
J. Rodriguez, R. Tafazolli, C. Verikoukis (Eds.): MOBIMEDIA 2010, LNICST 77, pp. 582–588, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Efficient SVC-to-AVC Conversion
at a Media Aware Network Element

(Demo Paper)

Michael Sablatschan1, Jordi Ortíz Murillo2,
Michael Ransburg1, and Hermann Hellwagner1

1 Multimedia Communication (MMC) Research Group, Institute of Information Technology
(ITEC), Klagenfurt University, Klagenfurt, Austria

{firstname.lastname}@itec.uni-klu.ac.at
2 Intelligent Systems Group, Department of Computer Science and Artifcial

Intelligence, University of Murcia, Murcia, Spain
jordi.ortiz@um.es

Abstract. H.264/SVC, the Scalable Video Coding extension of the H.264/AVC
video coding standard, features spatial, quality and temporal scalability.
Backwards compatibility with legacy decoding devices is maintained through
an H.264/AVC compliant base layer, which represents the lowest quality of an
H.264/SVC bit-stream. However, it is often desirable to also provide the higher
quality layers to legacy H.264/AVC devices. This is achieved by a process
commonly known as “bit-stream rewriting”, which allows for an efficient
H.264/SVC to H.264/AVC conversion by exploiting the similarities of the two
codecs. This paper describes a demonstrator showing the advantages of
including an improved version of the bit-stream rewriting tool from the existing
JSVM H.264/SVC reference software in an H.264/SVC-based multimedia
delivery system, by integrating it into a Media Aware Network Element.

Keywords: Multimedia Adaptation, H.264/SVC, SVC-to-AVC rewriting.

1 Introduction

H.264/SVC (SVC) [1] is a block-based hybrid scalable video codec, featuring three
different scalability dimensions: temporal scalability, spatial scalability and quality
scalability (SNR scalability). These three dimensions allow the incorporation of
multiple frame rates, spatial resolutions and different quality variations in a single bit-
stream. The scalability of the encoded video bit-stream is achieved by a layered
approach. An H.264/SVC bit-stream comprises a base layer which is conformant to
H.264/AVC (AVC), representing the video at the lowest quality which can be
extracted from the bit-stream. Building on top of the base layer, enhancement layers
can be used to refine the video quality, the spatial resolution or the temporal resolution
of the video. As a consequence, the adaptation of the scalable video bit-stream is as
simple as truncating certain enhancement layers or parts thereof from the initial bit-
stream.

 Efficient SVC-to-AVC Conversion at a Media Aware Network Element 583

SVC is an emerging technology, and in case it will further succeed on the market,
an efficient mechanism for supporting backward compatibility will be needed. Since
the bit-stream syntax and coding tools of the base layer are already backward-
compatible to AVC, this part of the bit-stream can be decoded by any legacy AVC
device. However, as the base layer only represents the lowest quality of the SVC bit-
stream, it is often desirable to provide the higher quality representations to legacy AVC
devices. This is achieved by a process named “bit-stream rewriting” [2][3]. It allows to
efficiently transform an SVC bit-stream into an AVC bit-stream without loss by
exploiting the similarities of the two codecs, i.e., without completely decoding the
SVC bit-stream and re-encoding it to AVC. SVC-to-AVC bit-stream rewriting can be
subsumed as the low-complexity combination of interdependent layers of a scalable
multi-layer SVC bit-stream to a single-layer AVC bit-stream. The rewriting process is
only defined for the case of quality scalability. The JSVM-rewriter, which implements
this process, is available as part of the Joint Software Video Model (JSVM) [4].

The requirement from the European project SCALNET [5] for efficient bit-stream
conversion from the scalable SVC video format to the more widespread AVC video
format lead to the implementation of an improved version of the JSVM-Rewriter. The
improvements comprise the applicability in network environments and the parallel
rewriting of different Group of Pictures (GOPs) of the H.264/SVC bit-stream, leading
to a better run-time performance. A more detailed description of the improved SVC-
to-AVC rewriter can be found in [6], and in Section 4 of this paper, where the
evaluation results of the improved rewriter are summarized. The focus of this paper is
the description of a demonstrator which was built to show the advantages of including
the improved SVC-to-AVC rewriter in an SVC-based multimedia delivery system by
integrating it into a Media Aware Network Element (MANE).

Section 2 explains the advantages of using the SVC-to-AVC rewriter and possible
application scenarios. After that, in Section 3 the architecture of the demonstrator is
described, followed by a summary of the evaluation results for the improved rewriter
in Section 4 and finally a conclusion of the demo paper Section 5.

2 Application Scenarios / Advantages

Despite the advantages of SVC, which cover the possibility to include multiple quality
variations of a video within one single bit-stream and a very efficient bit-stream
adaptation, there are some drawbacks compared to AVC as well. First, the market is
largely comprised of AVC legacy devices which do not support SVC. Second, despite
the improved compression efficiency of SVC, a multi-layer SVC bit-stream introduces
a bit-rate overhead compared to a single layer AVC bit-stream of the same quality
because of the additional layer dependency information. These two drawbacks raise the
need for an SVC-to-AVC conversion tool like the SVC-to-AVC rewriter.

A first scenario derived from the drawbacks of SVC would be the application in a
heterogeneous network which serves different AVC legacy devices. These legacy
devices are only able to decode the base layer of the SVC bit-stream, but might want to
receive a higher quality if the client’s resources allow for it. In this scenario the SVC

584 M. Sablatschan et al.

bit-stream could be rewritten within the network, e.g. at a MANE, in order to fit the
client’s needs and capabilities.

Another possible application would be in a system where the final link to the client
has a limited bandwidth. In this scenario the bit-rate of the transmitted bit-stream needs
to be reduced before the final link is reached. One option would be to discard SVC
enhancement layers. However, this leads to a decreased quality of the bit-stream.
Another possibility would be to rewrite the SVC bit-stream to AVC, reducing the bit
rate by avoiding the bit rate overhead of SVC compared to AVC, and, as rewriting is a
lossless conversion, keeping the same quality at the same time.

The demo presented in the next section covers both scenarios described above.

3 Demo Architecture and Application Flow

3.1 Demo Components

The architecture of the demo presented in this paper comprises a RTSP streaming
server, a MANE containing the SVC-to-AVC rewriter, and different AVC legacy
devices.

The RTSP streaming server is a modification of the open source Darwin Streaming
Server. The modification allows the streaming of SVC videos. In general, a MANE is
located on a network node between the RTSP streaming server and the RTSP
Streaming Clients on the AVC legacy devices. The concept of a MANE is introduced
in [7], as a “network element, such as a middlebox or application layer gateway that is
capable of parsing certain aspects of the RTP payload headers or the RTP payload and
reacting to the contents". The MANE used in this demo was implemented in the
SCALNET project as an RTSP proxy and provides content adaptation services such as
SVC-to-AVC rewriting.

3.2 Demo Scope

This setup accounts for all the advantages of SVC-to-AVC rewriting described in the
previous section: The streaming server stores an SVC file containing several quality
variations of the same video, instead of multiple AVC files for each quality variation.
The conversion to AVC might take place at any point in the network from where the
SVC functionalities are no longer needed or desired, e.g. at a home gateway which
only serves AVC legacy devices. Before this point in the network is reached, the SVC-
feature of simple bit-stream adaptation is still available. After this point, the adaptation
of the bit-stream in terms of changing the quality is not as simple as with SVC, but in
return you have a decreased bit-rate at the same quality. As already mentioned above,
the conversion from SVC to AVC takes place at a MANE between the SVC streaming
server and the AVC legacy devices. This way the streaming server is able to store the
videos in the SVC format, thus saving disk space, and serve AVC legacy devices with
different requirements at the same time, and that with a lower bandwidth consumption
compared to SVC. Fig. 1 depicts an overview of the demo architecture.

 Efficient SVC-to-AVC Conversion at a Media Aware Network Element 585

Fig. 1. SVC-to-AVC Rewriter demo architecture

3.3 Further Considerations

As the MANE should be able to serve clients which are capable of playing SVC bit-
streams as well, a mechanism to signal the clients’ decoding capabilities is required.
This signaling takes place during the streaming configuration exchange with RTSP [8].
If a client signals SVC decoding capabilities, the MANE has to disable the SVC-to-
AVC rewriting functionality and act as a packet forwarder. Else, if the client is an
AVC legacy device, not only the bit-stream has to be rewritten. Additionally all RTP
packets have to be de-packetized before, and packetized again after rewriting
according to the corresponding RTP payload formats [7][9][10].

3.4 Application Flow

The application flow of the demo is as follows: The AVC client requests a video from
the MANE, which forwards this request to the server. The server transmits the SVC
video to the client via the MANE, which contains the SVC-to-AVC rewriter. In order
to see the differences of using the SVC-to-AVC rewriter or not, two sessions are
shown: one session with the SVC-to-AVC rewriter enabled, and one with the SVC-to-
AVC rewriter disabled. In the first session, i.e. with the bit-stream rewritten to AVC,
the client receives the best quality, while in the second session the client can only
obtain the base layer. At the same time, a bandwidth monitor displays the current
bandwidth utilization, which demonstrates the bandwidth-saving for the case the SVC-
to-AVC rewriter is used.

586 M. Sablatschan et al.

4 Evaluation of the Improved SVC-to-AVC Rewriter

4.1 Test Setup

The evaluations of the improved rewriter were carried out on an Intel(R) Core(TM)2
Extreme CPU X9650 with four 3.00 GHz cores and 3 GB memory. For the evaluation
three different MPEG reference video sequences (Mobcal, Parkrun and Shields) were
encoded in different variations. Each sequence was encoded with the spatial
resolutions 480x320p, 720x576p and 1280x720p, the temporal resolutions 12.5 fps, 25
fps and 50 fps and three PSNR quality variations. This results in nine different SVC
video sequences with zero dependency enhancement layers D (i.e., no spatial or CGS
enhancement layers), two temporal enhancement layers T and two quality
enhancement layers Q, denoted as DTQ 022. The different enhancement layer
combinations ware extracted from the nine SVC video sequences for the evaluation,
i.e. six DTQ layer combinations (001, 011, 021, 002, 012, 022) for each of the nine
video sequence have been evaluated. The 54 resulting video sequences were used to
compare the JSVM-rewriter (version JSVM_9_18) to the GOP-based parallel rewriter
configured with different numbers of threads (1, 2, 4, 8, and 16).

4.2 Delay and Bitrate

A higher number of threads, each rewriting a GOP, results in higher delay. For
example, with a GOP size of 16 (as chosen for the test sequences), a frame rate of 25
fps and two GOPs rewritten in parallel, the minimum delay would be 2*16/25 (= 1.28)
seconds plus the rewriting duration.

Enabling the rewriting functionality when encoding SVC leads to a 5.8% increase of
the bit-rate due to the changes in the SVC decoding process [3]. Rewriting the bit-
streams to AVC decreased the bit-rates by 17% to 35% with our SVC encoder settings.
This corresponds to the bit-rate overhead introduced by SVC compared to single layer
streams, in our case AVC. So up to 35% of bandwidth could be saved at the cost of
scalability. This can be useful in scenarios in which the advantages of SVC are no
longer needed, as described in Section 2. The SVC bit-rate overhead (rewriting not
enabled) can be reduced to less than 10% with optimized encoder control [1].

4.3 Performance Evaluation

The evaluation results for the spatial resolution 720x576p are presented using a stacked
bar chart in Fig. 2. The height of the bars specifies the throughput in frames per
second. On the x-axis one can see the different test cases: The JSVM-rewriter on the
left, followed by the different configurations of the GOP-based parallel rewriter. For
every test case there is a group of three bars, which correspond to the different video
sequences. Each bar is subdivided into the different DTQ layer combinations from 001
to 022 in ascending order regarding the throughput. This means that the combination
for which the throughput is the smallest can be found at the bottom.

 Efficient SVC-to-AVC Conversion at a Media Aware Network Element 587

012

012

012

012

012

012

002

002

002

002
002

002022

022

022

022

022

022
011

011

011

011

011

011
001

001

001

001
001

001
021

021

021

021

021

021

012

012

012

012

012

012

002

002

002

002 002

002
022

022

022

022

022

022
011

011

011

011

011

011
001

001

001

001
001

001
021

021

021

021

021

021

012

012

012

012

012

012
002

002

002

002
002

002022

022

022

022

022

022

011

011

011

011

011

011
001

001

001

001
001

001

021

021

021

021

021

021

4

8

12

16

20

24

Th
ro

ug
hp

ut
 (f

ra
m

es
/s

ec
)

1 (jsvm) 1 2 4 8 16
number of threads

M
ob

ca
l_

57
6p

M
ob

ca
l_

57
6p

M
ob

ca
l_

57
6p

M
ob

ca
l_

57
6p

M
ob

ca
l_

57
6p

M
ob

ca
l_

57
6p

Pa
rk

ru
n_

57
6p

Pa
rk

ru
n_

57
6p

Pa
rk

ru
n_

57
6p

Pa
rk

ru
n_

57
6p

Pa
rk

ru
n_

57
6p

Pa
rk

ru
n_

57
6p

Sh
ie

ld
s_

57
6p

Sh
ie

ld
s_

57
6p

Sh
ie

ld
s_

57
6p

Sh
ie

ld
s_

57
6p Sh

ie
ld

s_
57

6p

Sh
ie

ld
s_

57
6p

Fig. 2. Improved Rewriter Evaluation for 720x576p Video Sequences

The GOP-based parallel rewriter stores the GOPs which are assembled from the
received NAL-Units to disk before it makes a system call to the JSVM-rewriter for
each GOP in order to perform the actual rewriting. This approach is not optimized and
leads to a decreased performance when comparing the GOP-based parallel rewriter in
single threaded mode and the JSVM-rewriter in Fig. 2. The throughput achieved with
the GOP-based parallel rewriter increases with the number of threads used, which
reflects that our approach is effective. The performance still improves for 8 threads in
case of the spatial resolution of 720x576p. Although employing 4 threads at 4 cores,
there are still CPU stalls due to system IO. These stalls are allocated by the additional
threads, which leads to the slight improvements. Rewriting with a higher number of
threads also leads to a higher memory consumption, which can cause the system to run
out of memory at high loads, which explains the bad performance of the rewriter with
16 threads. The content of video sequences has no significant impact on the
performance of the rewriter, which is expressed through the small differences between
the different video sequences in Fig. 2.

For live scenarios it is of interest which qualities can be rewritten in real-time. The
upper curve in Fig. 2 outlines the results for the 001 Parkrun sequence. The curves for
all the other video sequences and layer combinations progress similarly with different
offsets. The lower curve in Fig. 2 for example shows the behavior for variant 012. It
can be seen that for the layer combination 012 of the Parkrun sequence only 7.5
(JSVM), 5.2 (1 thread), 7.0 (2), 10.6 (4), 12.3 (8) and 8.0 (16) fps throughput are
achieved. These results indicate that it is not possible to rewrite PAL video sequences
with 25 fps in real-time on the adopted platform. Only by dropping a temporal and a
quality enhancement layer (DTQ 001, i.e., frame rate 12.5 fps), real-time rewriting can
be accomplished with a throughput of 12.7 fps using 2 rewriting threads, 17.3 fps with
4 threads, and 17.9 fps with 8 threads (the upper curve in Fig. 2).

588 M. Sablatschan et al.

All sequences at a spatial resolution of 480x320p and with a frame rate of 25 or 12.5
fps can be rewritten in real-time by the GOP-based parallel rewriter configured with 4,
8, and 16 threads. Real-time rewriting of 1280x720p SVC video sequences is not
possible with any configuration of the GOP-based parallel rewriter. For the 001 variant
the throughput of 8.7 fps with 8 threads is the maximum. For further details the reader
is referred to [6].

5 Conclusion

This demo paper described the advantages and possible application scenarios of the
SVC-to-AVC rewriter tool. The demo setup consists of an RTSP streaming server, a
MANE containing the rewriter, and different AVC legacy devices. It comprises all the
advantages described in Section 2, namely the saved disk space because of storage in
the SVC format including multiple qualities within a single video stream on the
streaming server, the support of AVC legacy devices and the saved bandwidth after
rewriting to AVC. The evaluation results show that real-time rewriting is possible for
480x320p video sequences at 25 frames per second and for 720x576p at 12.5 frames
per second.

Acknowledgments. This work is supported by the Österreichische
Forschungsförderungsgesellschaft mbH (FFG) in the context of the Celtic SCALNET
(CP5-022) project.

References

1. Schwarz, H., Marpe, D., Wiegand, T.: Overview of the scalable video coding extension of
the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video
Technology 17(9), 1103–1120 (2007)

2. Segall, A.: CE 8: SVC-to-AVC Bit-Stream Rewriting for Coarse Grain Scalability. Joint
Video Team, Doc. JVT-V035 (January 2007)

3. Segall, A., Zhao, J.: Bit-Stream Rewriting for SVC-to-AVC Conversion. In: 15th IEEE Int.
Conf. on Image Processing (October 2008)

4. Reichel, J., Schwarz, H., Wien, M.: Joint Scalable Video Model 11 (JSVM 11). Joint
Video Team (JVT), Doc. JVT-X202 (July 2007)

5. SCALNET project, http://www.scalnet.info (retrieved 2009)
6. Sablatschan, M., Ransburg, M., Hellwagner, H.: Towards an Improved SVC-to-AVC

Rewriter. In: Proceedings of MMEDIA 2010 (June 2010)
7. Wenger, S., Stockhammer, T., Hannuksela, M.M., Westerlund, M., Singer, D.: RTP

payload format for H.264 video. RFC3984, Internet Engineering Task Force (IETF)
(February 2005)

8. Schulzrinne, H., Rao, A., Lanphier, R.: Real time streaming protocol (RTSP). RFC2326,
Internet Engineering Task Force (IETF) (April 1998)

9. Wang, Y.-K., Even, R., Kristensen, T., Jesup, R.: RTP Payload Format for H.264 Video,
draft-ietf-avt-rtp-rfc3984bis-10.txt (April 2010)

10. Wenger, S., Wang, Y.-K., Schierl, T., Eleftheriadis, A.: RTP Payload Format for SVC
video, draft-ietf-avt-rtp-svc-21.txt (April 2010)

	Efficient SVC-to-AVC Conversion at a Media Aware Network Element
	Introduction
	Application Scenarios / Advantages
	Demo Architecture and Application Flow
	Demo Components
	Demo Scope
	Further Considerations
	Application Flow

	Evaluation of the Improved SVC-to-AVC Rewriter
	Test Setup
	Delay and Bitrate
	Performance Evaluation

	Conclusion
	References

