
P. Gladyshev and M.K. Rogers (Eds.): ICDF2C 2011, LNICST 88, pp. 188–196, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Tracking User Activity on Personal Computers

Anthony Keane1 and Stephen O’Shaughnessy2

Network Security & Computer Forensics Research Group
Institute of Technology Blanchardstown, Dublin 15, Ireland

anthony.keane@itb.ie, stephen.oshaughnessy71@gmail.com

Abstract. Combining low cost digital storage with the tendency for the average
computer user to keep computer files long after they have become useful has
created such large stores of data on computer systems that the cost and time to
conduct even a preliminary examination has created new technical and
operational challenges for forensics investigations. Popular operating systems
for personal computers do not inherently provide services that allow the
tracking of the user’s activity that would allow a simple personal audit of their
computers to be carried out so the user can see what they were doing, when
they did it and how long they spent on each activity. Such audit trails would
assist in forensics investigations in building timelines of activity so suspects
could be quickly eliminated (or not) from an investigation. This paper gives
some insight to the advantages of having a user activity tracking system and
explores the difficulties in developing a generic third party solution.

Keywords: Information Security, Computer Forensics, FTK, Timeline Analysis.

1 Introduction

The most popular operating systems in use today are Windows provided by the
Microsoft Corporation, MAC OS provided by Apple Inc. and a host of Linux
operating systems provided by different companies and open source groups [1]. None
of the operating systems provide the user with a user activity tracking service so it is
left to third party companies to offer software tools for providing such a service and
yet, none of these tools are 100% accurate [2]. At first glance, the problem of
tracking a user’s activity looks trivial enough, after all the computer processor is
responding to instructions of code so, as nothing can happen on the computer that
isn’t coded, surely monitoring the execution of code would reveal all? The difficulty
is finding a way to capture the instructions so as to interrupt and understand what they
are doing and then to extend this to the many different operating systems in use.
Alternatively, we look at the activities of the computer system software, the user and
other applications that are active and for each of these activities, look for some
evidence of their execution that was left behind on the disk. The challenge to this
latter approach requires that we understand the operating systems activities and all the
programs that run on the systems. We need to know how they work so we can see
what trail of evidence they leave behind after execution. Do they generate log data,

 Tracking User Activity on Personal Computers 189

write to the Registry, call on other programs, and so on? This paper discusses the
development of a prototype application for user activity tracking that focuses on the
Microsoft XP and Vista Operating Systems for now with the hope of expanding to
other operating systems in the future.

2 Data and Information Storage

For the Microsoft Windows Operating Systems, the primary source of information on
the system and its components is the Registry [3]. The Registry is essentially a
database for configuration data that is stored in a hierarchical structure. The System,
Users, Applications and Hardware drivers make constant use of the Registry during
the operation of the computer.

As well as the Registry, individual applications and programs can have their own
storage areas separate to the registry where data can be logged. These logs can be in
the form of basic ASCII text files or binary priority structured files. The former are
easy to read while the latter require knowledge of the binary structure in order to
parse any meaningful information. Approaches to reading binary files can take the
form of trial and error until the correct structure is obtained.

The information or data stored in system and application log files can vary in detail
and its usefulness to determine the actions of a user on the system. The location of the
log files can also vary and depends entirely on the application generating the files.
The question as to why this data is stored, and what the original purpose was for the
data very often remains known only to the creator of the program.

Key applications of interest are web browsers, email clients and other applications
that take part in communications and social networking. These types of applications
tend to leave a lot of information on the system to maintain continuity
between sessions of activity. Most of this data has little to contribute in building a
profile of a user's movements other than there was some activity and the quantity or
duration of the activity. However there is always some data that can be used to
establish time points of activity like when the application was run and what it was
used for.

Automating the log collection and parsing of data into a database for further
analysis can be problematic mainly due to different versions of system and
application software storing the logs in different locations and with possibility
different formats of the log file.

3 Developing the System

This paper introduces a work in progress tool called the User Activity Tracker (UAT).
The aim of UAT is to provide a rapid and flexible solution in the step between
the Acquisition and Discovery stages of a forensic investigation. The UAT
will quickly analyse the data storage of acquired suspect’s computer device,
consolidate the retrieved data into a common format and from this produce an
accurate timeline of user activity. This can aid in the investigative process by giving

190 A. Keane and S. O’Shaughnessy

the investigator a quick overview of user activity on the system, thus indicating if a
full investigation is warranted or not and an indication of the cost of proceeding with
the investigation.

The main difference between UAT and other currently available forensics tools
is UAT’s ability to automate the process of user activity timeline retrieval. Most
of the current tools lack the ability to extract usable information from within files
or correlate timestamps into a timeline. There exists previous work on frameworks
for timeline creation, such as Ex-Tip[4], System Combo Timeline [5] and most
notably, Log2timeline [6]. Log2timeline is a timeline framework, capable of parsing
many different log files and other artefacts from a system, creating what the author
calls super timelines. According to the author, the super timeline often contains too
many events for the investigator to fully analyze, making data reduction an easier
method of examining the timeline essential. The UAT differs from these tools by
concentrating on user activity data only, providing a much simpler, easily-read
timeline.

UAT works by taking in user-defined parameters, such as time frame and location,
scanning the various parts of the computer (file system, Registry, user logs, Internet
history etc.), gathering all relevant data and storing it in a temporary data table
structure. Before storing, each item of data is converted to an evidence object, which
is essentially a data structure that allows data and their attributes, normally stored in
different forms, to be expressed in a universal format. This is essential if the data is to
be stored and searched in an efficient manner.

This is a work in progress report and the development of the automation and
reporting processes are still being undertaken. The automation process will involve
taking the data gathered from the system and based on the file types, locations and
metadata (MAC times etc.), will construct a timeline of the user’s activity within the
user-specified time frame. The reporting mechanism will present this information in a
user-friendly readable format such as pdf or html.

This report is based on developing the prototype system to test the software’s
ability to rapidly analyse the system to decide if further investigation is needed.
The project surrounding the development of UAT is based on retrieving user
activity data from Microsoft Windows operating systems and as such,
the programming language chosen as the development platform had to be one
that was compatible with the Windows environment in order to make best use of
the available DLL libraries and supporting tools. Windows operating systems
and applications are developed in Microsoft’s own programming languages, C++
and C#, so ultimately C# was chosen for its ease of use and GUI-building
capabilities.

It is intended that other operating systems will be explored to see how they differ
and what changes to UAT would be required to allow universal access to all operating
systems and their applications (see figure 1). Sections of the code will be optimised
to take advantage of the different operating systems.

 Tracking User Activity on Personal Computers 191

Fig. 1. Architecture of Computer System Independent UAT

Figure 1 illustrates the UAT, structured as a universal interface for multiple
operating systems. The UAT sits on top of a database containing an array of operating
systems and services, such as registry data, applications, their versions, name,
structure and location of relevant log files etc. This would allow the UAT tool to be
platform independent, capable of retrieving user activity information across different
operating system platforms.

The main challenges to the development of system are:

• Identifying, finding and getting access to the log files.
• Extracting data and information from the registry.
• Access to user profiles, i.e., registry configuration for each user on the system.
• Parsing of custom binary files such as Internet Explorer (IE) index.dat files
• Automation of the process of constructing timelines of user activity, based on

the information retrieved from the system.
• Generation of understandable, user-friendly reports of user activity.

4 The Timeline Data

To rapidly build the timeline, we focus on the areas of the system used for storing
data of user activity thus reducing the large amount of data that is essentially
irrelevant to our cause. UAT extracts and processes timeline data from the Registry,
file system, event logs, Internet history and shadow copies or restore points.

The Registry is the first place to search for evidence of user activity since there are
numerous keys that are altered by a user's actions. Each key has a Lastwrite time,

192 A. Keane and S. O’Shaughnessy

which indicates when the key was last written to, and is useful when creating activity
timelines. Keys of particular interest in the Registry are the UserAssist key, which
tracks the use of applications, shortcuts and other items by frequency of use and the
last time accessed; the MRU keys, which list files that have been most recently
accessed; the TypedURLs key maintains a list of the URLs that the user types into the
Address bar in Internet Explorer and when combined with the Temporary Internet
Files will show which Web sites were visited by clicking a link and those that the user
typed in by hand; the MountedDevices key stores information about all devices and
volumes mounted to the system and the USBSTOR key stores specific information
about all USB devices plugged into the system. These keys are all located in the user's
profile configuration, within the NTUSER.DAT file.

The file system contains many folders and files that can be used to give
information on the user’s actions. Among the more useful are the various log files,
such as the Windows event logs, firewall logs and application logs. The Windows
Event Logs store information that is gathered from various parts of the system, such
as user login information or when a services starts and stops. Event Logs are therefore
useful in the correlation of events during forensic analysis [7].

Also of interest in the file system are prefetch and shortcut file types. Prefetch files
contain information on the applications that have been executed on the system, such
as the number of times they have been executed and the timestamp of their last
execution. Shortcut files are recognised by their .lnk extension. When a user accesses
a document on their hard drive, a removable storage device, or a network share, a
shortcut is created on the system in the Recent folder. Shortcut files can prove useful
during an investigation as they can provide information on files accessed and devices
attached to the system by the user.

Internet history files from Web browsers such as Microsoft's Internet Explorer or
Mozilla's Firefox retain a record of the browsing history of users. Investigators can
use this information to develop an understanding of the user's Web browsing
activities.

Shadow Copies were introduced in Windows Vista and are similar to the
restore points found in Windows XP. These files essentially contain a snapshot of
the system and so previous shadow copies can be examined to determine any
changes that may have occurred in the system since the date of the shadow copy's
creation.

5 Case Study Analysis

A test case scenario was devised whereby a user gains unauthorised access to the
Administrators account and performs certain actions. The aim here was to test the
effectiveness of the UAT and to verify by duplicating the analysis with a popular
commercial forensics tool, the Forensic Toolkit (FTK) by Access Data.

In the scenario, an administrator discovers a critical accounts file,
ClientListx10045.xlsx, is missing from the system, in this case a PC running Vista and
160GB hard disk. The administrator had been away from the system from 29/05/
2011 until 30/05/2011. What was the activity on the system between these two dates?

 Tracking User Activity on Personal Computers 193

Another user gained unauthorised access to the administrator’s account and
performing a series of actions, including taking a file and creating another user
account with administrator privileges.

5.1 Methodology

This section gives a brief overview of the methods employed by both UAT and FTK
to investigate the incident in order to build the timeline of activity. An image of the
system was taken using FTK Imager and this image was used for the investigations
carried out by both tools.

The following questions were based on the scenario and both UAT and FTK were
tested for their ability to find the evidence to answer the questions.

Question A: Had the missing file been accessed on the administrators account,
and if yes, at what time?

• FTK: A simple file search for the missing file returned 3 hits in the index.dat
(Internet History) file. The file was accessed through the URL: C:\Users\
Administrator\Documents at 09:34:56 on 30/05/2011 under the Administrators
account.

• UAT: Using UAT’s string search facility, a search was conducted for the missing

file. Similarly to FTK, the search yielded a match found in the index.dat file
(Internet Explorer history file) for the URL C:\Users\Administrator\Documentsat
09:34:56 under the Administrators account.

Question B: Name any other users that were logged into the system around this
time.

• FTK: To find what users logged into the system, the SAM Registry file was
exported and then viewed in FTK’s Registry Viewer. This showed (using the last
write time for each user listed in the SAM file) that Stephen_2 last logged in at
08:33:48 on 30/05/2011 and the Administrator account was last accessed at
09:54:37 on 30/05/2011. Investigation of the System Volume Information folder
(restore points folder) on Windows Vista showed a shadow volume was created on
30/05/2011. An image of this restore point volume was taken and opened in FTK.
A search of the Users folder on the C drive revealed another user, John Smyth.
Loading the NTUSER.DAT file for this user into the Registry Viewer revealed that
this user was last logged on at 9:53:21.

• UAT: Using the file type filter on UAT, a refined search was conducted for all

security event log entries around this date. The search showed that two other users
were logged in around the time of the incident: Stephen_2 and John Smyth.
Stephen_2 is a registered user on the system but John Smyth is not. A scan of the
file system showed no user account existed for John Smyth.

194 A. Keane and S. O’Shaughnessy

Question C: Determine the length of time they were logged in.

• FTK: There were issues with the reading of the event logs through FTK, so the
login times for each user could not be determined. The last access times were
recorded as in the previous question.

• UAT: The logon/logoff times were determined by correlating the security log

event 4624 (logon), with event 4634 (logoff). It was found user Stephen_2 was
logged in from 08:05:33 until 08:33:48;John Smyth was logged in from 09:39:39
until 9:53:21. The Administrator was logged on from 09:34:08 to 09:39:29 and
also from 09:53:33 to 09:54:37.

Question D: Were there any peripheral devices attached to the system? If so,
what were they?

• FTK: FTK’s Registry Viewer application was used to determine if any USB
devices were attached to the system. The System hive from the image was loaded
into the Registry Viewer and the following keys were inspected:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Enum\USBSTOR
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\DeviceClasses

The USBSTOR key creates a sub key for each USB device that is plugged into
the computer. Each device is given a unique ID for identification purposes,
similar to a MAC address on a computer. Also stored in this sub key are the
names of the USB devices. Under the DeviceClasses key, two sub keys were
examined:

 {53f56307-b6bf-11d0-94f2-00a0c91efb8b}
 {53f5630d-b6bf-11d0-94f2-00a0c91efb8b}

These two sub keys are globally unique identifiers (GUIDs) that contain a list of
the USB devices as in the USBSTOR key. Each USB device entry has a unique
ParentIdPrefix number that corresponds to the unique ID of the device in the
USBSTOR key. Correlating these two unique identifiers gives the name of the
device (from the USBSTOR key) and the last time it was plugged into the system
(from the last write time of the corresponding DeviceClasses sub key).

Using this method, it was discovered that a device called Kingston Data
Traveler G3 USB Device attached to the system on 30/05/2011 at 09:43:21.

• UAT: UAT searches through each of keys mentioned above and automatically

correlates the unique instance identifier for each device with the ParentIdPrefix
for the devices under the two DeviceClasses sub keys. Similarly, UAT found the
device, Kingston Data Traveler G3 USB Device attached to the system at
09:43:21on 30/05/2011.

 Tracking User Activity on Personal Computers 195

Question E: Is there any evidence of each of the user’s activities during their
logged in period?

• FTK: The ntuser.dat file for user John Smyth, from the restore point image, was
loaded into Registry Viewer. A search of the recent documents sub key showed
the ClientListx10045.xlsx file was accessed at 09:42:24 on 30/05/2011. A search
of the UserAssist key, which tracks application use, shortcuts and other items by
frequency of use and the last time accessed by a user, showed that that user John
Smyth accessed Excel.exe (the executable for Microsoft’s Excel application) at
09:41:33 on 30/05/201. Examining the prefetch folder, correlated the execution
time of the EXCEL.EXE file with the timestamp found in the UserAssist registry
key. No Internet usage was recorded for this user.

On examining the index.dat file for Stephen_2 around the times of logon,
revealed the user accessed a Website, www.oxid.it at 08:07:22. An inspection of
this URL revealed it to be the download site for the password cracking tool Cain
and Abel. At 08:20:57, user Stephen_2 accessed the URL: http://hackaday.com/
2009/09/cain-and-abel-windows-password-recovery-utility. A search of this URL
revealed it to be a tutorial on how to crack Windows passwords using Cain and
Abel.The ntuser.dat for user Stephen_2 was loaded into Registry Viewer.
Examination of the Recent Documents key revealed no documents had been
accessed. Examining the UserAssist key, it was found that Stephen_2 executed
CAIN.EXE at 09:19:04 0n 30/05/2011. This was correlated with the prefetch file,
CAIN.EXE-578E80AC.pf, with the same last access timestamp. Furthermore,
CAIN-SETUP-563409AF.pf was accessed at 09:17:25, indicating that the
software was installed on the system.

• UAT: Since there is no trace of the user John Smyth, no evidence could be

found in the file system. A search using the Internet history filters revealed no
activity for this user between the dates specified. Using the prefetch files filter, an
entry, EXCEL.EXE-53A22446.pf, was found with a last access timestamp of
09:41:33 on 30/05/201, indicating that user John Smyth accessed Microsoft Excel
as he was logged in at this time. No other useful information could be found for
this user.

Similarly to FTK, evidence was found in the index.dat file, revealing
Stephen_2 accessed www.oxid.it on 30/05/2011 08:07:22 and
http://hackaday.com/2009/09/ cain-and-abel-windows-password-recovery-utility
at 08:20:57.

The same prefetch files as those found by FTK, namely CAIN.EXE-
578E80AC.pf and CAIN-SETUP-563409AF.pf were also found using the
prefetch filter search of UAT.

6 Results and Conclusions

The investigation carried out using the scenario image revealed that both UAT and
FTK found most of the information that was required to build a timeline of activity,
but there were some differences. FTK was much slower in identifying the files than

196 A. Keane and S. O’Shaughnessy

UAT and required much more user interaction. FTK had issues reading the event log
(.evtx) files and so no proper login/logout timeline could be determined. UAT had
problems identifying any activity for the user John Smyth, only discovering that Excel
was executed (by examining the prefetch files) by the user. This was due to the tools
inability to search through restore points. However, it is the intention of the authors to
include this facility in the fully-developed tool.

Overall, UAT demonstrated its usefulness as a rapid analysis tool, working well
when profiled with FTK in this simplified scenario. UAT’s approach in targeting the
essential data for the timeline discovery gives it a distinct advantage over general
purpose forensics tools in speed and relevance of reported content.

Further work on this project will involve developing the remote interfaces for other
operating systems and mobile devices. More elaborate test scenarios will be used to
test the effectiveness of the UAT tool before trialling it in some forensics companies
on real-world cases.

Acknowledgments. The authors wish to thank the Department of Informatics in the
Institute of Technology Blanchardstown and Rits Ltd for their continuing support.
Funding for this project was provided by the IOTI Stand-1 scheme.

References

1. W3Counter, http://www.w3counter.com/globalstats.php (accessed June
14, 2011)

2. Olsson, J., Boldt, M.: Computer Forensics Timeline Visualisation Tool, Digital
Investigations. Digital Investigations 6, S78–S87 (2009)

3. Carvey, H.: Windows Forensic Analysis. Syngress. Elsevier Press (2009)
4. Cloppert, M.: Ex-tip: an extensible timeline analysis framework in perl. SANS Inst. (2008)
5. Weber, D.: System Combo Timeline (2007), http://www.cutawaysecurity.com/

blog/system-combo-timeline (accessed July 27, 2011)
6. Guðjónsson, K.: Mastering the Super Timeline With log2timeline. SANS Institute (2010)
7. Microsoft Technical Article technet, http://microsoft.com/en-us/library/

cc751049.aspx (accessed June 14, 2011)

	Tracking User Activity on Personal Computers
	Introduction
	Data and Information Storage
	Developing the System
	The Timeline Data
	Case Study Analysis
	Methodology

	Results and Conclusions
	References

