
J. Rodriguez, R. Tafazolli, C. Verikoukis (Eds.): MOBIMEDIA 2010, LNICST 77, pp. 331–346, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Seamless Handover: The Hurricane Media Independent
Handover (MIH) Complete Reference Implementation*

Paulo Pires, Luis Teixeira, and Luís Miguel Campos

PDM&FC
Avenida Conde Valbom – 30, Lisboa 1050-068, Portugal

{paulo.pires,luis.teixeira,luis.campos}@pdmfc.com

Abstract. The aim of the HURRICANE framework is to support seamless
handovers between 3GPP, DVB, IEEE 802.11 and 802.16 networks. In this
framework, the IEEE 802.21, Media-Independent Handover (MIH) [1] provides
the basis for the handover-enabling functionality. In this paper, it will be
described the effort taken in order to have a fully-blown IEEE 802.21
implementation with the addition of a Media-Independent Information Service
server facility.

Keywords: Vertical Handover, IEEE 802.21, Media Independent Service,
Cooperative Radio Networks.

1 Introduction

Currently, there is no complete IEEE 802.21 implementation in open-source available
to developers. What do we mean by complete?

The standard specifies the following key facilities:

• Event Service – mechanism responsible for the propagation of link-layer
events, i.e. link unavailability or signal power degradation, to both local and
remote MIH Users that have previously registered for them, by means of this
very service.

• Command Service – mechanism responsible for controlling the link-layer
upon MIH User request, i.e. shutdown a specified link or change link
parameters.

• Information Service – querying mechanism meant to provide network
information to MIH Users. This service depends heavily on another facility,
an Information Server, which will be described later in this document.

• Service Management – mechanism responsible for configuring a MIH entity.
It provides MIH Capability Discovery, MIH Registration and Transport
facilities.

* The presented work is supported by the project INFSO-ICT-216006//HURRICANE/ /(Handovers

for Ubiquitous and optimal bRoadband connectIvity among CooperAtive Networking
Environments), which is partly funded by the European Union.

332 P. Pires, L. Teixeira, and L. Campos

In addition and to ensure communication between the different layers on one MIH
entity, and between MIH entities, the following service access-points (SAPs) are
documented:

• MIH SAP – interface for communications between a MIH User and the local
MIHF.

• NET SAP – interface for communications between MIH peers (different
MIH entities). This interface relies on L2 or L3 transport mechanisms, like
TCP or UDP.

• LINK SAP – interface for communications between a MIHF and the local
link-layer.

Finally, the Information Service functionality (MIIS) depends on the existence of an
Information Server. Information requests (queries) are originated in MIH Users, such
as a mobility management block in the Mobile Node, and are delegated to a local or
remote Information Server, which instead will respond to those same queries.

This entity, the Information Server (IS), is not specified in the standard. So,
it makes sense to exist in the form of an MIH User that shall be responsible
for answering queries forwarded from the MIIS residing in the local MIHF (local to
the IS).

The complete MIHF architecture is shown in figure 1

Fig. 1. Full-featured MIHF architecture

All of the above functional blocks have to be provided in order to achieve the goal
of having a fully-blown MIH-aware environment. The details of the implementation
developed in the scope of the EU-funded project, HURRICANE, is the subject of this
paper.

 Seamless Handover: The Hurricane Media Independent Handover (MIH) 333

2 Prior Art

There are some ongoing efforts to achieve the same objective, most notably by the
Heterogeneous Networking Group [2], from IT-Aveiro. Some concrete ideas on the
HURRICANE architecture in fact flourished from several ad-hoc discussions between
the project developers from both research gropus, but a joint venture between the two
research groups couldn't take place. In spite of this, given that the HNG project,
named ODTONE [3] was made publicly available, some code blocks were adopted
later on by our own implementation.

When it was first publicly released, ODTONE was on version 0.0.1-alpha. It
provided encoding and decoding mechanisms for most of the datatypes described in
Annex F of the standard. Also, Event and Command Services were implemented. MIH
SAP and LINK SAP were partially available along with UDP transport support for
remote communications.

3 Implementation

3.1 MIHF

Fig. 2. HURRICANE MIHF architecture

Figure 2, shows the proposed new HURRICANE architecture, based on ODTONE.
NET_SAP is the block responsible for the communications between MIH peers. It

listens for incoming messages and is also the exit point for outgoing messages. The IP
version and protocol to use is configurable. Every incoming/outgoing messages must
be delivered to/by the Transaction Manager (detailed further on).

334 P. Pires, L. Teixeira, and L. Campos

MIH_SAP is the block responsible for the communications between the MIHF and
MIH Users. It listens for local incoming messages from the application layer and is
also the exit point for local outgoing messages to the application layer. The IP version
and protocol to use is configurable.

Both entry points, queue the messages to be preprocessed by the MIHF.
Depending on whether a message comes from a remote MIHF or a local MIH User, it
is then delegated for further processing. Messages between remote MIH peers must
always pass through a Transaction Manager, which is the block responsible for the
source and destination transaction state machines for each message, and then
dispatched to the Service Access Controller. Local messages go directly into Service
Access Controller.

The Transaction Manager is the block responsible for the source and destination
transaction state machines, as defined in section 8.2.3 of the standard. Its main
purpose is to guarantee the state of each message exchanged between MIHF entities.

The Service Access Controller is basically a triage mechanism where a message is
parsed and delegated to a specific service depending on the information present in its
header. The possible services are the Event Service, Command Service and the
Information Service.

ODTONE already provides these same facilities. Some have different names, but
their purpose is of course the same. The differences lie in the different
implementation approaches. Those include:

• Elimination of singleton pattern - With scalability in mind we have removed
all singleton code portions. The access to the affected objects is now
achieved through object-factories, which main purposes are to guarantee the
uniqueness (i.e.: MIH_SAP) and proper access control to objects;

• One generic communication-responsible object - What you see as NET_SAP
and MIH_SAP are actually two instances of the same object but with
different property-values, like ports to be listening on, IPv6 support, etc.
Others can be easily added, like MIH_LINK_SAPs for every network device
available;

• Configurable UDP/TCP and IPv4/IPv6 support - When the program starts, a
configuration file is read and the communication mechanisms are configured,
among others, according to it. ODTONE only supports UDP over IPv4 and
it's hard-coded;

• Information Service – We provide only binary-querying (TLV) support. This
relies on a facility not described in the standard – the Information Server,
which will be described further on.

• Basic MIH Registration support – Registration happens between two MIHF
entities after Capability Discovery is performed. This was not very clear to
us at the beginning, so we are now looking towards a new approach on this
block.

• Mature IEEE 802.11 (WLAN) LINK SAP implementation – Linux-only and
confined to hardware limitations. This is described in more detail in the
following sub-section.

 Seamless Handover: The Hurricane Media Independent Handover (MIH) 335

The code is 100% C++ and it has been tried in all major Linux distributions with
success. Even though compilation is possible in Windows and Mac OS X (and
eventually some other Unix flavors). Some open-source libraries [5] are used, like
boost::asio for networking and timed-operations; boost::variant is used for the basic
datatype CHOICE implementation and boost::optional is used to deal with optional
object attributes.

3.2 LINK SAP

Even though this is outside of the scope of the standard, we had to implement it in
order to test our MIHF. Like ODTONE, we provide an application just like any other
MIH User. But, instead of aiming only to provide a way of others to implement such
facilities, we actually provide a working one for managing IEEE802.11 devices.

The implemented software listens for MIH Commands coming from the local
MIHF, generates proper responses and delivers them back to the MIHF, which then
forwards them to the requester MIH User. On the other hand, it detects changes in the
link-layer and reports them to the local MIHF by means of MIH Events.

You may notice that we do not refer to MIH Link Commands or MIH Link Events.
This is because we have decided to reuse the MIH_SAP primitives instead of using
the MIH_LINK_SAP ones. MIH_SAP primitives are enough for the task at hands and
by reusing them we are saving on processing resources. Just think that we are not
translating the messages to the destination MIH Users, from MIH_LINK_SAP to
MIH_SAP primitives.

One example is the MIH_Link_Configure_Thresholds. Thresholds can be set up so
that a report is generated whenever a link parameter crosses an arbitrary boundary.

Ideally, one should be able to ask the network link driver to report back whenever a
watched parameter crosses the threshold previously setup. However, there must be a
fallback plan in case there's no such support from the network stack. Our fallback plan
is active polling. On an interval of N seconds the software inquiries the networking
device for the desired parameter. The value of N is now hard-coded but will
eventually become configurable.

When a threshold is crossed, a MIH_Link_Parameters_Report message containing
the parameter type, value, and the threshold that has just been crossed is created and
sent to the local MIHF. The local MIHF, be means of the Event Service then
forwards this MIH Event to any MIH User that has registered for this particular event.

3.3 Android Support

Our MIHF implementation is proven to run on top of Android, but this same platform
provides a JAVA-only API to control the networking environment (WLAN and 3G).
Some tests have been successfully performed, but in order to get a working LINK
SAP, we have to engage in another development effort [10] to be taken outside of the
HURRICANE project scope.

336 P. Pires, L. Teixeira, and L. Campos

3.4 Information Server (IS)

Mobile networks are highly dynamic environments, especially in what concerns to
resource availability. This fact leads to high amounts of data being loaded, queried
and updated simultaneously into an identifiable repository to which MIH Users will
interact with. This repository is what we called, Information Server (IS).

With this in mind, we had to think of a scalable solution to manage our data while
at the same time provide an interface for processing multiple-concurrent queries. An
SQL RDBMS is the back-end solution we selected.

Currently, a JAVA application has been developed to behave as our Information
Server. We have decided to go with JAVA, because it's a high-level language with
access to a wide range of tools and frameworks, and because we don't have to worry
about scarce resources, as we will be operating on the network side. Also, multi-
platform support was a strong consideration.

This decision will boost development, and provide easy functionality additions in
the future (i.e.: Web services for business tools integration, native integration in a
clustered environment, etc.).

Let us describe a simple query/response scenario, between a Mobile Node and a
remote Information Server.

Fig. 3. Query/response scenario in the context of HURRICANE

Figure 3 shows that all the information resides in a centralized database, which is
queried through this JAVA application by means of the Java Persistence API[6].

JPA is a JAVA standard that provides a Plain-Old Java Object (POJO) persistence
model for object-relational mapping, initially designed inside the EJB standardization
effort. Currently, JPA is on its second incarnation (JPA 2.0) providing support for
applications outside the EJB context, namely Web applications and standalone clients.

Some advantages of following this approach are:

1. Vendors like Oracle and JBoss have open-source implementations of this
standard, TopLink Essentials [7] and Hibernate [8], respectively.

2. Many RDBMS are supported.

 Seamless Handover: The Hurricane Media Independent Handover (MIH) 337

3. Provides a query-language (JPQL) and a criteria-query API, for standard
querying in your code without worrying about the underlying RDBMS query
syntax.

4. You application can be rapidly and easily ported to support any of the
supported RDBMS, so you don't lock-in the mobile operator to the choice of
RDBMS taken.

Currently, we are using H2 database engine [9] in our testbed. Our database is
currently populated by means of another JAVA application in a static way.

Fig. 4. Information Server internal architecture

Obviously, the MIH protocol, described in the Chapter 8 of the standard, had to be
implemented partially. Not all primitives are implemented, but only the ones related
to the Information Service, which are:

• MIH_Get_Information.request
• MIH_Get_Information.indication
• MIH_Get_Information.response
• MIH_Get_Information.confirm
• MIH_Push_Information.indication

The message encoding and decoding mechanisms are responsibility of Encoder and
Decoder, respectively.

After a message is received, the Decoder disassembles it and sends it to the Query
Manager, the responsible block for interpreting the binary query provided. This is
also responsible for querying the database, by means of JPQL/Criteria APIs.

When the results from the database are received, they are then assembled into a
new message in the Response Factory, which will pass the new response to the
Encoder for proper assembly. The outgoing message is then dispatched to the source
of the query, usually the local MIHF.

Below is an example of a query and subsequent response. The scenario is as
follows:

• We have two networks of type 802.11 and one of type 802.16 in our
database. All of them have different costs.

• We want to query for all 802.11 networks but select the cheapest one as our
handover target network.

338 P. Pires, L. Teixeira, and L. Campos

Table 1. Query code snippet

// declare MIH message object

odtone::mih::message msg;

odtone::mih::iq_bin_data_list iq_list;

odtone::mih::iq_bin_data iq_data;

odtone::mih::net_type_inc net_type;

// Define network type as IEEE802.11

net_type.set(odtone::mih::net_type_inc_ieee802_11);

// Put networking type into IQ_BIN_DATA

iq_data._net_type_inc = net_type;

// Put IQ_BIN_DATA into IQ_BIN_DATA_LIST

iq_list.push_back(iq_data);

// Encode a MIH_Get_Information.request message

msg << odtone::mih::request(odtone::mih::request::get_information, _mihfid)

& odtone::mih::tlv_info_query_bin_data_list(iq_list)

& odtone::mih::tlv_unauthenticated_info_req(true); // set UIR in the payload

msg.uir(true); // set UIR in the header

// Send the message to the local MIHF for remote dispatch.

The message is dispatched to the local MIHF which then forwards it to the
Information Server. One can notice that it is not provided the cost information. This
is due to the decision that the Information Server will not perform any arithmetic or
logical operations as we want to provide the information to as soon as possible. It is
up to the MIH User to compute the operations it sees fit.

 Seamless Handover: The Hurricane Media Independent Handover (MIH) 339

The existing code to handle the message in the Information Server is way too much
to put an example here, but we provide some logging info.

Table 2. Decoding of the query and database fetch

21:11:46.678] TRACE FrameToRequestDecoder - Received MIHFrame:

MIHFrame{header=MIHHeader{version=1, ackReq=false, ackRsp=false, unauthenticatedInfoReq=false,

moreFragment=false, fragmentNumber=0, reserved1=0,

messageID=MIH_GET_INFORMATION_INDICATION, reserved2=0, transactionID=0},

payload=MIHPayload{source=MIHF_ID{mihfId='mihf'},

destination=MIHF_ID{mihfId='information_server'},

21:11:47.029] DEBUG FrameToRequestDecoder - Created request:

com.pdmfc.hurricane.miis.command.GetInformationRequest@5d0e8647

21:11:47.031] TRACE ServiceRequestHandler - Setting reply address to: /127.0.0.1:6666

21:11:47.033] DEBUG ServiceRequestHandler - Executing ServiceRequest:

com.pdmfc.hurricane.miis.command.GetInformationRequest@5d0e8647

21:11:47.040] TRACE GetInformationRequest - Executing a MIH_Get_Information.indication

21:11:47.045] TRACE GenericDecoder - Decoding field

com.pdmfc.hurricane.miis.mihf.MIH_Get_Information_indication.binaryDataList

21:11:47.052] TRACE TLVSerialiser - Starting to deserialise a stream of bytes

21:11:47.052] TRACE TLVSerialiser - TLV_01 type=INFO_QUERY_BINARY_DATA_LIST

21:11:47.053] TRACE TLVSerialiser - TLV_01 length=11

21:11:47.055] TRACE TLVSerialiser - TLV_01 value=SlicedChannelBuffer(ridx=0, widx=11, cap=11)

21:11:47.055] TRACE TLVSerialiser - TLV_02

type=UNAUTHENTICATED_INFORMATION_REQUEST

21:11:47.056] TRACE TLVSerialiser - TLV_02 length=1

21:11:47.056] TRACE TLVSerialiser - TLV_02 value=SlicedChannelBuffer(ridx=0, widx=1, cap=1)

21:11:47.082] TRACE GenericDecoder - Decoding field

com.pdmfc.hurricane.miis.mihf.IQ_BIN_DATA.querierLoc

340 P. Pires, L. Teixeira, and L. Campos

Table 2. (continued)

21:11:47.084] TRACE GenericDecoder - Decoding field

com.pdmfc.hurricane.miis.mihf.IQ_BIN_DATA.netTypeInc

21:11:47.085] TRACE GenericDecoder - Decoding field

com.pdmfc.hurricane.miis.mihf.query.NET_TYPE_INC.linkTypes

21:11:47.087] TRACE GenericDecoder - Decoding field

com.pdmfc.hurricane.miis.mihf.IQ_BIN_DATA.netwkInc

21:11:47.087] TRACE GenericDecoder - Decoding field

com.pdmfc.hurricane.miis.mihf.IQ_BIN_DATA.rptTempl

21:11:47.089] TRACE GenericDecoder - Decoding field

com.pdmfc.hurricane.miis.mihf.IQ_BIN_DATA.rptLimit

21:11:47.089] TRACE GenericDecoder - Decoding field

com.pdmfc.hurricane.miis.mihf.IQ_BIN_DATA.currPref

21:11:47.090] DEBUG GetInformationRequest - Processing:

MIH_Get_Information_indication{binaryDataList=[IQ_BIN_DATA{querierLoc=null,

netTypeInc=NET_TYPE_INC{linkTypes={5}}, netwkInc=null, rptTempl=null, rptLimit=null,

currPref=null}]}

21:11:47.244] DEBUG GetInformationRequest - Fetched 2 networks from database

21:11:47.300] DEBUG GetInformationRequest - Creating reply frame

Table 3. The response being encoded with query results

21:11:47.794 TRACE GenericEncoder - Encoding field class

com.pdmfc.hurricane.miis.mihf.identification.MIHF_ID.mihfId

21:11:47.795 TRACE GenericEncoder - Encoding: MIHF_ID{mihfId='information_server'}

21:11:47.795 TRACE GenericEncoder - Encoding field class

com.pdmfc.hurricane.miis.protocol.frame.MIHPayload.destination

21:11:47.795 TRACE GenericEncoder - Encoding as @SEQUENCE: MIHF_ID{mihfId='mihf'}

21:11:47.795 TRACE GenericEncoder - Encoding field class

com.pdmfc.hurricane.miis.mihf.identification.MIHF_ID.mihfId

 Seamless Handover: The Hurricane Media Independent Handover (MIH) 341

Table 3. (continued)

21:11:47.796 TRACE GenericEncoder - Encoding: MIHF_ID{mihfId='mihf'}

21:11:47.796 TRACE GenericEncoder - Encoding field class

com.pdmfc.hurricane.miis.protocol.frame.MIHPayload.serviceSpecificTLVs

21:11:47.823 TRACE GenericEncoder - Encoding:

MIHPayload{source=MIHF_ID{mihfId='information_server'}

21:11:47.823 TRACE FrameCodec - Encoding frame header: MIHHeader{version=1, ackReq=false,

ackRsp=false, unauthenticatedInfoReq=false, moreFragment=false, fragmentNumber=0, reserved1=0,

messageID=MIH_GET_INFORMATION_RESPONSE, reserved2=0, transactionID=0}

21:11:47.924 TRACE FrameCodec - Encoded frame dump: 00 00 48 01 00 00 03 42 01 13 12 69 6E 66

6F 72 6D 61 74 69 6F 6E 5F 73 65 72 76 65 72 02 05 04 6D 69 68 66 03 01 00 30 82 02 9F 01 01 10 00

03 00 82 02 96 10 00 03 01 82 01 04 10 00 00 00 19 01 13 01 00 00 00 00 00 00 00 00 01 0C 74 79 70

65 5F 65 78 74 5F 30 30 30 10 00 00 01 14 12 48 55 52 52 49 43 41 4E 45 2D 46 4F 52 45 49 47 4E 42

00 10 00 00 02 15 14 73 65 72 76 69 63 65 5F 70 72 6F 76 69 64 65 72 5F 30 30 30 10 00 00 03 02 41

41 10 00 01 00 0E 0D 6E 65 74 77 6F 72 6B 5F 69 64 5F 30 30 10 00 01 01 0E 0D 6E 65 74 5F 61 75 78

5F 69 64 5F 30 30 10 00 01 03 0A 01 00 00 00 32 00 00 45 55 52 10 00 01 05 06 00 00 00 00 00 00 10

00 01 06 04 00 00 00 00 10 00 01 07 03 41 41 00 10 00 01 08 05 01 00 00 00 00 10 00 01 09 13 00 00 00

02 01 00 01 09 31 32 37 2E 30 2E 30 2E 31 00 00 10 00 01 0A 04 00 00 02 00 10 00 01 0B 01 00 10 00

01 0C 02 00 02 10 00 01 0D 05 00 00 00 00 00 10 00 01 0E 11 01 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 10 00 01 0F 01 01 10 00 03 02 78 10 00 02 00 03 03 01 30 10 00 02 01 12 00 00 41 41 0D

63 69 76 69 63 5F 61 64 64 72 5F 30 30 10 00 02 02 08 00 00 00 00 00 00 00 00 10 00 02 03 25 01 13

01 00 00 00 00 00 00 00 00 01 0A 74 79 70 65 5F 65 78 74 5F 30 04 0B 33 47 50 50 5F 41 44 44 52 5F

30 00 10 00 02 04 0C 08 00 01 08 31 30 2E 30 2E 30 2E 30 10 00 02 05 0C 00 01 09 31 32 37 2E 30 2E

30 2E 31 10 00 03 01 82 01 04 10 00 00 00 19 01 13 01 00 00 00 00 00 00 00 00 01 0C 74 79 70 65 5F

65 78 74 5F 30 30 31 10 00 00 01 14 12 48 55 52 52 49 43 41 4E 45 2D 46 4F 52 45 49 47 4E 43 01 10

00 00 02 15 14 73 65 72 76 69 63 65 5F 70 72 6F 76 69 64 65 72 5F 30 30 31 10 00 00 03 02 42 42 10

00 01 00 0E 0D 6E 65 74 77 6F 72 6B 5F 69 64 5F 30 31 10 00 01 01 0E 0D 6E 65 74 5F 61 75 78 5F

69 64 5F 30 31 10 00 01 03 0A 01 00 00 00 3C 00 01 45 55 52 10 00 01 05 06 00 00 00 00 00 00 10 00

01 06 04 00 00 00 01 10 00 01 07 03 42 42 01 10 00 01 08 05 01 00 00 00 01 10 00 01 09 13 00 00 00 02

01 00 01 09 31 32 37 2E 30 2E 30 2E 31 00 00 10 00 01 0A 04 00 00 02 00 10 00 01 0B 01 01 10 00 01

0C 02 00 02 10 00 01 0D 05 00 01 01 01 01 10 00 01 0E 11 01 01 01 01 01 01 01 01 01 01 01 01 01 01

01 01 01 10 00 01 0F 01 01 10 00 03 02 78 10 00 02 00 03 03 01 31 10 00 02 01 12 00 00 42 42 0D 63

69 76 69 63 5F 61 64 64 72 5F 30 31 10 00 02 02 08 00 00 00 01 00 00 00 01 10 00 02 03 25 01 13 01

00 00 00 00 00 00 00 00 01 0A 74 79 70 65 5F 65 78 74 5F 31 04 0B 33 47 50 50 5F 41 44 44 52 5F 31

00 10 00 02 04 0C 08 00 01 08 31 30 2E 30 2E 30 2E 30 10 00 02 05 0C 00 01 09 31 32 37 2E 30 2E 30

2E 31

21:11:47.924 DEBUG ListOfNetworkEncoder - Returning encoded frame:

CompositeChannelBuffer(ridx=0, widx=842, cap=842)

342 P. Pires, L. Teixeira, and L. Campos

Looking at the timestamps in the logs, one can conclude that it took proximately
one second and twenty centesimal seconds from the time the Information Server
receives the query, queries the database, receives the results, encodes a response
message and sends it to the MIHF. The MIHF then sends the message back to the
requester MIH User, which we will detail next.

Table 4. MIH User snippet code to calculate and output the cheapest network based on the
response message from the Information Server

// Declare objects to decode into

odtone::mih::status st;

odtone::mih::ir_bin_data_list ir_data_list;

odtone::mih::ie_container_list_of_networks l;

// Decode message into objects previously declared objects

msg >> odtone::mih::confirm()

& odtone::mih::tlv_status(st)

& odtone::mih::tlv_info_resp_bin_data_list(ir_data_list);

odtone::mih::ir_bin_data data = ir_data_list[0];

data.input() & odtone::mih::tlv_ie_container_list_of_networks(l);

// output queries results

for (uint i = 0; i < l.size(); i++) {

log_(0, "Network Identifier: ", l[i].operator_id.opname);

odtone::mih::cntry_code &country = boost::get<odtone::mih::cntry_code>(l[i].country_code);

log_(0, "Country Code: ", country.val[0], country.val[1]);

odtone::mih::cost &cost = boost::get<odtone::mih::cost>(l[i].cost);

log_(0, "Cost: ", cost.value.integer, ".", cost.value.fraction,

 Seamless Handover: The Hurricane Media Independent Handover (MIH) 343

Table 4. (continued)

cost.curr.val[0], cost.curr.val[1], cost.curr.val[2]);

}

// Select the cheapest network

float lower_cost = 0;

odtone::mih::ie_container_network cheapest_net;

BOOST_FOREACH(odtone::mih::ie_container_network& net, l)

{

// get current network cost

odtone::mih::cost &cost = boost::get<odtone::mih::cost>(net.cost);

float fcost = cost.value.integer + ((float)cost.value.fraction / 100);

log_(0, "Lower cost so far: ", lower_cost);

log_(0, "Current cost being analyzed: ", fcost);

if ((lower_cost == 0) || (fcost < lower_cost)){ // if ZERO then first time

// set new lower value

lower_cost = fcost;

log_(0, "New lower cost: ", lower_cost);

// set new cheapest network

cheapest_net = net;

log_(0, "New cheapest network: ", cheapest_net.operator_id.opname);

}

344 P. Pires, L. Teixeira, and L. Campos

Table 4. (continued)

}

// output result

log_(0, "\n[CHEAPEST NETWORK INFO]");

log_(0, "Network Identifier: ", cheapest_net.operator_id.opname);

odtone::mih::cntry_code &country = boost::get<odtone::mih::cntry_code>(cheapest_net.country_code);

log_(0, "Country Code: ", country.val[0], country.val[1]);

odtone::mih::cost &cost = boost::get<odtone::mih::cost>(cheapest_net.cost);

log_(0, "Cost: ", cost.value.integer, ".", cost.value.fraction,

cost.curr.val[0], cost.curr.val[1], cost.curr.val[2]);

And finally, the log.

Table 5. MIH User outputting the cheapest network determination and post information

MIH-User has received a MIH_Get_Information.confirm with status 0 and the following results:2

Lower cost so far: 0

Current cost being analyzed: 60.01

New lower cost: 60.01

New cheapest network: HURRICANE-FOREIGNC

Lower cost so far: 60.01

Current cost being analyzed: 50.0

New lower cost: 50.0

New cheapest network: HURRICANE-FOREIGNB

[CHEAPEST NETWORK INFO]

 Seamless Handover: The Hurricane Media Independent Handover (MIH) 345

Table 5. (continued)

Network Identifier: HURRICANE-FOREIGNB

Country Code: PT

Cost: 50.0EUR

Even though this is a very simple query, much more complex queries are
supported. But for demonstration and example purposes we have follow the simplest
query we managed to find.

On a last note, the Information Server also supports transport over TCP/UDP and
IPv4/IPv6.

Following the MIHF, the Information Server also supports transport over TCP or
UDP over IPv4 or IPv6.

4 Conclusion and Future Work

The referred MIHF implementation has a strong focus on the network facilities that
IEEE 802.21 is meant to deploy and support, namely the Information Server
module.

We reached for maximum openness, portability and easy integration for others to
use our implementation, develop their own MIH Users, or simply reuse some of the
facilities provided. Also, by reusing open-source libraries, extending and open-source
project, and providing installable packages (for Linux only) with a basic
configuration, we are targeting a fast and simple adoption of this product.

On what concerns the Information Server, we provide a package that will run on
any platform with Java 1.5 (SUN JRE is recommended). It's pretty straightforward to
get it to run with the default dummy scenario, but we also provide a programmable
way of getting custom-made scenarios.

In the future, we will be targeting the following:

• Implement a way of supporting transport on TCP and UDP over IPv4 and
IPv6, simultaneously (dual-stack). This will apply both to the MIHF and the
Information Server.

• Specify and implement a dynamic way of populating the Information Server
database with real network information. Eventually, this will be provided
through a mix of configuration (i.e. graphical user interface) and link-layer
monitoring.

• ODTONE is working towards getting support for the Android platform. We
will pick this task too.

• Implement more Radio Access Technologies support to LINK SAP, like
IEEE 802.16 (WiMAX)

346 P. Pires, L. Teixeira, and L. Campos

Acknowledgement. The presented work in this paper is supported by the project
INFSO-ICT-216006 HURRICANE (Handovers for Ubiquitous and optimal
bRoadband connectIvity among CooperAtive Networking Environments), which is
partly funded by the EU.

References

1. http://www.ieee802.org/21/
2. http://hng.av.it.pt
3. http://hng.av.it.pt/projects/odtone
4. http://redmine.pdmfc.com/hurricane
5. http://boost.org
6. http://java.sun.com/developer/technicalArticles/J2EE/jpa/
7. http://www.oracle.com/technology/products/ias/toplink/jpa/

index.html
8. http://www.hibernate.org
9. http://www.h2database.com/

10. http://code.google.com/p/openj21

	Seamless Handover: The Hurricane Media Independent Handover (MIH) Complete Reference Implementation

	Introduction
	Prior Art
	Implementation
	MIHF
	LINK SAP
	Android Support
	Information Server (IS)

	Conclusion and Future Work
	References

