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Abstract. The current multimedia consumer market is characterized by the 
advent of cheap but rather high-quality high definition displays, mostly for 
home theater applications. This trend is only partially supported by the 
deployment of high-resolution multimedia services, either over the Internet or 
through satellite channels. To address the resulting disparity between content 
and display formats, video super-resolution techniques represent a major 
solution. This subject is addressed in this paper, by exploiting the use of the 
bilateral filtering. This is a spatial filtering operator that relies on dynamically 
calculating a FIR kernel which has the major advantages of video content 
adaptability and edge preserving. Results are encouraging and suggest that the 
proposed method could be practically implemented. 

Keywords: super resolution reconstruction, high-definition, image 
enhancement. 

1 Introduction 

During the last couple of years, the multimedia consumer market has been 
characterized by the advent of cheap but rather high-quality HD (High Definition) 
displays, mostly for home theater applications. This process is bound to continue at 
least in the near future, with the introduction of displays of even higher spatial 
resolution formats, such as DigitalCinema or UHD/UHDTV (Ultra High Definition). 
This phenomenon is only partially supported by the deployment of high-resolution 
(spatial and temporal) multimedia services, either over the Internet or through satellite 
channels. Indeed, the content generation and distribution sector seems not to be able 
to keep pace with the display technology, which is characterized by a significant 
decrease of the cost per pixel. Conversely, the cost of transmitting one bit of video 
information is not going to decrease, at least when sending it at the quality of service 
level required by the streaming applications. The advances in the video compression 
domain, which proceeds by roughly doubling the compression rate every 5 years, do 
not allow for decreasing such cost significantly. Moreover, older productions need to 
be either re-mastered or post-processed in order to be broadcasted for HD 
exploitation. The decoding of low-resolution multimedia content then thwarts the 
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benefits of high-resolution displays and involves the use of appropriate signal 
processing procedures. Low resolution frames then need to be enlarged through 
super-resolution techniques, with zooming factors that may increase considerably 
during the next few years. 

The present paper focuses on this problem by proposing a solution which resorts 
on the use of the bilateral filtering [16]. This is a spatial filtering operator that relies 
on dynamically calculating a FIR kernel. Edge preserving nature and adaptability are 
the main advantages of this kind of filter. Whereas it has already been adopted to 
address the super-resolution problem, its application has been mostly restricted to the 
case of still-pictures. Herein, we propose its use to tackle the video sequences super-
resolution problem and, accordingly, we propose several changes in its use. The first 
change is related to its extension to the time domain through the use of a group of 
frames when estimating the super-resolution version of each frame. This operation 
goes in the direction of both strengthening the local visual information sketch and 
compensating (thus reducing) the local noise in the current frame with that of 
previous ones. It may be argued that using frames other than the one to be processed 
may introduce some distortions due to differences between adjacent frames. However, 
given an adequately small time window, these differences do not modify significantly 
the local visual structure, as shown by the high correlation between adjacent frames in 
Fig. 1. This graph plots the average interframe correlation of 10 CIF (Common 
Intermediate Format, 352×288pixels, 29fps) test sequences with no less than 300 
frames, computed for a window of 31 frames. The correlation curve shows that on 
average 3 consecutive frames have a correlation higher than 0.9 and 5 consecutive 
frames are correlated as much as 0.85. 

 

Fig. 1. Average interframe correlation 

Instead of relying on a classical motion compensation algorithms, the proposed 
method implements a 3D sample estimation and filtering.  

A second major change we propose is related to the preliminary estimation of the 
pixel that are added to increase the resolution. While the procedure itself is aimed at 
estimating these values, these are needed to bootstrap the bilateral interpolation when 
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computing the filter kernels. To address this problem we make use of a gradient based 
edge-preserving interpolation. 

The paper is organized as follows. Section 2 gives an overview of the state of the 
art of super-resolution techniques applied to image sequences. Section 3 illustrates the 
proposed technique. Experimental results are discussed in Section 4. Conclusions are 
drawn in Section 5.  

2 Past Work 

This section gathers some of the most significant approaches addressing the issue of 
super-resolution. In the following, LR and HR refer to low resolution and high 
resolution frames respectively. The former represents the starting point of the signal 
processing procedure, whereas the latter corresponds to its output. It is assumed that 
the LR nature of input frames can derive from a low-resolution original source or be 
the result of sub-sampling the original frames to meet storage or transmission 
requirements.  

Among single frame approaches, we focus on bilateral filtering techniques. A 
novel algorithm that integrates bilateral filtering and back-projection is presented in 
[1]. The former achieves edge-preserving image smoothing while the latter minimizes 
the reconstruction error with an edge-based iterative procedure. In [2], the authors 
find the connection between the soft edge smoothness and a soft cut metric through a 
generalization of the Geocuts method. This term is incorporated into an objective 
function to produce smooth soft edges and it is applied on alpha channel.  

Among frequency-based multi-frame approaches, Tsai and Huang. [3] present an 
algorithm that improves the resolution of Landsat image data by modeling the 
observed images as under-sampled versions of an unchanging scene undergoing 
global translational motion. Several limitations of the such method are addressed by 
Tekalp, Ozkan and Sezan in [4]. Periodic sampling is still assumed and a translation-
only motion model is used. Kim, Bose and Valenzuela [5] exploit the frequency 
domain theoretical framework and the global translation observation model proposed 
in [3]. 

Among spatial domain methods, Keren, Peleg and Brada [6] propose an approach 
to image registration based on a global translation and rotation model. Irani and Peleg 
[7, 8] extend the earlier work by improving the means of backprojecting the error 
between the simulated LR images and the observed data. A very general procedure 
for super-resolution reconstruction is proposed in [9], for scenes which contain 
arbitrary independent motion. 

Among spatio-temporal approaches, [10] consists in an adaptive weighted 
bidirectional algorithm that uses multiple frames to enhance the accuracy of motion 
estimation. In [11] a directional fuzzy filter is applied to intra- and inter-frame pixels 
to reduce artifacts in compressed image sequences. In [12] the idea of super-
resolution reconstruction from a set of globally translated images of an unchanging 
2D scene is considered and compared to a global translation and rotation model used 
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in [6]. A dynamic super-resolution sequence reconstruction from a LR sequence 
containing sub-pixel shifts is presented in [13]. An iterated back-projection based 
(IBP) algorithm is presented in [14], based on the uncertainty degree metric, used in 
pixel reconstruction and error correction and improved by adaptive techniques. 

Probabilistic methods are also considered. Since super-resolution is an ill-posed 
inverse problem, techniques which are capable of including a-priori constraints are 
well suited to this application. Schultz and Stevenson developed an estimator based 
on the maximum a posterior probability (MAP) with both the spatial and temporal 
information [15]. 

3 Proposed Approach 

The proposed technique is aimed at reconstructing each HR frame from a limited 
number of frames extracted from a LR sequence, without any preliminary knowledge 
of the high-definition data. For any given frame, a sliding time-window determines 
the set of LR frames (from 2 to N ) to be processed in order to produce the output 
stream. The window is shifted forward to produce successive HR frames of the output 
sequence, as shown in Fig. 2. 

 LR 
sequence 

HR 
sequence 

 

Fig. 2. Sliding time-window 

Not to delay the display of the frames, each HR is generated by considering only 
previous frames. A space-time 3D filter is then applied to such partitioning of the 
original signal; the filter is developed from the bilateral filter solution with the 
introduction of sample estimation through local analysis, involving smooth and edge 
area classification and exploitation. 

3.1 Background  

The proposed interpolation is based on bilateral filtering [16], which relies on 
dynamically calculating a FIR kernel from known pixels through spatial distance 
( SW ) and amplitude distance ( RW ) weighting contributions:  
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where: ( )ji,  denotes the kernel center; ( )yxI ,  is the signal amplitude at coordinates 

yxp , ; ( )yxd ,  is the  Euclidean distance function; 2
Sσ  and 2

Rσ  are the spatial and the 

amplitude variance, respectively. The kernel coefficients are then computed as 
follows: 
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where K represent the set of pixels belonging to the filtering kernel. Fig. 3 illustrates 
the two weighting contributions and the final kernel shape W . It can be seen that the 

SW  contribution has a symmetric shape depending only on the distance from the 

kernel center, while the RW  contribution is modeled by the amplitude distance from 

the central sample. 

       

I WS WR W 

 

Fig. 3. Filter kernel shape related to an edge area 

3.2 Super Resolution  

In the proposed technique, we extend the bidimensional bilateral filter described in 
the previous section into a tridimensional filter adding the temporal axis. 
Additionally, we make use of kernel with three equal edges. Given the size of the 
sliding time-window, N , the linear size of the LR kernel, Ws , and the linear zoom 

factor, zf , the cubic filter kernel will entail a local lattice with size: 

22 zfsN W ⋅⋅  (3)
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It can be observed (Fig. 4) that only 2
WsN ⋅  samples are known from the original 

signal. The bilateral interpolation then consists in reconstructing the current 
(unknown) sample through the bilateral formulation.  

 

frame t 

i 

j 

frame t-1 frame t-2 

known sample current sample 

 

Fig. 4. HR image lattice for the kernel support 

However, while the spatial term, SW , can be easily computed by considering the 

spatial distances in the HR lattice, the amplitude term, RW , lacks the definition of the 

sample value itself. In order to process the signal, such value must be estimated. 

Given Î , the amplitude estimate, ( )tji ,,  spatial (intra-frame) and temporal (inter-

frame) dimensions respectively, (1) becomes: 
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In order to estimate the current sample value, a local analysis is performed, based on 
the LR edge map. The process is graphically described in Fig. 5. Both edge magnitude 
and orientation are firstly computed through a gradient operator. Only strong edges 
are considered by applying a threshold to the edge magnitude values. For each 
neighborhood, a linear edge model is derived through the computation of the local 
edge center of mass and the average edge normal angle: 
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with cc ji ,  coordinates of the edge center of mass, cθ  average edge angle, 
khkh pp kh

,,
,  

coordinates of edge pixels, 
khp ,

θ  edge pixel angle and 
khpN

,
 number of edge pixels. 
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known sample 

edge pixel 

current sample 

edge center of mass labeled region (> edge) 

labeled region (< edge) 

 

Fig. 5. Local neighborhood analysis 

Known samples are then classified as belonging to either the same (SS) or the other 
side of the edge line (OS) in comparison with the current sample, according to the 
following rule: 

( ) ( ) ( )
OS   otherwise

    SS;  then 2arctan if

∈
∈−⋅+<−

i

ijjii ccc πθ
 (6)

Once all known samples are classified, the current sample value is computed as the 
distance-weighted average among the samples from the same class. Notice that the 
complete process is applied to a time neighborhood of N  frames (Fig. 6). 

 

Fig. 6. Local neighborhood analysis; space-time structure 

4 Results and Discussion 

The proposed method has been evaluated on 12 1280×720 and 1920×1080 4:2:0 YUV 
video sequences, provided by [17]. The test sequences have been selected with the 
purpose of presenting a broad range of signal behaviors, in terms of different motion 
and scene complexity. A subsampled video sequence (Gaussian local filtering) is  
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preliminarily produced from the original video and is used as input sequence for the 
devised algorithm at any given zoom factor. Test parameters: 3=N , 10=Sσ  and 

2=Rσ . A visual comparison between bicubic interpolation (left) and the proposed 

method (right) is provided in Fig. 7 for three different samples. The proposed 
algorithm shows a good behavior in both strong and weak edge regions, while highly 
textured areas are still challenging. Further developments are ongoing in order to deal 
with such problem through the exploitation of a more precise edge model. 

   
 

   
 

   

tractor, 3×

mobcal, 3×

sunflower, 4×  

Fig. 7. Visual comparison 

5 Conclusion 

A technique for high-resolution reconstruction of low-resolution video sequences has 
been presented. The proposed algorithm extends the use of the bilateral filter through 
the exploitation of the space-time domain and the development of edge-based samples 
estimation, achieving promising results.  
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