with a field experi-
ment by a student in the “Robin Hood” case. He placed the files in the directories
where he assumed they were stored at the beginning. Then, he executed every
single command he found in the bash history of each user, to prove which order
of the commands ends in the end state he found on the image. Finally he could

244 C. Moch and F.C. Freiling

determine the exact order of the commands and the origin storage place of the
files with a 100% coverage to the Forensig2 script.

To quantify the coverage we analyzed the reports of our students. We defined
five main parts they had to find during the investigation. This parts were related
to the criminal act we introduced them to analyze.

Overall we had a coverage of about 77% in both cases (“Dagobert” and
“Robert.Hut”) which deviates from 40% to 100%. In both cases we had some
students who found all the traces we placed on the image. For the “Dagob-
ert” case, we defined the following pieces of evidences: maps of three cities, a
picture of the blackmailer, newspaper articles of the criminal acts, diary of the
blackmailer and a picture of bomb. While only 38% of our students found the
newspaper articles, 92% found the picture and the diary entires. The maps were
found by 84% and the bomb was found by 76%.

On the “Robert.Hut” case, we defined the following pieces of evidences: signed
files from Robert.Hut, signed files from Robert de Rainault, invalid signature,
stolen private key and reconstruction of the time flow. On this study, 64% of our
students figured out that the user Rober.Hut had stolen the private key from the
user Robert de Rainault. Therefore, 72% noticed the invalid signature on one file
and also 72% managed to reconstruct the time line in the correct order. While
81% found digitally signed files created by Robert.Hut, all of our students find
the digitally signed files created by Robert de Rainault.

We did not analyze the coverage of the side scenes, although we had reports
that described these scenes in detail. The investigation of the side scenes were
not explicitly described as task of the investigation process and therefore many of
our students did not write their findings about these scenes in their final report.

The reports produced by our students varied from 6 to 19 pages, the appendix
of the reports from 0 to 1144 pages. The mean values of an average report is
around 9 pages. These results do not differ from other courses we held earlier with
real (second hand) hard disk images instead of artificially generated images. An
interesting result is, that the reports of a SystemDisk is longer than the report
of a DataDisk (see Figure 2). The mean value of a Dagobert report, which uses
only a DataDisk, is 9.61 pages, while the mean value for the “Robin Hood”
image is above 10.

4 Evaluating the Usability of Forensig2

In the next study, we aimed to evaluate the usability of Forensig2. To measure
the usability, the students should create their own images using Forensig2. The
study resulted in many different images created by our students. Some students
borrowed their stories from real life, movies or books while other students wrote
the story from scratch. The result were stories of all kinds of criminal acts,
for example bank robbery, kidnapping and murder. A creative script mimicked
the time line of one episode of the series “Knight Rider”. The system build by
the Forensig2 script should be the system of “KITT” an artificially intelligent
electronic computer built into a car.

Evaluating the Forensic Image Generator Generator 245

Dagobert Robert.Hut

6
8

10
12

14
16

image

nu
m

be
r

of
 p

ag
es

Fig. 2. Pages of the reports for different images

A closer look at the Forensig2 scripts of our students showed us how much
effort is needed to create a forensic image. The statistics of the scripts showed
that the mean value of lines in the script is 93.13 with a maximum of 208 and
a minimum of 47. More interesting is the use of commands in the script. We
counted the unique commands of each script and calculated the mean value
with the result of 18.06 commands per script (see Figure 3). This leads us to the
conclusion that the use of Forensig2 makes it possible to create an interesting
image with about 100 lines of code and the use of about 20 commands.

However, not every file or every case can be solved using the pure Forensig2

scripting language. For a good script there is also the need for some preparations.
With Forensig2, it is not possible to create complex files, like a picture of a
criminal offender, emails or browser histories. Therefore the author of the script
has to prepare these files. Afterwards, with the help of the Forensig2 tool, he is
able to copy these files to the image. Our students prepared the files in different
ways. Some students created each single file on their own. The results were text
files or PDF-Documents containing some hints related to the criminal act. Other
students created a huge amount of slightly different files, for example hundreds
of pictures created by a shell script using imagemagick. Out of these files, they
randomly pick some files in the Forensig2 script, with the result that with every
run Forensig2 will create a slightly different image. Finally, the students used
a fresh installed computer to create some typical files, for example a browser
history. They copied these files and used them later in the Forensig2 script.

In our study, the mean value of prepared files was about 100. While one stu-
dent created about 1500 files with a shell script which distorted the mean value.

246 C. Moch and F.C. Freiling

Without this student, the mean value decreases to 13.56, with the minimum of 0
files and the maximum of 22 files prepared (see Figure 3). The preparation time
to create about 14 files is manageable, although it should be considered in the
calculation of the amount of time needed to create a whole Forensig2 script.

uniquecommands prepared files

10
15

20

Fig. 3. Unique commands and prepared files per script

5 Testing and Fingerprinting Forensig2

In the next study, we sought to evaluate Forensig2 in two aspects: Firstly, we
wanted to perform some tough functional testing. Students were given an input
script together with the image generated by the script and had to analyze the
image with the focus on the evidences described in the script. They had to prove
that every single command of the script had been executed and had to figure
out which traces of this command were left on the image. Secondly, students had
to look for traces left by Forensig2 itself in the image, i.e., they were asked to
develop tools to fingerprint images produced by Forensig2.

5.1 Testing Forensig2

The coverage of the commands used in the script and the evidence found on the
image was nearly 100%. Some evidence was not recoverable because it was com-
pletely overwritten by other data, i.e. copying a file over an existing file. How-
ever, a step-by-step analysis where the script was executed line-by-line and after
each command the resulting image was analyzed showed that the commands had
been executed. So far the the evaluation of Forensig2 did not show any differences
between the input script and the produced image, although we did not cover all
functions Forensig2 provides, the most commonly used functions are reliable.

5.2 Fingerprinting Forensig2

As a second task of this study students had to find traces of the use of Forensig2.
In particular, they had to find evidence in the image that it was an artificially

Evaluating the Forensic Image Generator Generator 247

generated by Forensig2. There are two ways to distinguish an artificial image
from a real image: (1) Identification of technical issues of Forensig2 in the image
that allow it to be identified as artificially created, (2) logical mistakes in the
story or the image, for example, the use of Ubuntu Linux before Ubuntu Linux
was founded.

The results from this study were mostly logical mistakes where the author of
the script used technologies which were not available at the time the script should
take place. For example, in the Dagobert script described above, Dagobert used
Google Maps screenshots of the blackmailed stores. However, the time where the
story is set in was in the year 1994 and therefore Google Maps was not available.
Another popular logical mistake was a very short time offset between actions
usually executed manually. For example the execution of several commands on
the command line within a few seconds is unrealistic and points to an artificially
generated image.

There were not many findings regarding technical flaws of the tool. Since
the students were undergraduate, they were probably too inexperienced to find
technical flaws on the image, although some students found at least some traces
of the use of Forensig2. For example, some students proved the use of Qemu
which is used as a virtual machine in Forensig2. The absence of Qemu on a
SystemDisk is strong evidence against the use of Forensig2 and therefore a good
way to falsify the hypothesis that Forensig2 is used.

A way to affirm the usage was found by some students in the partition
table of the DataDisk. Here Forensig2 has a minor issue in the algorithm re-
sulting in 62 bytes of unallocated space between the first and second parti-
tion and 63 bytes between any further partition. Though we knew about some
other possibilities to test if an image is built by Forensig2, no student of this
exercise was able to find it without further hints. Other possibilities could
be the the use of the linux-virtual kernel or a strange behavior of the de-
fault user. The default user connects regularly to the system and executes
only one command. This is the heartbeat of Forensig2 to prove the system’s
availability. On a DataDisk, it should be harder to find traces, the only sub-
system built from scratch was the Partitioner module. Every other module
uses regular Linux commands to interact with the DataDisk and therefore it
is hard to distinguish between normal and artificial interaction on a technical
level.

All in all, we learned from this exercise that it is not easy to create an artificial
image which could not be identified as artificial. Although our students did not
find many of the technical flaws we identified so far, it is easy to fingerprint
Forensig2 today.

6 Comparing Hardness of Investigation Tasks

In the final study, we did not evaluate Forensig2 itself but rather tried to used
the tool to compare and thereby evaluate different investigation tasks.

248 C. Moch and F.C. Freiling

6.1 Rhino Hunt

The study was inspired by a previous DFRWS challenge [2]: Students were given
three images. On every image our students had to solve the same task: they had
to find a picture of a rhinoceros and figure out the file type and the filename
of the picture file. The image was only declared solved when both items were
found: filename and file type.

In this study, 23 students worked in real time in the lab at our university and
performed the test at the same time under the same conditions (a linux system
booted from a popular forensic live DVD). Due the time of an exercise slot of 90
minutes, we decided to pass 3 images to the students and grant 60 minutes of time
for solving the images, 20 minutes per image. Within that time the students had
to analyze the image and answer a short questionnaire. If a student finished the
analysis earlier, he was allowed to continue with the next image immediately. The
time limitation of 20 minutes should bring the participants in a time-pressure
situation. This should be more comparable to real forensic analyses where time
is a resource which is not endless. The images were solvable in less then 20
minutes when knowing the “ground truth”, without this knowledge, it should
be challenging to solve.

With the questionnaire we could measure some subjective data from our stu-
dents like perceived time-pressure or the difficulty of the image. Beside this data,
we also had some objective data like analysis time or the fact whether or not
they had solved the image.

6.2 The Three Images

We now describe the three images that had to be solved by the students.

Image 1. The first image contained a file system formated with ext2. The
position of the file system was correctly mapped in the partition table. Only
a single file was stored in the file system which contained the picture of the
rhinoceros. The tricky part of the image was that the file extension in the file
system was not identical with the file type of the picture.

Image 2. Like the first image, the second image had only one file. However,
the file was first moved on the file system from one directory to another and
afterwards it was deleted. The students had to recover the file, which contained
the rhinoceros and figure out the filename and file type. This time the file-
extension of the file was not changed.

Image 3. The third image had a deleted partition table signature. The files
in the file system were untouched, no single file was deleted. The task for our
students was to restore the partition table signature AA55 [1]. Afterwards they
were able to find the file system and finally they would find the picture of a
rhinoceros inside the file system.

Evaluating the Forensic Image Generator Generator 249

6.3 Hypotheses and Findings from Subjective Data

Our hypothesis was that the images were getting harder to solve with each im-
age. We suspected Image 1 to be the easiest to solve, Image 2 should be an
intermediate level and Image 3 should be the hardest image out of the three ex-
amples. This hypothesis should reflect on the data by an increasing analysis time,
decreasing percentage of solved images, increasing subjective felt time-pressure
and increasing subjective felt difficulty of the images. To prove the hypothesis
we analyzed the data from the questionnaire combined with the objective data
we could measure.

We found clear data that Image 3 is significantly harder to solve compared
to the first two. The surprising result in our data was that there was only a
marginal bias that Image 1 differs from Image 2 regarding the level of difficulty.
With statistical methods, it was not possible to distinguish Image 1 from Image 2.

After our students solved Image 2, we asked them in the questionnaire if the
image was more difficult to solve and if the image was more time-demanding
compared to Image 1. Later we asked the same questions to compare Image 3
and 2. The answers were collected with a 9-point scale, were 1 means “much
easier”/“much less time-consuming” and 9 means “much more difficult”/“much
more time-consuming”. A response of 5 means, there were no differences between
the two tasks.

The mean value between Image 1 and 2 was 5.25 (difficulty) and 4.3 (time-
consumption) (see Figure 4). The confidence interval calculated with a one
sample t-test was between 4.59 and 5.9 (difficulty) and 3.57 and 5.029 (time-
consumption). On each factor 5 is within the confidence interval and therefore
the two images do not differ from each other. A minor tendency could be inter-
preted in the time-consumption factor, the value 5 is on the edge of the confidence
interval, maybe with more participants it could fall significantly below 5. The
surprising result is, that there is no difference between a file system where no
data is deleted and a file system were data is deleted. Both problems seem to be
equivalent. Much more surprising is the result that the tendency is towards less
time-consumption for Image 2. This is in contrast to our initial hypothesis.

difficulty time−consupmtion difficulty time−consumption

2

4

6

8

Image 1 vs 2 Image 2 vs 3

<−
 e

as
ie

r

 e

qu
iv

al
en

t

ha

rd
er

 −
>

Fig. 4. Comparison of Images 1, 2 and 3

250 C. Moch and F.C. Freiling

The analysis between Image 2 and 3 shows that the data conforms with our
initial hypothesis. The mean of difficulty was at 7.8 with a confidence inter-
val between 6.9 and 8.7. The time-consumption mean value was at 7.05 with
a confidence interval between 6.12 and 7.98. The error probability of the t-
tests tends against 0 (4.27e-13 and 4.64e-13). As in both factors the confidence
interval is above 5 we can be sure that the problems differs from each other
and Image 3 is significantly harder (in both factors, time and difficulty) to
solve.

6.4 Findings from Objective Data

Of course this data is subjective, the participants themselves evaluated the foren-
sic problem. There are a lot of factors which could influence this subjective im-
pression. In the following part, we describe our objective measured data and
compare it with the subjective data.

The objective data of the analysis time shows, like the subjective data, no
significant difference between Image 1 and 2, however between Image 2 and 3
it becomes clearly significant. The mean values of the analysis time in Image 1
were 9.81 minutes against 9.15 minutes for Image 2 (see Figure 5). A two sample
t-test leads to a p-value of 0.68 which is not significant. Therefore we cannot
prove if the analysis time differs between Image 1 and 2. The mean values of
Image 2 and Image 3 are 9.15 minutes versus 13.68 minutes. The t-test shows
here a clearly significant data with an p-value of 0.026. The difference is proved
statistically when the p-value is below 0.05. The confidence interval is between
0.56 and 8.489 which means that there is at least a minor difference of half a
minute in the analysis time. With more participants, we could determine the
difference more exactly, however, we have shown that there is a clear difference
between the two images.

To investigate the difficulty of the three images in an objective way we ana-
lyzed how many participants actually solved the image in each level. The data of
Image 1 shows that many participants were tricked by the wrong file extension.
Only 13% of the participants were not able to solve the image, 39% were able to
solve the image at least in parts (either the filename or the file type was correct)
and 48% could solve the image completely. In Image 2, 55% of the participants
could not solve the problem and 45% were able to solve it. The last image was
the hardest image to solve for our students, 79% could not determine either the
filename or the file type and only 21% were able to solve it.

The data shows clearly the descending proportion of solved images. Starting
with 48% completely solved plus 39% partially solved, over 45% solved images
in Image 2 and ending with only 21% solved images with the last image.

Both data, subjective and objective data shows clearly that Image 3 is the
hardest problem in the factors of time and difficulty. The difference between
Image 1 and Image 2 does not exist and therefore the problems are equivalent.
The main difference in Image 1 and 2 was, that in Image 2 the file was moved

Evaluating the Forensic Image Generator Generator 251

Image 1 Image 2 Image 3

5
10

15
20

m
in

ut
es

Fig. 5. Analysis time of Images 1, 2 and 3

on the file system and deleted afterwards. The data shows, that it makes no
difference for a forensic analyst to recover a file or to find the file directly in the
file system. In our interpretation of the data, it makes sense that the problems
are equivalent. With current forensic tools for hard disk analysis, like Sleuthkit
(in combination with autopsy), the forensic analyst gets access to either deleted
and normal files on the fly.

7 Conclusions

Forensig2 is a robust and useful tool to create artificial hard disk images auto-
matically. The first three studies described in this paper, showed that (1) the
findings on images produced by Forensig2 had a great coverage with the input
script for Forensig2, (2) it is possible to create images with about 20 Forensig2

commands and (3) the use of Forensig2 is detectable. The last study used im-
ages as a central part of the study. Therefore the images had to be created in
a controlled way to eliminate any interference which could influence the study
itself.

However, the usability and the capabilities of the tool have to be improved.
At the moment, it is only a console application, which makes it hard to use for
inexperienced users. Overall, it is a good tool which opens new possibilities for
digital forensics education, although there is a lot of work to do in the future to
make the tool handy and comfortable to use, even to inexperienced users.

Acknowledgment. We wish to thank the anonymous reviewers for their
constructive feedback.

Thank David Hendricks, Johannes Stüttgen, Chad Sentman and the students
of the course in ”Forensische Informatik” at the University of Mannheim in 2009
and 2010.

252 C. Moch and F.C. Freiling

References

[1] Carrier, B.: File System Forensic Analysis. Addison-Wesley (2005)
[2] Richard III, G.G.: Rhino Hunt: DFRWS 2005 Rodeo Challenge (2005),

http://www.cfreds.nist.gov/dfrws/Rhino_Hunt.html

[3] Moch, C., Freiling, F.C.: The forensic image generator generator (forensig2). In:
Goebel, O., Ehlert, R., Frings, S., Günther, D., Morgenstern, H., Schadt, D. (eds.)
IMF, pp. 78–93. IEEE Computer Society (2009)

[4] Moch, C., Freiling, F.C.: Forensig2 homepage (2009),
http://pi1.informatik.uni-mannheim.de/forensig2/

http://www.cfreds.nist.gov/dfrws/Rhino_Hunt.html
http://pi1.informatik.uni-mannheim.de/forensig2/

	Evaluating the Forensic Image GeneratorGenerator
	Introduction
	Deficiencies of Forensig2
	Evaluating Forensig2
	Contributions
	Paper Structure

	Background
	Forensig2 in a Nutshell

	Analysis of Artificial Images in Class
	Evaluating the Usability of Forensig2
	Testing and Fingerprinting Forensig2
	Testing Forensig2
	Fingerprinting Forensig2

	Comparing Hardness of Investigation Tasks
	Rhino Hunt
	The Three Images
	Hypotheses and Findings from Subjective Data
	Findings from Objective Data

	Conclusions
	References

