
P. Gladyshev and M.K. Rogers (Eds.): ICDF2C 2011, LNICST 88, pp. 156–171, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Formal Parameterization of Log Synchronization Events
within a Distributed Forensic Compute Cloud Database

Environment

Sean Thorpe1, Indrakshi Ray2, Indrajit Ray2 , Tyrone Grandison3,
Abbie Barbir4, and Robert France2

1 Faculty of Engineering and Computing, University of Technology,
Kingston, Jamaica

thorpe.sean@gmail.com
2 Department of Computer Science, Colorado State University

Fort Collins, USA
{iray,indrajit,france}@cs.colostate.edu

3 IBM Research
YorkTown Heights, NY, USA
tyroneg@us.ibm.com

4 Bank of America
abbie.barbir@bankofamerica.com

Abstract. Advances in virtual server internetworking and the Internet have been
accompanied by increased incidences of computer related crimes for such
domains. At the same time, the number of sources of potential evidence in any
particular cloud computing forensic investigation has grown considerably, as
evidence of the occurrence of relevant events can potentially be drawn not only
from multiple computers, networks, and electronic systems but also from
disparate personal, organizational, and governmental contexts. Potentially, this
leads to significant improvements in forensic outcomes but is accompanied by an
increase in complexity and scale of the event information, particularly since such
information is treated as composite events. In order for digital investigators to
effectively administer the virtual machine(VM) environments they need to have
automated methods for correlating and synchronizing such event data as a critical
concern. The contribution of the paper is the provision of a University case study
of our ongoing work that integrates an automated detection of a computer forensic
scenario for virtual network server clouds. This is work based upon facts derived
from digital events synchronized within the VM environment. We use our
preliminary case evaluations to present the formal parameterized context for
which such VM log events are likely to occur based on the event condition action
(ECA) paradigm adopted from work done in [16][19].

Keywords: Cloud, Forensic, log, parameterized, event.

1 Introduction

As more enterprises seek to capitalize on the economies of scale of virtual machine
compute clouds and their efficiencies, the increase in malicious activity seemingly is

 Formal Parameterization of Log Synchronization Events 157

waiting to provide even greater opportunities for those who recognize the huge
security risk of entrusting the virtual data centres to third party providers for which
you have no physical jurisdiction. This security challenge overlaps with the fact that
the forensics community also shares it’s own concerns for auditing , searching , and
providing analysis for victims of miscreant behaviour within this abstract domain.
This is particularly true in that a VM object within a data centre may be subject to
several eventualities through network distribution before reaching its final user(s).

On the premise of these eventualities, our work introduces the need to look at log
event correlation activities within the VM domain to better address the forensic
scenarios that are possible. Event correlation is a term that is used to describe an array
of techniques applied to comprehend the dynamic behaviour of systems, based on
events and patterns of events in their history. Considerable effort has been expended
on event correlation in a number of computer security application domains, in
particular in the areas of network management and intrusion detection. Events can be
primitive or they can be composite. When a composite event occurs, it is possible that
many instances of some constituent primitive event occur. The context determines
which of these primitive events should be considered for evaluating the composite
event.

At the same time, developments in computer forensics have seen an increasing
reliance upon event logs generated by computer systems as a source of evidence. We
simply adopt in our work on compute cloud forensics these core formalisms. Recent
trends have resulted in considerable growth in both the number of sources of event
oriented evidence, and the volume of events. This is due to the potential for drawing
evidence not only from multiple computers, networks, and electronic systems, but
also from disparate personal , organizational and government domains. This
potentially leads to very significant improvements in forensic outcomes but is
accompanied by an increase in both complexity and scale of the processing involved.

When comparing the number of security related events to the total number of
events logged by modern computer systems, we find in practice, security related
events comprise only something like 1% of logged information in general. This means
that there is a huge amount of event log information (the other 99%) which is not
related to security but which is available to the computer forensics investigator for use
in identifying activities and events of potential forensic interest. In addition, forensic
event correlation may consider event logs from other disparate sources, which are not
computer event logs per se, such as electronic door logs, telephone call records, and
bank transactions records etc.

In order for forensic investigators within the virtual machine environment to
effectively investigate this mass of data, some means of addressing both the
conceptual complexity, and the volume of events is becoming a necessity. Methods of
representation search and reasoning with the quite heterogeneous semantics implicit
within incident oriented evidence from disparate source types is a grave concern.
Automated methods of analyzing and correlating these events are needed for forensic
investigation to become widely used and cost effective process.

Our motivation for this work is based on the background of exploring methods of
forensic investigation within the heterogeneous VM, using event logs [16,17,18,19].
This type of requirement is useful to the detection and notification phase, within a
compute cloud forensic framework.[14] We provide for the investigation methods

158 S. Thorpe et al.

such as human guided search, automated correlation and hypothetical reasoning based
on event ordering mechanisms within the Virtual machine server network domain.

Existing approaches to event correlation have focused on single domains of interest
only, and have employed models of correlation very specific in nature. Repurposing
existing approaches to the task of more general forensics is made difficult for a
number of reasons especially in the area of cloud database forensics. Existing specific
models underlying event pattern languages don’t necessarily generalize to application
wider domains. For example, it is well understood that state machine based event
pattern languages may work well for events related to protocols, however they don’t
work well for patterns where time and duration are uncertain. Most approaches focus
exclusively on events, but ignore context related information such as environmental
data and configuration information. Furthermore, few approaches have available
implementations in a form that is readily modifiable.

For the VM environment we need a means to rapidly integrate knowledge from
new types of event logs, in a manner that makes explicit the environmental or implicit
concepts associated with those logs. This is in order to facilitate synchronization of
human understanding, and also automated inference. A general solution is still
needed.

In order to generate manageable synchronized VM log events, associating a single
context with a complex composite of log events is often times not adequate. Many
real world scenarios cannot be expressed if a composite event is associated within a
single context.

Our approach is to associate different VM log contexts for various constituent
primitive VM events over a distributed compute cloud. We show that this can be done
by providing a formal semantics for associating contexts within primitive events.

The authors who have related work in traditional active database environments[16]
have identified four different contexts, namely recent, chronicle, continuous, and
cumulative that can be associated with a composite event. We simply transcribe these
contexts to the VM environment as a basis for evaluating atomic consistency for VM
events within these abstract federated networks.

In this work we explore the design of these log events by creating a synchronized
VM Oracle log database that maps the virtual services running within the physical
data centre. In the interest of space we’ll not discuss the prototype here.

In our treatment of this paper we analogize the VM database environment to that of
the traditional database management systems. i.e. they are passive: the database
system executes commands when requested by the user or application program.
However, there are many applications where this passive behaviour is inadequate.
Consider for example as in[19], an accounting application: whenever the price of a
stock for a company falls below a given threshold, the user must sell his
corresponding stocks. One solution is to add monitoring mechanisms in all the
relevant application programs. The alternate option is to poll periodically and check
the stock prices. Polling too frequently incurs a performance penalty; polling too
infrequently may result in not getting the desirable functionalities. A better solution is
to use active databases.

Active databases move the reactive behaviour from the application into the
database. This reactive capability is provided by triggers also known as event
condition action rules. In other words, triggers give active databases the capability to

 Formal Parameterization of Log Synchronization Events 159

monitor and react to specific circumstances that are relevant to an application.
Adopted from [19] the authors argue that an active database system must provide
trigger processing capabilities in addition to providing all the functionalities of a
passive database system.

Different types of events are often supported by a database application: (1) data
modification/ retrieval events caused by database operations, such as insert, delete,
update, or select,(ii) transaction events caused by transaction commands, such as,
begin , abort , and commit, (iii) Application defined events caused by application
programs (iv) temporal events which are raised at some point of time , such as
December 31, 2010 at 12:00 p.m. or two hours after the database is updated, and (v)
external events that occur outside the database, such as , sensor recording temperature
changes. Various mechanisms are needed for detecting these different types of events.
The types of events that are of interest depend on the specific application and the
underlying data model for these VM clouds. Our synchronized VM log files are able
to capture these different types of events, however we do not distinguish the type of
events due to lack of space.

An application may be interested in an occurrence of a single VM log event or in a
combination of such VM log events. The occurrence of a single log event is referred
to as a primitive VM log event. Primitive VM log events are atomic in nature - they
cannot be decomposed into constituent events. For example a student gets 95 on a
Math test or the temperature reaching 90 degrees Fahrenheit. Sometimes an
application is more interested in the occurrence of the combination of multiple VM
primitive events using event composition operators. Such events are described as VM
composite events. For example, an application may be interested in the event that
occurs when the stock prices at Google drop after Facebook . This generally could be
seen as an example of a composite of event. It is made up of two primitive events:
Google stock market prices drop , and the stock market prices of Face book drop. The
event composition operator in this case is the temporal operator “after”.

Many instances of a constituent VM primitive event may occur before the
occurrence of a VM composite event. In such cases, we need to identify which VM
primitive event(s) to pair up to signal the occurrence of the composite event. An
example will help to explain this. Say, that we are interested in detecting the
occurrence of the composite event e defined as follows: e =e1 ;e2. This means that
event e occurs whenever primitive event e2 occurs after primitive event e1 . Suppose e1

= Google Stock Market prices drop and e2 = Facebook stock Market prices drop. In
such cases, which instance(s) of the event e1 should we consider in the evaluation of
the composite event e. Should we consider the first occurrence of e1 or the most recent
occurrence or both ?

Chakravarthy et.al [6] have solved this problem by formalizing the notion of
context. They proposed four kinds of contexts, namely recent, chronicle, continuous
and cumulative, can be associated with composite events. Recent context requires that
only the recent occurrences of primitive events be considered when evaluating the
composite event. In the previous example, if recent context were to be used , then the
last occurrence of e1 will be paired up with the occurrence of e2 and the composite
event e will be signalled once. Chronicle requires that the primitive events be
considered in a chronological order when evaluating the composite event. In this
context, the composite event will consist of the first occurrence of e1 followed by the

160 S. Thorpe et al.

occurrence of e2 will be signalled only once. Continuous requires that the primitive
events in a sliding window be considered when evaluating a composite event. In this
case, the composite event will be signalled twice. In other words, there will be two
occurrence of the composite event. In the first case, the first occurrence of e1 will be
paired with e2. . In the second case, the next occurrence of e1 will be composed with e2

. Cumulative requires that all the primitive events be considered when evaluating the
composite event. In this case, only one composite event will be signalled. However, it
will take into account both the occurrences of e1. Although the four contexts proposed
by Chakravarthy et.al [6] can model a wide range of scenarios, they fail to model
many situations. Consider for example the situation of managing multiple VMs
running within a school environment scenario. The following ECA rule is used in the
school event : admit a new student and the admissions administrator enters
registration centre, condition: true , and action: alert administrator about student’s
registration requirements. We assume the scenario described is logged on the local
VM server as a coordination of documents that arise from the prescribed events. Here
event is a composite one made up of two primitive events E1 = admit student and
E2= administrator enters registration centre. We want this rule to be triggered every
time a new student is admitted and the admissions administrator enters the registration
centre. For E1 we want to use the cumulative context and for event E2 we want the
recent context. Such possibilities cannot be expressed by Chakravarthy work as
indicated in [16], as the composite event is associated with a single context. By
analogy monitoring within the VM environment as a function of a forensic log
auditing framework, demonstrate the same characteristics when managing database
transaction logs, system logs , error logs and so on.

We argue that associating a single context with a composite event albeit in the
physical world or on a virtual machine is restrictive for such environments. More so
synchronization for a single context becomes an NP Hard problem given that
instances within a time interval (t) are used to influence the occurrence of an event.
We see that applications will have composite events made up of different types of
primitive events. Often times, the type of event determine which context should be
used. For example, it makes sense to use recent context for events based on streaming
data, chronicle context for events involving say students or even general customer
orders. Since the constituent primitive events in composite events are of different
types, requiring them to be associated with the same context is placing unnecessary
restrictions on the composite event and prohibiting them from expressing many real
world situations.

We adopt the solution in [7] that a single context should be associated with an
atomic primitive event. For the virtual machine environment, maintenance of
synchronized logged activities between the Physical Data centre and the VM users are
predicated on the need to have this type of atomic consistency within the data sets.
Hence at a record level each VM user suggested is denoted with his own BLOCKID
within the file system. Bearing in mind, that a virtual server maps to its own unique
physical MAC address and a logical address called the CPUID. The virtual server
with the same CPUID can have many run time user instances and hence several
primitive or composite events are likely for each of these server instances. This
adopted approach, by observation allows for abstraction of each synchronized VM
context separately from the other. At the same time such independence will allow

 Formal Parameterization of Log Synchronization Events 161

correlation of each VM log context. Equally how different types of primitive events
can be associated to form a composite VM log event is also clearly delineated with
such an approach. We discuss how this can be done and provide the formal semantics
of associating contexts with primitive events for each VM log composition operator.
We adopt by proof the expressiveness of the approach. We also adopt algorithms
showing how VM composite event detection can take place when the primitive events
have varying contexts as a premise to synchronization evaluation within such
environments.

The rest of this paper is organized as follows. Section 2 describes related work in
this area. Section 3 provides a case study of how we synchronize VM log events,
using our own automated of a VM log auditor. Section 4 formally presents our notion
of the Synchronized VM log context model. Section 5 provides context definitions for
detecting VM composite events. Section 6 provides the conclusion along with
pointers to future direction.

2 Related Work

We must admit that the compute cloud offers a powerful abstraction that provides
virtualized infrastructure, platform or software as a service where the complexity of
fine grained resource management is hidden from the user. In the traditional network
storage environment, users often store those data on local storage devices ,while
service consumers in public cloud store all of their data in the cloud’s common
storage pool. The challenges of monitoring the events within these abstract domains
are a non trivial problem. Our work represents nascent material on event specification
and detection in a synchronized VM hybrid cloud database environment. In our
approach we use the hypervisor system logs to capture the events. A number of works
[8-13] have been done in traditional event specification and detection in active
databases. Some active databases detect events using detection based
semantics.[10,11]; whereas others use interval based semantics [8, 9]. Work in the
area of parameterized contexts for both traditional and cloud computing environments
is very limited based on the published literature available.

In COMPOSE[12,13] and SAMOS [8] systems, the parameters of composite
events detected are computed using the unrestricted context. In the unrestricted
context, the occurrences of all primitive events are stored and all combinations of
primitive events are used to generate composite events. For instance, consider the
composite event E = P;Q; Let p1 and p2 be instances of P and q1, q2 be instances of
Q. Consider the following sequence of events: p1,p2,q1,q2. This will result in the
generation of four composite events in the unrestricted context :
(p1,q1),(p2,q1),(p1,q2) and (p2,q2). Unrestricted contexts have two major drawbacks.
The first is that not all occurrences may be meaningful from the viewpoint of an
application. The other, is the big computation and space overhead associated with the
detection of events.

The SNOOP system [8-12] discusses an event specification language for active
databases. It classifies the primitive events into database, temporal, and explicit
events. Composite events are built up from these primitive events using the following
five event constructors; disjunction, sequence, any, aperiodic, periodic and

162 S. Thorpe et al.

cumulative periodic operators. One important contribution of SNOOP is that it
proposes the notion of parameter contexts. The parameter context defines which
instance of the primitive events must be used in forming a composite event. The
SNOOP authors had proposed four (4) different parameter contexts which were
discussed earlier. Although the SNOOP system discussed how to specify consumption
of events in four (4) different parameter contexts, a parameter context can be
specified only at the top level event expression, which means that the entire
composite event is associated with a single context for which we argue otherwise.

 From the perspective of reconstruction of a digital crime scene within the compute
cloud, the ability to understand event ordering constraints and semantics is clearly a
discernible point of note. It is easily argued that within the multi tenant cloud domain,
several hybrid composite events exist. The ability to disentangle these events into
their composite and atomic types is a relevant synchronization concern and
requirement to the digital investigator seeking to provide analysis of time dependent
case evidence.

We also embrace the literature by Zimmer and Unland [15], who provide an in
depth discussion of the semantics of complex events. They provide a meta model for
describing various types of complex events. In a complex event, it is possible that
many event instances belonging to a particular type occurs. The event instance
selection decides which instance to consider in the composite type. They have the
operators first, last and cumulative. Event instance consumption is of three types:
shared, exclusive, ext-exclusive The shared mode doesn’t delete any instance of the
event. The exclusive mode deletes only those event instances that were used in
triggering the composite event. The ext-exclusive deletes all occurrence of the event.
Although the Zimmer and Unland provide many different possibilities using the
combinations of event instance selection and event instance consumption , their
formal semantics are not presented. We leverage the work done by [16] as a basis of
our own formalisms for the synchronized event based compute clouds. Moreover, it is
critical to use these formalisms to understand the impact of these semantics on the
underlying VM log auditor implementation.[17].

3 Case Study Analysis of Our VM Log Synchronization
Scenario

We have currently setup a test environment to demonstrate the VM log context
events[17]. In this test environment, we designed a log auditor cloud prototype that
maps the existing system virtual logs running on the production Vmware essx3i , and
hosted on a 40 terabyte Physical Storage Area Network (SAN)disk. Essx3i server
instances load as apart of a Windows 7 Operating System. Our case study is
coordinated at the University of Technology, Jamaica [UTECH]. Our UTECH private
log cloud auditor manages student records along with limited accounting
functionalities on campus. For the purposes of our test bed, the UTECH log auditor
analyzes the parameters of event log files generated by the production VM servers.
We have mapped the existing event disk logs on these Virtual servers and store them
in an archival Oracle 11g relational database, which is running on a separate and local

 Formal Parameterization of Log Synchronization Events 163

test VMware essx3i server host. In summary of our present approach ,we use local ftp
sessions over periodic intervals to retrieve and stage data from the production VM
SAN disk event logs onto our test VM Oracle 11g database(DB). The data sets on the
test Oracle 11g DB are then evaluated by our log auditor for synchronized event
activities of the production VMware servers. Seen below in Figure 1.0 is a snapshot
of one of our VM log auditor’s, log file report that demonstrates the parameterized
context of events discussed in this paper.

SQL*Loader: Release 11.2.0.1.0 - Production on Fri Jan 21 16:43:55 2011
Copyright (c) 1982, 2009, Oracle and/or its affiliates. All rights reserved.

Control File:
C:\cygwin\home\kfarquharson\data\utechvmlogger\work\vmware_kernel.ctl
Data File: C:\cygwin\home\kfarquharson\data\utechvmlogger\work\DATA.txt
Bad File: C:\cygwin\home\kfarquharson\data\utechvmlogger\work\DATA.bad
 Discard File:
C:\cygwin\home\kfarquharson\data\utechvmlogger\work\vmware_kernel_log.log
(Allow all discards)
Number to load: ALL
Number to skip: 0
Errors allowed: 50000
Bind array: 10000 rows, maximum of 5000000 bytes
Continuation: none specified
Path used: Conventional

Table KAVAN.ST_UTECH_SYS_LOG_IMPORT, loaded from every logical record.
Insert option in effect for this table: APPEND
TRAILING NULLCOLS option in effect

Column Name

Position

Len Term

Encl Data type
DATE_CODE FIRST * | CHARACTER
LOG_TYPE NEXT * | CHARACTER
EVENT NEXT * | CHARACTER
LOG_DATE NEXT * | CHARACTER
LOG_SOURCE NEXT * | CHARACTER
COMPUTERNAME NEXT * | CHARACTER
LOG_CATEGORY NEXT * | CHARACTER
ACTIVE_USER NEXT * | CHARACTER
DESCRIPTION NEXT * | CHARACTER
FILENAME NEXT * | CHARACTER
DATE_LOADED NEXT * | CHARACTER

164 S. Thorpe et al.

SQL string for column : "SYSDATE"
value used for ROWS parameter changed from 10000 to 1761
Record 154: Rejected - Error on table KAVAN.ST_UTECH_SYS_LOG_IMPORT,
column DESCRIPTION.
ORA-12899: value too large for column
"KAVAN"."ST_UTECH_SYS_LOG_IMPORT"."DESCRIPTION" (actual: 223,
maximum: 200)

Record 155: Rejected - Error on table KAVAN.ST_UTECH_SYS_LOG_IMPORT,
column DESCRIPTION.
ORA-12899: value too large for column
"KAVAN"."ST_UTECH_SYS_LOG_IMPORT"."DESCRIPTION" (actual: 236,
maximum: 200)

Table KAVAN.ST_UTECH_SYS_LOG_IMPORT:
499 Rows successfully loaded.
2 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Space allocated for bind array: 4997718 bytes (1761 rows)
Read buffer bytes: 5000000

Total logical records skipped: 0
Total logical records read: 501
Total logical records rejected: 2
Total logical records discarded: 0

Run began on Fri Jan 21 16:43:55 2011
Run ended on Fri Jan 21 16:43:55 2011

Elapsed time was: 00:00:00.68
CPU time was: 00:00:00.11

Fig. 1. A Snapshot of the VM Log auditor’s sysLog Event file report

From the above snapshot of our auditor’s log file report , we have multiple
primitive event set occurrences. Each subsequent log file report when compiled and
archived presents multiple composite events about the state of the VM. We seek to
use these hypervisor log report files as evidence objects for establishing integrity of
these VMs. What we have found particularly useful which has not been available
before to the System Administrator is the ability to categorically identify and capture
those VM records which have been thrown or rejected by the VM servers. Previously
such events go by unnoticed despite their frequency of occurrence. In an independent
paper we elaborate on the statistical importance of the event frequency data.
Although the mapped log represents a recent event context , our aim is to have the
auditor map both recent and continuous event contexts, as apart of the run time
environment.

 F

4 Our VM Event L

As a basis of VM event s
both a partial or total order
intervals and use an interv
giving a definition of even
synchronized VM log even
over a time interval. The
within a hybrid cloud typi
physical environment. Hen
point in time albeit a partial

Definition 1: [Lamport P
distributed VM log events
synchronize the log of their
For every two(2) primitive
and C(x) being the timesta
equals C(b). if a ⟶bthen
Lamport clock may be used
both composite and primitiv

Definition 2: [Vector Par
process experiences an inte
in a vector array by one. T
causal ordering of VM ev
context.

As a precursor to Definition
event ordering associations
earlier work by Ray et.al[1
we assume that our VM l
orders otherwise assume
domains.

Definition 3: [Overlap o
occurrences are denoted by
overlap if the following co
Otherwise the two VM log
consideration is critical as
relation is reflexive and sym

Definition 4: [Detection of
by the predicate D(Ei , tdi)
detection time , end time o
composite ones connected b
system notification time. O

Formal Parameterization of Log Synchronization Events

Log Synchronized Model

synchronization and detection , time can be treated us
red set of integers. We adopt from [16] the use of tempo
val based semantics to describe our work. We begin
nt occurrence and detection and how we apply them t
nt instance. The occurrence of an event typically occ
detection of an event by our VM log auditor toolkit[
ically occurs over a time interval, as assumed within
nce the detection of such VM event occurs at a particu
l order or a total order instance.

Partial order of VM log events] - For a set of primit
s running on several hybrid virtual servers we seek
r activities over a time interval using Lamport timestam
VM log events say a and b occurring in the same proc

amp for a certain event x, it is necessary that C(a) ne
n C(a) < C(b), where means "happened before."
d to create a partial causal ordering of the VM log even
ve) between processes.

rtial order of VM log events] - Each time a VM ser
ernal primitive event, it increments its own system coun
The vector clock is an algorithm that allows for the par
vents and promotes strong consistency within such ev

ns (3-14) we assume that the VM log events like traditio
s /mappings can be total order relations , as adopted fr
6]. These arguments are particularly useful and intuitiv
log audited cloud is a private cloud environment. Par
both highly distributed public and hybrid data clo

of VM log Events] : Two Events Ei and Ej wh
y O(Ei [tsi tei] and O(Ej , [tsj , tej] respectively are said
ndition is true : ∃tp such that (tsi ≤ tp ≤ tei ∧ tsj ≤ tp ≤ te

g events are said to be non-overlapping. We posit that
to prevent duplicate basic primitive events. The over

mmetric but transitive.

f a VM log Event] The detection of an event Ei is deno
where tsi ≤ tdi ≤ tei and tsi , tdi , tei represent the start ti

of the event Ei respectively. In almost all events(except
by a ternary operator), the detection time is the same as

Once the notification is given , we consider the terminat

165

sing
oral

n by
to a
curs
[17]
the

ular

tive
k to
mps.
ess,
ever
" A
nts(

rver
nter
rtial
vent

onal
rom
ve if
rtial
oud

hose
d to
ej).
this
rlap

oted
me,
the
the

tion

166 S. Thorpe et al.

of the event. From here onwards we refer to this as the notice termination time and
this is denoted by tni . Hence tni = tdi.

Lets assume that the detection time of all events in the system form a total order. This
is not a unrealistic assumption , since the detection of an event occurs at an interval in
time.

Definition 5: [VM log Event Ordering] We define two ordering relations on events.
We say an event Ei occurs after event Ej if tdi > tdj . We say an event En follows event
Em if tsn > tem , that is event En starts after Em completes.

Definition 6: [Primitive VM log Event] - A primitive event is an atomic event
which cannot be decomposed.

Definition 7: [Composite Event] - A composite event E is an event that is obtained
by applying an event composition operator op to a set of constituent events denoted
by E1 , E2 ………En . This is formally denoted as follows E =op(E1 , E2 ……..En) .
The VM log event composition operator op may be binary or ternary. The constituent
events E1 , E2 ……..En may be primitive or composite events.

Definition 8: [Occurrence of a VM log Event] - The occurrence of an event Ei is
denoted by the predicate O(Ei (tsi , tei) where tsi ≤ tei and tsi , tei denote the start time ,
end time of Ei respectively. The predicate has the value true when the event Ei has
occurred within the time interval [tsi , tei] and is false otherwise. Primitive VM log
events are often instantaneous – in such cases the start time tsi and tei ,that is tsi = tei .

Hence within our VM log synchronized model, events occur over a temporal interval.
Since it is not always possible to define a total order on temporal events , we adapt for
the synchronized log VM the notion of overlapping and non overlapping events.

Definition 9: [Initiator] - Consider a composite event E =op(E1 , E2 ……..En) that
occurs over the time interval [ts , te]. The first detected constituent event instance ei (i
ε [1,2,……..n]) that starts the process of parameter computation for this composite
event is known as the initiator.

Definition 10: [Terminator] Consider a composite event Consider a composite event
E = op(E1 , E2 ……..En) that occurs over the time interval [ts , te]. The constituent
event instance ei (i ε [1,2,……..n]) that detects the occurrence of the composite event
E is called the detector.

Definition 11: [Terminator] Consider a composite VM log event E = E1op1 E2 op2

……opx .En) that occurs over the time interval [ts , te]. The constituent event instance
ei (i ε [1,2,……..n]) that ends in time te which terminates the composite event E is
called the terminator.

The VM log initiator of each event can be associated with different parameter
contexts. The contexts specify which instance(s) of the VM log initiator should be
paired with a given VM log terminator instance. The terminator instance determines

 Formal Parameterization of Log Synchronization Events 167

whether the same instance can be used with one or more terminators. The formal
definition of the VM log initiator and terminator contexts are given below.

VM Log Initiator in Recent Context – An instance of the initiator event starts the
composite event evaluation. Whenever a new instance of the initiator event is
detected, it is used for this composite event and the old instance is discarded. After an
instance of initiator event has been used for a composite event, it is discarded.

VM Log Initiator Chronicle Context – Every instance of the initiator event starts a
new composite event. The oldest initiator event is used for the composite event. The
instance of initiator event is discarded after using it for composite event calculation.

VM Log Initiator in Continuous Context - Every new event instance of the initiator
starts a composite event after discarding the previous instance of the initiator. An
instance of the initiator event can be used multiple times in the composite event
evaluation. The same initiator can be paired with multiple terminators. The initiator is
discarded only after another initiator event occurs.

VM Log Initiator in Cumulative Context - The first instance of the initiator event
starts the composite event . The subsequent occurrences of the initiator event start the
composite event. The subsequent occurrences of the VM log initiator events will be
used in this same composite event. The instances of initiator events are discarded after
use.

VM Log Terminator in Continuous Context - Each terminator can be used multiple
times in the composite event calculation. That is, a terminator can be paired with
multiple initiators.

VM Log Terminator in Chronicle Context - Each terminator is used only once in
the composite event evaluation. A terminator can be paired with only one initiator.
Here we do not distinguish the contexts. This is because the very first occurrence of
the terminator will terminate the event.

For this paper, we consider only three binary event composition operators, namely
disjunction, sequence , and conjunction. In our follow up work we explore negation ,
and contraposition operations for the semantic.

Disjunction E1 ∨ E2
This VM event is triggered whenever an instance of E1 or E2 occurs. Since only one
event constitutes the composite event, there is no context associated with this single
event. This is because the very first instance of E1 or E2 will be the initiator as well as
the terminator of this composite event.

Sequence E1 ; E2
This VM log event is triggered whenever an instance of E2 follows an instance of E1.
In this case, an instance of E1 will be the initiator and an instance of E2 will be the
terminator. Since there may be multiple instances of initiators involved, context

168 S. Thorpe et al.

determines which instance of E1 gets paired with which instance of E2 will be the
terminator. Since there may be multiple instances of initiators involved, context
determines which instance of E1 gets paired with which instance of E1 gets paired with
which instance of E2 .

Conjunction E1 ∧ E2

This VM log event is triggered whenever both instances of E1 and E2 occur. For
composite event with “and” operator E(A∧B) , either event A or e vent B can be an
initiator event or a terminator event. When no instance of event B occurs before any
instance of event A, event A is considered as an initiator event and event B is
considered as a terminator event. When event B occurs before event A, event B is
considered as an initiator event and event A is considered a terminator event.

5 Contextual VM Log Semantic Definitions

In this section we give the formal definition of each operator when different contexts
are associated with each constituent event. Due to lack of space, we do not provide
the formal semantics for the conjunction operator.

Disjunction Operator E1 ∨ E2
For the disjunction operator, the context of the operand is not taken into account for
defining the VM log event. This is because the very first event occurrence of either of
the events is the initiator as well as the terminator. The operator is commutative.

O(E1 ∨ E2 , [ts , te]) = (O(E1 , [ts1 , te2]) ∧ (ts ≤ ts1 ≤ te1 ≤ te)) ∨ (O(E2 , [ts2 , te2]) ∧
(ts ≤ ts2 ≤ te2 ≤ te))

Sequence Operator E1: E2
Different contexts will result in different semantics for the sequence operator. Since
an initiator can be associated with four(4) different contexts and a terminator can be
associated with 2 contexts, we have eight(8) possibilities. Each VM log event
occurrence associated with the context is described using the following notation:
O(E1Context ; E2Context , [ts1 , te2]). Their formal definitions are given below:

O(E1R ; E2TC) , [ts1 , te2]) = ∃te1 , ts2 (ts1 ≤ te1 < te2 ∧ O(E1R , [ts1, ts2]) ∧ O(E2TC , [ts2 ,
te2]))

VM log detection of “A∧B” in occurrence say “a1,a2,b1,b2,b3,b4,a3,a4” can be
represented as :

= ∃te1 ,ts2 (ts1 ≤ te1 < ts2 ≤ te2 ∧ O(E1,[ts1 , te1]) ∧ O(E2,[ts2 , te2])
 ∧ (¬∃(O(E1’ ,[t’

s1 , t
’

e1]) ∧ (ts1 ≤ t’
s1 ≤ t’

e1) ∧ (te1 ≤ t’
e1 ≤ t’

s2)))
 ∧ (¬∃(O(E2’ ,[t’

s2 , t
’

e2]) ∧ (te1 ≤ t’
s2 ≤ t’

e2) ∧ (t’
e2 ≤ t e2))))

O(E1R ; E2TO) , [ts1 , te2])
The same as O(E1R ; E2Tc) , [ts1 , te2])

 Formal Parameterization of Log Synchronization Events 169

Definition 12: [VM log Event tree] - A VM event log tree ETe = (N.E)
corresponding to a composite VM log event type E is a directed tree where each node
Ei represents an event type. The root node corresponds to event type E , the internal
nodes represent the constituent composite event types and the leaf nodes correspond
to the primitive event types that make up E. The edge (Ei , Ej) signifies that node Ei is
a constituent of the composite event Ej .Ei in this case is referred to as the child node
and Ej is the parent node.

A VM log event can trigger multiple rules. Thus different event trees can have nodes
corresponding to the same VM log event. In such cases to save storage space, the
event trees can be merged to form an event graph. An event graph may contain events
belonging to different rules. The nodes corresponding to the events which fire one or
more rules are labelled d with the rule-ids of the corresponding rule.

Definition 13: [Identical Composite VM log event types] - Two composite event
types C = op(E1cond1 , E2cond2 ………., Encondn) and C’ = op’(E1’ cond1

’
 , E2’ cond2

’

………., En’ condn
’) are said to be identical if they satisfy the following conditions:

1. The constituent VM events and their associated contexts are identical in both
the cases, that is , Eiconi = Ei ‘

coni’ for i∈ {1,2,…..n }
2. the constituent events are composed using the same event composition

operator, that is op = op’ .

The two major VM log event trees can be merged to form a VM log event graph if
they have any common nodes.

Definition 14: [VM log Event Graph] - A VM log event graph EG= (N,E) is a
directed graph where node Ei represents a log event.and edge (Ei , Ej) indicates that
the event corresponding to the node Ei is a constituent of the composite event
corresponding to node Ej . Each node Ei is associated with a label. labelEi is a set of
rule-ids(possibly empty) that indicate the rules that will fire when the VM log event
corresponding to node labelEi happens.

6 Conclusion

As many applications migrate towards a compute cloud, we are already starting to see
how real world event processing of the same is riddled with a multiplicity of abstract
composite events and primitive events. In this paper we have provided a case study
application for which a formal parameterization context can be considered within the
virtual machine cloud environment. These formalisms are particularly important if the
digital investigator/system administrator is to use these VM database logs as a source
of credible forensic case evidence. We have adopted the use of binary operators as the
basis of our synchronization parameters for event composition. Future work seeks to
focus on expanding these formalisms to look at similarities between event log
contexts as a data mining concern within our synchronization model. It is evident that
log events as used by the VMs today are rapidly changing given that the area of cloud

170 S. Thorpe et al.

computing is still an emergent field. We also agree that VM server localities within a
distributed public ,private or hybrid cloud influence how we evaluate the
parameterized event contexts , albeit a total order or partial order of such events.
Further work also examines model checking formalisms that traces the hypervisor log
event state behaviour as a proof of correctness for inferences on multiple events.

References

1. Borgida, A., Bracham, R.J., McGuiness, D.L., Resnick, L.A.: CLASSIC - A Structural
Data Model of Objects. In: ACM SIGMOD International Conference on Management of
Data, Portland, Oregon (May-June 1989)

2. Chen, H., Finin, T., Joshi, A.: An Ontology for Context Aware Pervasive Computing
Environments, Adjunct. In: Proceedings of the 6th International Conference on Ubiquitous
Computing, Seattle, Washington, October 12-15 (2003)

3. Chen, K., Clark, A., DeVel, O., Mohay, G.: ECF-Event Correlation for Forensics. In: 1st
Australian Computer, Network and Information Forensics Conference, Perth, Western
Australia, November 25 (2003)

4. Cuppens, F., Miege, A.: Alert Correlation in a Cooperative Intrusion Detection
Framework. In: IEEE Symposium on Security and Privacy, Berkley, California, May 12-
15 (2002)

5. Doyle, J., Kohane, I., Long, W., Shrobe, H., Szolovits, P.: Event Recognition Beyond
Signature and Anomaly. In: IEEE Workshop on Information Assurance and Security, June
5-6. United States Military Academy, West Point (2001)

6. Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.K.: Composite Events for Active
Databases: Semantics, Contexts and Detection. In: The Proceedings of the 20th
International Conference on very Large Databases, Santiago de Chile, pp. 606–617
(September 1994)

7. Grandison, T., Maxmillen, M., Thorpe, S., Alba, A.: Formal definition towards Cloud
Computing. Proceedings of IEEE Services (2010)

8. Adaikkalavan, R., Chakravarthy, S.: Formalization and Detection of Events Using Interval
Based Semantics. In: Proceedings of the 11th International Conference on Management of
Data, Goa, India, pp. 58–69 (January 2005)

9. Adaikkalavan, R., Chakravarthy, S.: SnoopIB: Interval based Event Specification and
Detection for Active Databases. Data and Knowledge Engineering 59(1), 139–165 (2006)

10. Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.K.: Composite Events for Active
Databases: Semantics, Contexts and Detection. In: Proceedings of the 20th International
Conference on Very Large Databases, Santiago de Chile, Chile, pp. 606–617 (September
1994)

11. Chakravarthy, S., Mishra, D.: Snoop: An Expressive Event Specification language for
Active Databases. Data and Knowledge Engineering 14(1), 1–26 (1994)

12. Gatziu, S., Dittrich, K.R.: Detecting Composite Events in Active Database Systems Using
PetriNets. In: Proceedings of the 4th International Workshop on Research Issues in Data
Engineering: Active Database Systems, Houston, TX, pp. 2–9 (February 1994)

13. Gehani, N., Jagadish, H.V., Shmueli, O.: Event Specification in an Active Object Oriented
Database. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 81–90. ACM Press, San Diego (1992)

14. Thorpe, S., Ray, I.: Compute Cloud Forensic Framework (unpublished)

 Formal Parameterization of Log Synchronization Events 171

15. Zimmer, D., Unland, R.: On the Semantics of Complex Events in Active Database
Management Systems. In: Proceedings of the 15th International Conference on Data
Engineering, pp. 392–399. IEEE Computer Society Press, Sydney (1999)

16. Ray, I., Huang, W.: Event Detection in Multi level Secure Databases. In: Proceedings of
the 1st International Conference on Secure Systems, Kolkata, India (December 2005)

17. Thorpe, S., Farquharson, K.: Design of an enterprise VM log auditor tool kit. In:
Proceedings of the 1st International Forensic Conference and Journal of Arts and
Technology. University of Technology, Kingston (2011)

18. Thorpe, S., Ray, I., Ray, I., Grandison, T., Barbir, A.: Global Virtual Machine Auditor for
a Federated Digital Identity. Proceedings of the Journal of Information Assurance and
Security 6(4), 322–330 (2011)

19. Ray, I., Huang, W.: Increasing Expressiveness of Composite Events Using Parameter
Contexts. In: Atzeni, P., Caplinskas, A., Jaakkola, H. (eds.) ADBIS 2008. LNCS,
vol. 5207, pp. 215–230. Springer, Heidelberg (2008)

	Formal Parameterization of Log Synchronization Events
within a Distributed Forensic Compute Cloud Database Environment
	Introduction
	Related Work
	Case Study Analysis of Our VM Log Synchronization Scenario
	Our VM Event L Log Synchronized Model
	Contextual VM Log Semantic Definitions
	Conclusion
	References

