

P. Gladyshev and M.K. Rogers (Eds.): ICDF2C 2011, LNICST 88, pp. 197–210, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

The Forensic Value of the Windows 7 Jump List

Alexander G. Barnett

Purdue University
agbarnet@purdue.edu

Abstract. The Windows 7 Jump List is an aspect of the Windows 7 operating
system that has the potential to contain data and artifacts of great interest to
investigators, but has yet to receive any considerable attention or research. As
of this writing, only one published work makes mention of their existence, and
no tools exist to automate their retrieval and analysis. The goal of this research
is to provide an overview of the function and behavior of jump lists, and also to
examine the structure of jump lists with the intention of proposing further
research for making use of them in a forensic capacity.

Keywords: Jump List, Windows 7, Forensics.

1 Introduction

Windows Jump Lists have the potential to be an excellent source of evidence
for investigators to collect, yet have not been the target of much academic scrutiny.
Due to this lack of research, the intent of this paper is provide a basic understanding
of the behaviors, data, and structures associated with Jump Lists, and to propose
new avenues of research for their exploitation in a forensic capacity. The first section
of this paper will provide an overview of Jump Lists and their end-user functions,
while the second will document several experiments to determine how Jump Lists
behave under certain circumstances. The third section will examine the internal
structure of the Jump List, and the fourth and final section will recommend future
research.

1.1 Overview

Jump Lists are a feature new to Windows 7. They serve a number of purposes,
depending on the specific program utilizing the jump list. For example, the Microsoft
Word Jump List contains a list of recently opened documents, as well as a section for
user-defined “pinned” documents that never leave the list.

Jump Lists may also appear in the Start Menu, where they duplicate the
functionality of taskbar Jump Lists.

The Microsoft Word Jump List demonstrates the basic function of Jump Lists,
which is primarily to show files recently used by specific programs. Other programs,
such as AOL Instant Messenger, utilize their Jump Lists for additional tasks.

198 A.G. Barnett

Fig. 1. The Microsoft Word taskbar Jump List

Fig. 2. The Microsoft Word Jump List in the Start Menu

AIM’s Jump List contains shortcuts for sending new instant messages, changing
the user’s online status, reading their mail, and changing the program’s settings.
While program shortcuts may be useful, it is the recent items feature that is of primary
interest to investigators. These lists may contain files that have been created,
downloaded, uploaded, or opened, depending on the program being used, and retain
the items even after the actual file is deleted. What’s more, the Jump List may record

 The Forensic Value of the Windows 7 Jump List 199

items the user does not know are being recorded (such as files downloaded while in
Firefox private browsing mode), making them even more useful for investigators.

Fig. 3. The AOL Instant Messenger Jump List

Completely clearing a single Jump List is not an intuitive process. There are three
methods the user can utilize: The first is to manually remove each item in the list by
right clicking on the Jump List entry and selecting “Remove from this list”, which is
not practical for larger lists. The second method is to right click on the Start Menu
icon and select Properties, select the Start Menu tab, and uncheck both options in the
Privacy section, which clears all Jump Lists, not just one. The third method is to
manually delete the Jump List file located at:

%APPDATA%\Microsoft\Windows\Recent\AutomaticDestinations or

%APPDATA%\Microsoft\Windows\Recent\CustomDestinations.

This last item is of particular interest for a number of reasons. First, the
AutomaticDestinations and CustomDestinations folders are hidden. This would
normally not be an issue to an experienced user, however even after changing the
Windows settings to show hidden files and folders, these particular folders remain
hidden. This unusual behavior means that, unless the exact path of the folder is
known, the user cannot access individual Jump List files. Additionally, even if the
user were able to locate the Jump List files, deleting the correct list would be difficult
given that Jump List file names are encoded in a seemingly random string of
characters. Without viewing the contents of the file in a HEX editor as depicted in
Appendix A, it is impossible to know which program the list represents. Due to the
complexities involved with deleting Jump List data, the records they contain represent
a good source of possible evidence regarding user activities for investigators.

200 A.G. Barnett

2 Experiments

The following experiments were carried out on a PC running Windows 7 Ultimate
(64-bit). The Jump List files were manually deleted from the AutomaticDestinations
and CustomDestinations directories at the beginning and conclusion of each
experiment. Experiments are grouped by the program being tested.

2.1 Firefox 3.6.16

Experiment #1: Downloading images in normal browsing mode.

For this experiment, images were downloaded from various websites by right-clicking
on the image selecting “save-as”.

Result: Images saved in this way appeared in the Firefox Jump List after
downloading completed.

Experiment #2: Downloading images in private browsing mode.

This experiment mimics experiment #1, with the exception of placing the browser in
private browsing mode before beginning.

Result: Images saved appeared in the Firefox Jump List and remained there after the
program was closed. These images did not appear in the Firefox disk cache, which
was viewed through the about:cache Firefox interface.

Experiment #3: Uploading images in normal browsing mode.

For this experiment, images were uploaded to an online image board through the
site’s upload function.

Result: Uploaded images were listed in the Firefox Jump List. Interestingly, the
images appeared in the Jump List immediately upon being confirmed in the file dialog
box, not after being uploaded to the server.

Experiment #4: Uploading images in private browsing mode.

For this experiment, images were uploaded to an online image board through the
site’s upload function while Firefox was in private browsing mode.

Result: Uploaded images were listed in the Firefox Jump List. Again, the images
appeared in the Jump List immediately upon being confirmed in the file dialog box,
not after being uploaded to the server.

Experiment #5: Comparing the Jump Lists of uploaded and downloaded files.

For this experiment, an image was uploaded to an image board in normal browsing
mode. After uploading, the Jump List file was copied to another folder and renamed
upload.automaticDestinations-ms. After this, the original Jump List file was deleted
and the same image downloaded from the image board. The new Jump List file was
copied to another folder and renamed download.automaticDestinations-ms. The MD5
hash value of each file was then calculated.

 The Forensic Value of the Windows 7 Jump List 201

Result: The hashes did not match. Viewing the HEX values of each file revealed
substantial differences. This could indicate that Jump Lists have an internal
mechanism for differentiating uploaded and downloaded files.

Experiment #6: Uploading a file to a flash-based website.

For this experiment, an image file was uploaded to a flash-based website through
Firefox in normal browsing mode. The upload function also appeared to be flash-
based, although it used a standard file browser dialog.

Result: The file did not appear in the Firefox Jump List.

Table 1. Summary of Firefox Results

Experiment Result
1. Downloading an image in normal

browsing mode
Item appeared in the Jump List.

2. Downloading an image in private
browsing mode.

Item appeared in the Jump List.

3. Uploading an image in normal
browsing mode.

Item appeared in the Jump List.

4. Uploading an image in private
browsing mode.

Item appeared in the Jump List

5. Comparing Jump Lists containing
one downloaded file and one
uploaded file.

MD5 hash values did not match.

6. Uploading a file to a flash-based
website.

Item did not appear in the Jump List.

2.2 Firefox – Conclusions

The most notable aspect of the Firefox Jump List’s behavior is that files downloaded
and uploaded, even in private browsing mode, are recorded. If the user overlooks this
behavior, the Firefox Jump List could provide a telling log of activities performed
online. Additionally, the fact that a Jump List containing only one item downloaded
and a Jump list containing only one item uploaded are different reveals that Jump
Lists may have some sort of mechanism for differentiating how the file was processed
through the browser. This feature could become vitally important if, for example, a
case wanted to prove that a user distributed a file rather than merely acquired it.
Finally, the fact that an image uploaded through a flash-based interface does not
appear in the Jump List reveals that Jump Lists do not record 100% of file uploads,
and may in fact omit downloads and uploads from other methods as well.

2.3 Internet Explorer 8

The experiments performed on the Firefox browser were performed on Internet
Explorer. For the sake of brevity, the procedures will not be re-listed.

202 A.G. Barnett

Experiment #1: Downloading images in normal browsing mode.

Result: The file did not appear in the Internet Explorer Jump List in the Windows UI.
However, viewing the AutomaticDestinations Jump List’s HEX data revealed that the
image was recorded.

Result 2: This test was repeated on a later date. A file was saved immediately after
deleting the Jump List, after which the file was listed in the Jump List UI. However,
after visiting several websites, the file disappeared from the list and was replaced by
links to the websites recently visited.

Experiment #2: Downloading images in private browsing mode.

Result: The file did not appear in the Internet Explorer Jump List in the Windows UI.
Also, it did not appear in the Jump List HEX data.

Experiment #3: Uploading images in normal browsing mode.

Result: The file did not appear in the Internet Explorer Jump List. However, viewing
the AutomaticDestinations Jump List’s HEX data revealed that the image was
recorded.

Experiment #4: Uploading images in private browsing mode.

Result: The file did not appear in the Internet Explorer Jump List. Also, it did not
appear in the Jump List HEX data.

Expirement #5: Comparing the Jump Lists of uploaded and downloaded files.

Result: The hashes did not match. Viewing the HEX values of each file revealed
substantial differences.

Table 2. Summary of Internet Explorer Results

Experiment Result
1. Downloading an image in normal

browsing mode
Item did not appear in Jump List UI,
however it appeared in the Jump
List HEX values.

2. Downloading an image in private
browsing mode.

Item did not appear in the Jump
List.

3. Uploading an image in normal
browsing mode.

Item did not appear in Jump List UI,
however it appeared in the Jump
List HEX values.

4. Uploading an image in private
browsing mode.

Item did not appear in the Jump
List.

5. Comparing Jump Lists containing
one downloaded file and one
uploaded file.

MD5 hash values did not match.

 The Forensic Value of the Windows 7 Jump List 203

2.3.1 Internet Explorer – Conclusions
During the course of these experiments, it was noted that after visiting the same
page several times, a link to the page was stored in the Internet Explorer Jump
List. Also, these entries persisted after deleting the files located in
the AutomaticDestinations directory, indicating the existence of a separate Jump List
file. After researching the topic online, it was discovered that another set of
Jump List files do indeed exist at %APPDATA%\Microsoft\Windows\Recent
\CustomDestinations. Purging these files removed the entries in the Internet Explorer
Jump List UI, showing that a second Internet Explorer Jump List is stored in this
location.

This discovery prompted the researcher to revisit experiments #2 and #4
(downloading and uploading images in private browsing mode) to see if the files were
noted in the CustomDestinations Jump List. After re-performing the tests, it was
noted that this second Jump List made no mention of the files either.

It was also interesting to note that the files uploaded and downloaded in
private browsing mode were not stored in the Internet Explorer Jump List, while
files uploaded and downloaded in private browsing mode using the Firefox
browser were. This difference may indicate that Internet Explorer, being a core part
of the operating system, has access to system methods inaccessible to other
browsers.

It was noted that even after clearing both sets of Jump List files, upon restarting the
browser, the Jump List referencing frequently visited sites was restored. However,
after re-deleting the Jump List files, clearing the browser history, and restarting the
browser, the Jump List was not repopulated. Based on this observation, it is
reasonable to assume that this particular Jump List can be automatically generated
from the browser’s history files if deleted.

Finally, it was discovered through Experiment 1, Result 2 that the Internet Explorer
Jump List will default to the AutomaticDestinations list if the CustomDestinations list
is not available. However, it will revert back to the CustomDestinations list as soon as
it is available.

2.4 Jump List File Names

Jump List file names, while appearing to be a random string of characters, always
follow the format 16 characters dot automaticDestinations-ms or
customDestinations-ms (depending on which folder the file is present in). The 16
characters preceding the .automaticDestinations-ms or .customDestinations-ms are of
particular interest to investigators, since they identify which program the list is
associated with. The following tests will attempt to shed some light on how these lists
are named.

Experiment #1: Are Jump List names static or dynamic?

The 16 characters appear to be random. In this experiment, several different
programs’ Jump Lists will be deleted and recreated multiple times to determine if the
name is randomly generated.

204 A.G. Barnett

Result: The file names did not change. Additionally, it was found that if a program
had Jump Lists in both the AutomaticDestinations and CustomDestinations folders,
the 16 character identifier was the same on both files. Table 3 lists the Jump List
names of several programs:

Table 3. Jump List names

Program Name Jump List Name
Firefox 3.6.16 5c450709f7ae4396
Internet Explorer 8 28c8b86deab549a1
Microsoft Word 2010 a7bd71699cd38d1c
Windows Explorer 1b4dd67f29cb1962
Notepad (64-bit) 9b9cdc69c1c24e2b
Notepad (32-bit) 918e0ecb43d17e23

2.4.1 File Names – Conclusions
The fact that the identifiers are static and always sixteen characters long reveals
that they are most likely encoded names of whichever program they represent.
However, it is not clear at this time how these characters are encoded. Although they
appear to be hexadecimal representations of characters (given that the characters stop
at the letter f), translating the strings from HEX to ASCII text produces no meaningful
results. It is possible that decoding the identifier would produce an eight-character
DOS name, although this raises the question of how Windows can differentiate
between programs with identical names (such as the 32 and 64 bit versions of
Notepad).

2.5 File Structure

Examining the file structure of a Jump List is a difficult task. Viewing the file in plain
text produces garbage text, so the only available method is to view the contents in a
HEX editor. Even after viewing the file in HEX, making sense of the ensuing code is
quite difficult. However, close examination reveals some commonalities in the
structure of each Jump List. To begin, all Jump List files appear to begin with code
depicted in figure 4:

Fig. 4. The first four lines of Jump List code

 The Forensic Value of the Windows 7 Jump List 205

The next line is nearly identical in all files, with the exception of the first value
which is always either “01” or “02”. It is unknown at this time what this value
signifies.

Fig. 5. The fifth line of code (Notepad 64 bit)

Fig. 6. The fifth line of code (Firefox)

The next 27 lines contain the code shown in figure 7, after which the code is no
longer uniform from list to list.

Fig. 7. Lines six through thirty-two

The ensuing structure is complex and seemingly repetitive. The complete file can
be roughly represented as having the structure depicted in table 4. Figure 8 shows a
partial view of the Firefox Jump List after uploading a file named cat.JPG to a
website. There are several observations worth noting in the example. First, while the
file path is shown three times in this particular figure, partial file paths are listed
multiple times in the preceding code with large sections of unknown code in between,
as shown in Figure 9. Also worth noting is the second file path, which contains the
machine’s host name (MAGUS in this case). Downloading a file produces a similar
structure, with multiple repetitions of the file path along with host name. Comparing
the structures of a Jump List with one uploaded file and a Jump List with one
downloaded file reveals significant differences between the two files’ structures,
however there are no discernable sections of code which clearly indicate whether a
file was uploaded or downloaded. Both lists contain references to the hostname and
users@Shell32.dll, and both contain both full and partial file paths repeated many
times throughout the file, although in seemingly different orders with small sections
of illegible code interspaced. However, one immediately noticeable difference is that
the Jump List containing the downloaded file is much longer (by approximately 2600
characters) than the Jump List containing the uploaded file. Although much of the
data contained in a Jump List is incomprehensible at this time, investigators can still
make use of the file paths they contain to prove that a file was used on that particular
machine.

206 A.G. Barnett

Fig. 8. Section of Firefox Jump List after uploading one file

 The Forensic Value of the Windows 7 Jump List 207

Fig. 9. Path fragments in the Jump List

208 A.G. Barnett

Table 4. Rough Jump List file structure

Header

Padding

File path fragments

Full file paths

Padding

File path fragments

Full file paths

3 Conclusions and Recommendations

Jumps Lists have a number of practical applications for investigators. At minimum,
they provide a list of files uploaded, downloaded, viewed, created, or otherwise used
by every program on the system. Additionally, they can also serve as a log of frequent
tasks undertaken by the user with some programs, such as with sites frequently visited
on Internet Explorer. What’s more, with further research it may be possible to
determine how the file was processed through the program it is listed in, such as
uploaded vs. downloaded, or in the case of a word processor, created vs. opened. In
terms of practical application, this could mean proving an illegal image was uploaded
to a server rather than downloaded, or that a ransom note was written and saved rather
than merely opened. Any situation that needs to prove that a file was used on a system
could potentially benefit from Jump List data.

Future research will ideally lead to the development of a tool that can
automatically process Jump Lists as evidence. To reach this point, a number of
research goals must first be accomplished. First, deciphering the 16 character
identifier in the Jump List name will allow the identification and classification of
Jump List files. Failing that, a comprehensive list of programs and their associated
identifiers could be developed, however this is not ideal. Second, a greater
understanding of how Jump Lists operate must be attained. The internal structure of
the list must be deciphered to identify what information is actually stored by the list,
other than the file name, host name, and path to the file. Finally, a program must be
developed to automatically identify a list, extract the file paths, and tag each file with
whatever attributes can be identified (uploaded, downloaded, etc). With the
completion of all these tasks, Jump Lists will be of great use to investigators.

 The Forensic Value of the Windows 7 Jump List 209

APPENDIX A – DETERMINING JUMP LIST ASSOCIATION

Fig. A.1. The AutomaticDestinations Folder

To determine which file belongs to which program, first view the selected
program’s Jump List in the Windows UI. Firefox was chosen for this example, as
shown in figure A.2.

Fig. A.2. Firefox Jump List

From here, open each Jump List file in a HEX editor and search for the entries
present in the list. By this method, we can determine which file belongs to which
program.

210 A.G. Barnett

Fig. A.3. File entries in the Firefox Jump List

	The Forensic Value of the Windows 7 Jump List
	Introduction
	Overview

	Experiments
	Firefox 3.6.16
	Firefox – Conclusions
	Internet Explorer 8
	Jump List File Names
	File Structure

	Conclusions and Recommendations

